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Abstract: Significant advances in sensor technology and virtual reality (VR) offer new possibilities for
early and effective detection of mild cognitive impairment (MCI), and this wealth of data can improve
the early detection and monitoring of patients. In this study, we proposed a non-invasive and effective
MCI detection protocol based on electroencephalogram (EEG), speech, and digitized cognitive
parameters. The EEG data, speech data, and digitized cognitive parameters of 86 participants (44 MCI
patients and 42 healthy individuals) were monitored using a wearable EEG device and a VR device
during the resting state and task (the VR-based language task we designed). Regarding the features
selected under different modality combinations for all language tasks, we performed leave-one-
out cross-validation for them using four different classifiers. We then compared the classification
performance under multimodal data fusion using features from a single language task, features from
all tasks, and using a weighted voting strategy, respectively. The experimental results showed that the
collaborative screening of multimodal data yielded the highest classification performance compared
to single-modal features. Among them, the SVM classifier using the RBF kernel obtained the best
classification results with an accuracy of 87%. The overall classification performance was further
improved using a weighted voting strategy with an accuracy of 89.8%, indicating that our proposed
method can tap into the cognitive changes of MCI patients. The MCI detection scheme based on EEG,
speech, and digital cognitive parameters proposed in this study provides a new direction and support
for effective MCI detection, and suggests that VR and wearable devices will be a promising direction
for easy-to-perform and effective MCI detection, offering new possibilities for the exploration of VR
technology in the field of language cognition.

Keywords: mild cognitive impairment; virtual reality; wearable EEG; language analysis; cognitive
assessment; classification

1. Introduction

Mild cognitive impairment (MCI), a common neurodegenerative disorder, leads to
memory, logic, language, and executive dysfunction. It also accelerates cognitive decline,
and severe cognitive impairment can create barriers to social independence and inter-
action [1]. MCI, a precursor to Alzheimer’s disease (AD) [2], is also often considered a
transitional stage between cognitive decline in healthy aging and dementia, with a 1-year
conversion rate from MCI to dementia of 18.4% [3]. Studies have shown that the number of
people living with dementia doubles every 20 years, and by 2050, the number of people
living with dementia worldwide will increase from the current 50 million to 139 million,
imposing a heavy burden on both society and families [4]. Although AD is one of the most
common forms of dementia, there are no disease-modifying treatments for AD [5], and
it is an irreversible disease. Fortunately, however, neuropathological changes associated
with cognitive impairment emerge a decade or more before the onset of overt symptoms of
AD [6], making the diagnosis of MCI in the early stages of AD an important challenge.
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One reason why the diagnosis of MCI is often delayed is that most patients confuse
cognitive decline in healthy aging with cognitive impairment due to MCI and do not
undergo clinical examination at an early stage. Studies have shown that 76% of patients
fail to recognize the onset of cognitive impairment at an early stage [7]. In addition, the
current diagnosis of MCI is mainly clinical, but the diversity of assessment criteria and
assessment processes worldwide has led to inconsistent diagnoses of MCI, as well as
etiological investigations [8]. Diverse diagnostic criteria and diagnostic guidelines have led
to diagnostic delays [9].

Currently, paper-and-pencil screening tests (e.g., the mini-mental state examination
(MMSE) and the Montreal cognitive assessment (MoCA)) are commonly used for cognitive
testing. Although the utility of these tests is high with a good reliability and validity [10],
these tests need to be administered under the guidance and supervision of a professional
instructor, thus limiting their widespread use in daily life. Certain neuroimaging tools
(e.g., magnetic resonance imaging, etc.) and biomarkers can provide accurate diagnostic
results, but their wide application is limited by their high cost and invasiveness [11].
Therefore, exploring effective diagnostic options for MCI remains a focus of the biomedical
field and the field of neurology.

Biomarkers play a key role in the diagnosis of MCI as an important change in patients
with MCI. In the ongoing exploration of biomarkers, non-invasive mobile wearable devices
have gradually become the focus of attention. Xie et al. [12] studied the walk speed, stride
length, stride time, stride frequency, and stride time variability in patients with amnestic
mild cognitive impairment (aMCI) using a sensor-based wearable gait measurement device,
and found that walk speed and stride length would decrease and stride time variability
would increase in aMCI patients. This demonstrated that gait impairment in daily walking
can be used as an indicator for the detection of cognitive dysfunction and validated the
potential of sensor-based wearable gait measurement devices to be used as a tool for
screening for cognitive impairment. Similarly, Mulas et al. [13] studied gait speed, stride
length, stride frequency, and double support duration in older adults using wearable
inertial sensors (IMUs) and found that patients with cognitive impairment exhibited a
low speed, low stride length, low cadence, and high double support duration. This
demonstrated the correlation between mobility and cognitive impairment and the validity
of wearable inertial sensors (IMUs) applied to the assessment of cognitive impairment in
the elderly. Borhani et al. [14] analyzed memory performance, brain oscillations at rest,
and interchannel amplitude squared at rest in 43 older adults using wearable and wireless
electroencephalogram (EEG) headphones to measure key physiological brain signals during
rest and working memory tasks. They found that alpha and beta oscillations at the right
parietal sites were greater with a lower memory extraction accuracy, while a better working
memory performance was significantly associated with increased power in the left parietal
delta and theta bands. Alharbi et al. [15] used CorSense to compare the indicators of heart
rate variability (HRV) in the MCI group with the healthy control (HC) group at rest and
found that the HRV indicators were lower in the MCI group. This suggested that HRV
could be used as a biomarker to identify MCI. Iliadou et al. [16] used the MindWave Mobile
EEG Headset to study the differences in brain activity between older adults with MCI and
those with subjective cognitive decline (SCD) in the virtual supermarket test (VST). They
found that at the completion of the VST, the beta and theta band power increased in the
MCI group compared to the SCD group. In addition, in the resting state, the alpha, beta,
delta, and theta band power increased in the MCI group compared to the SCD group. It
was also verified that the performance parameters of VST combined with the EEG signal are
more beneficial for the detection of cognitive impairment. Geng et al. [17] proposed a sleep
EEG-based MCI detection method that extracted sleep slow waves and spindles features
from 40 participants and obtained a 93.46% classification accuracy in a gate recurrent
unit (GRU) network. This demonstrated that sleep EEG signals are more accurate than
waking EEG signals in MCI detection, and again proved that sleep slow waves and spindles
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features can be used as early biomarkers of AD. Thus, the physiological data from the
sensors offer new possibilities for the early and effective clinical detection of MCI.

In addition, clinical studies have shown that speech and language changes in AD pa-
tients may appear in the first few years of clinical symptoms. Balogh et al. [18] investigated
temporal parameters in the MCI and HC groups in a semantic fluency task and showed
that three task-independent parameters, the number of silent pauses, the average length of
silent pauses, and the average word transition time, were task-independent parameters
which were more useful for MCI detection. In addition, it was verified that they had similar
categorization abilities to the traditional fluency measurement parameters. Vincze et al. [19]
investigated participants’ temporal speech parameters in the immediate recall of the film
description task, previous day task, and delayed recall of the film description task. Their
study showed that speech rate, number and length of pauses, pause frequency, and signal
could successfully distinguish mild Alzheimer’s disease from healthy individuals, and
they also found that the higher the severity of dementia, the higher the percentage of
the total speech duration accounted for by pauses. Wang et al. [20] studied the lexical,
semantic, syntactic, phonological fluency, and acoustic characteristics of 75 participants in
picture descriptions and spontaneous self-presentations. The study demonstrated that MCI
was significantly characterized by a decrease in speech production, accompanied by signs
of increased disfluency and a linear trend of decreasing semantic content and syntactic
complexity. This language change produced by MCI patients provides ample opportunities
for the efficient detection of MCI and related research.

However, most of the current studies have been limited to tapping the relevance of
biomarkers or speech features to MCI patients, and few studies have explored the effect
of these features in MCI classification. Furthermore, no research team has applied the
combination of EEG signals and speech signals, as well as time digitization parameters,
to aid in the diagnosis of MCI. Therefore, this paper proposed a MCI detection scheme
based on EEG signals, speech signals, and time digitization parameters, which incorporates
physiological signals, speech signals, and digital cognitive parameters. A more accurate,
objective, and efficient MCI classification framework was established for the automatic
tracking and assessment of cognitive impairment in older adults. The language task of
the study used the scene description task based on the fully immersive virtual reality
(VR) developed by our team. VR is able to collect more ecological indicators of cognitive
function, including those that cannot be measured by classical traditional assessment tools,
while providing real-time visual, tactile, and auditory stimuli. These provide assistance
in assessing different levels of cognitive function. In addition, cognitive testing in a VR
environment may increase patient interest and engagement in the diagnostic process. In
order to stimulate participants’ language functions to a greater extent, this study combined
VR technology and the field of language cognition, breaking through the limitations of
traditional cognitive testing modalities (e.g., paper tests, tablet tests, etc.) and providing a
highly ecological and immersive testing environment for cognitive assessment from a more
novel perspective. To our knowledge, this is a rare study that combines VR technology
with MCI language diagnosis, thus offering new possibilities for the exploration of VR
technology in the field of language cognition. Meanwhile, this study used a wearable
EEG device, MUSE 2, to record participants’ EEG signals during the task. Unlike previous
studies that were limited to EEG signals in the resting state, this study explored the brain
activity of MCI patients and healthy individuals under language stimulation in a non-
invasive and low-cost manner and investigated the sensitivity of EEG to detect abnormal
brain changes associated with MCI. In addition, this study broke the limitation of previous
studies that only investigated the relevance of linguistic features or physical features to MCI
patients by extracting MCI linguistic features and EEG features and exploring their role in
MCI detection. The proposed MCI detection scheme based on EEG signals, speech signals,
and time digitization parameters can achieve the effective classification of MCI patients,
while providing further support for the application of VR technology and wearable devices
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in the field of cognitive impairment, improving the popularity and daily possibility of
cognitive impairment assessment methods.

The main contributions of this study are as follows. Firstly, an efficient, accurate,
and objective MCI classification algorithm based on EEG signals, speech signals, and
time digitization parameters was proposed. The algorithm can effectively distinguish
MCI patients from healthy individuals and fill the gap of insufficient research in the
field of combining physiological manifestations, linguistic manifestations, and digitized
parameters to assist in MCI diagnosis. Secondly, studies have suggested that EEG signals,
speech signals, and digitized parameters show good synergistic effects in MCI diagnosis.
The multimodal data provided a more comprehensive and adequate analysis compared
to single-modal as well as dual-modal features, which provides practical support for the
fact that multimodal data can have a good synergistic effect on MCI detection. In addition,
it was confirmed that the voting strategy can improve the classification accuracy under
multitasking. Thirdly, this study explored the contribution of language features and EEG
features to the classification of MCI patients and healthy individuals, bridging the gap in
distinguishing MCI patients from healthy older adults in terms of linguistic differences and
physiological signal differences. Finally, this study provides new ideas for the application
of VR technology in the field of MCI language cognition, as well as validation and support
for the application of wearable devices in the field of neuropathology.

2. Materials and Methods

The steps of the proposed MCI detection scheme based on EEG, speech, and digital
cognitive parameters, including data acquisition, data preprocessing, feature extraction
and selection, and MCI classification are shown in Figure 1. Each step is elaborated in detail
in the following subsections.

2.1. Data Acquisition
2.1.1. Participants

In this study, 86 participants were recruited and divided into MCI and HC groups. The
MoCA scale and the MMSE scale are widely used cognitive screening scales, whereas the
MoCA is more potent for the detection of early cognitive dysfunction than the MMSE [21].
The MMSE is a good discriminator between healthy older adults and dementia, and it is of
good value in screening for dementia but of limited value in identifying healthy older adults
with MCI. Therefore, all participants in this study had a score ≥ 24 on the MMSE, excluding
participants with significant cognitive impairment [21]. Kandiah et al. [22] showed that
MoCA is a reliable tool for predicting early cognitive decline, and MoCA scores ≤ 26
significantly increased the risk of progressive cognitive decline. According to this criterion,
44 cases (23 males/21 females) who scored ≤26 on the MoCA test were included in the
MCI group, and the remaining 42 cases (19 males/23 females) were included in the HC
group. In addition, participants met the following criteria: (1) age 65 years or older; (2) no
visual or hearing impairment; (3) no mental illness or cerebral stroke due to cognitive
dysfunction; (4) able to use the VR device normally; (5) participants did not have any
lifestyle that affected EEG signals (e.g., did not consume any caffeine products in the day
prior to conducting the experiment, as brain activity is disturbed by caffeine [23]). All
participants signed an informed consent form after the researchers explained the purpose,
procedure, risks, and benefits of the study.

We statistically analyzed the clinical and demographic characteristics of the partic-
ipants in both groups. A normality test was first performed, and all characteristics of
the participants in each group satisfied normality. We performed independent samples
t-tests for continuous variables such as age, educated years, MoCA scores, and MMSE
scores (t’-test was used for characteristics with heterogeneity of variance), whereas for
categorical variables such as sex, we used a chi-square test. Table 1 summarizes the clinical
and demographic information of the 86 participants. It can be seen that the MCI and HC
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groups were matched in terms of age, sex, and education level, while there were significant
differences in terms of MoCA scores and MMSE scores (p-values all less than 0.001).
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Table 1. Clinical and demographic characteristics.

HC (n = 42) MCI (n = 44) p-Value Difference 95%CI

Age avg (std) 67.71 (4.947) 68.81 (6.172) 0.531 −1.101 −4.609, 2.408

Sex (F[%]/M[%]) 23[55]/19[45] 21[48]/23[52] 0.393 / /

Educated years avg (std) 10.18 (1.629) 9.71 (1.637) 0.349 0.467 −0.526, 1.460

MoCA avg (std) 27.24 (0.752) 21.71 (2.312) <0.001 5.526 4.360, 6.692

MMSE avg (std) 27.53 (1.625) 25.32 (0.702) <0.001 2.207 1.531, 2.883

2.1.2. Equipment

In this study, VR equipment and EEG equipment were mainly used, and the equipment
is described as follows:

The VR device used in this study was the Oculus Quest 2, consisting of a head-
mounted display (HMD) and two Oculus touch controllers (Figure 2). It allows for more
realistic and naturalistic interactions, enabling participants to interact immersively through
the Oculus touch controllers. Bailey et al. [24] found that the HMD of Oculus Quest had a
high usability and low discomfort, providing further support for the feasibility of applying
Oculus Quest to VR research. The Oculus Quest 2 has been widely used in various studies
for a wireless all-in-one VR device that is low-cost, portable, and has a high motion tracking
accuracy. Craig et al. [25] evaluated the reliability of Oculus Quest applied to balance
detection, and found that changes in postural control due to different types of visual field
manipulation could be effectively detected. This suggested that the low-cost Oculus Quest
offers new prospects for balance training. Carnevale et al. [26] applied Oculus Quest in a
shoulder rehabilitation application and demonstrated its high accuracy in upper extremity
motion accuracy measurements, further supporting the reliability and promise of Oculus
Quest as a VR tool for patient rehabilitation. Munoz et al. [27] designed an immersive VR
exercise based on Oculus Quest for patients with dementia, providing evidence for using
VR technology to provide a more tailored and healthy lifestyle to patients with dementia.
These studies all confirmed the validity and reliability of Oculus Quest and demonstrated
that VR technology may be a future trend for patients with cognitive impairment and even
further disorders.
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For the EEG device, a low-cost, wirelessly portable, non-invasive visual wearable EEG
device (MUSE 2) was used in this study to collect EEG signals from participants. MUSE 2
breaks through the time-consuming, labor-intensive, and costly limitations of traditional
EEG recording methods, and it is widely available while being easy to use. Ratti et al. [28]
demonstrated that MUSE can be used in research by comparing the quantitative EEG signals
and retest reliability of medical grade and consumer EEG systems, showing that higher
quality EEG data can be collected with the consumer EEG system MUSE. With the gradual
development of the MUSE headset, more and more research teams are adopting MUSE as
a device for EEG signal acquisition for related studies. Krigolson et al. [29] used MUSE



Brain Sci. 2023, 13, 1222 7 of 18

to explore the relationship between perceived cognitive fatigue and human event-related
potential (ERP) and electroencephalography (EEG) oscillations in a large sample, while
validating that portable EEG devices can be a viable research tool to effectively measure
relevant changes in the brain. In addition, there are also research teams that have applied
MUSE to stroke disease detection [30], heat sensation measurement [31], engagement
classification [32], and mood detection [33]. All of these studies have validated the MUSE
wearable device as a reliable and effective EEG data collection device by exploring the
changes in biomarkers extracted from EEG data. Pu et al. [34] validated the feasibility of
using MUSE to measure pain in long-term care residents with dementia, suggesting that
EEG signals may be a potential biomarker for pain measurement in patients with dementia,
providing further support for the study of MUSE as an adjunctive assessment tool for
cognitive impairment.

The MUSE 2 EEG headband is a four-channel EEG device, consisting of four dry
electrode channels (TP9, AF7, AF8, and TP10) and reference electrodes (Fpz). AF7 and AF8
are the two forehead electrodes, while TP9 and TP10 are two ear electrodes. The electrode
positions of the Muse 2 EEG headband are shown in Figure 3. Brain activity data measured
by MUSE 2 are transferred to Mind Monitor software (version number 2.3.0) at a sampling
rate of 256 HZ via a Bluetooth serial connection stream for offline analysis.

Brain Sci. 2023, 13, x FOR PEER REVIEW 8 of 20 
 

 
Figure 3. Muse 2 EEG headband for measuring the activity of the brain via four electrodes: TP9, 
AF7, AF8, and TP10. 

2.1.3. Experimental Procedure 
First, the researcher explained the purpose of the study and the entire process of the 

experiment to the participants. After obtaining their informed consent, the participants 
were asked to complete the MMSE and MoCA scales, according to which the participants 
were divided into the MCI group and the HC group. After a short break, participants sat 
in a comfortable chair in a relaxed position and were asked to wear the MUSE 2 EEG 
device and record a 3-min open-eye resting state EEG. Since the Oculus Quest 2 VR device 
was unfamiliar to most of the participants, the participants were allowed to observe the 
device in a hand-held manner before wearing it. Immediately afterward, the Oculus Quest 
2 VR device was worn by the participant and the participant was guided to experience the 
virtual environment for 5 min. During the guided session, participants were allowed to 
ask the researcher any questions they had. After completing the familiarization phase, 
participants were asked to complete two speech tasks that we developed and deployed 
via the Oculus Quest 2 VR device (shown in Figure 4). Specifically, each speech task pro-
vides a full range of visual and auditory experiences, allowing users to observe a range of 
elements of the scene and describe the observed scene in as much detail as possible. Dur-
ing this period they can explore each VR scene in all directions, including user walking 
and item grabbing. There is no limit to the amount of time the user can explore and de-
scribe. Participants’ speech data and digital cognitive parameters during the task were 
obtained through the VR device, and EEG data during the task were obtained through the 
MUSE EEG device. 

 
Figure 4. Two VR-based scene description task interface diagrams. (a) Task 1; (b) Task 2. 
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2.1.3. Experimental Procedure

First, the researcher explained the purpose of the study and the entire process of the
experiment to the participants. After obtaining their informed consent, the participants
were asked to complete the MMSE and MoCA scales, according to which the participants
were divided into the MCI group and the HC group. After a short break, participants sat in
a comfortable chair in a relaxed position and were asked to wear the MUSE 2 EEG device
and record a 3-min open-eye resting state EEG. Since the Oculus Quest 2 VR device was
unfamiliar to most of the participants, the participants were allowed to observe the device
in a hand-held manner before wearing it. Immediately afterward, the Oculus Quest 2 VR
device was worn by the participant and the participant was guided to experience the virtual
environment for 5 min. During the guided session, participants were allowed to ask the
researcher any questions they had. After completing the familiarization phase, participants
were asked to complete two speech tasks that we developed and deployed via the Oculus
Quest 2 VR device (shown in Figure 4). Specifically, each speech task provides a full range
of visual and auditory experiences, allowing users to observe a range of elements of the
scene and describe the observed scene in as much detail as possible. During this period
they can explore each VR scene in all directions, including user walking and item grabbing.
There is no limit to the amount of time the user can explore and describe. Participants’
speech data and digital cognitive parameters during the task were obtained through the
VR device, and EEG data during the task were obtained through the MUSE EEG device.
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2.2. Data Preprocessing

Due to the continuous change with time, the EEG signal is usually unstable [35], and
the EEG signal can be affected by various factors and produce different noise. Therefore,
preprocessing was performed first to eliminate artifacts. The collected EEG data were
preprocessed using the EEGLAB toolbox, which is a widely used open-source software
environment for processing EEG data. First, a bandpass filter of 0.1–45 HZ was applied
to clean up the EEG signal by filtering the data to reduce filtering artifacts such as direct
current shifts. Secondly, the independent component analysis (ICA) method was used
to address the problem of possible artifact interference in the collected EEG data such as
blink, ECG, and EMG. Harpale et al. [36] showed the important role of ICA for EEG data
processing through their study and also showed that ICA plays an important role in the
EEG signal detection of diseases. Finally, the shape of the signal was observed to manually
eliminate data with artifacts or noise that had not been eliminated before.

The preprocessing steps of speech data in this experiment include pre-emphasis,
framing, and windowing. The Librosa library for Python and other libraries were mainly
used to complete these steps. Firstly, the signal spectrum was flattened and the resonance
amplitudes were made close to each other by pre-emphasis. Secondly, the continuous
speech signal was divided into a series of 10–30 ms long frames, which helped to extract
the useful features of the speech signal. Finally, windowing was performed to eliminate the
signal discontinuities that might be caused at the ends of each frame, and the Hamming
window was used in this study.

Digital cognitive parameters based on the VR device recorded participants’ cognitive
performance during the completion of language tasks, and the use of these data as digital
biomarkers for the classification of MCI individuals is also one of the issues explored in this
study. Therefore, before extracting the features, the raw data of digital cognitive parameters
need to be subjected to data cleaning, including filling in missing values using mean values,
removing outliers, and checking data consistency.

2.3. Feature Extraction and Selection

For the EEG data recorded for each VR language cognition task, the use of frequency-
domain metrics (e.g., frequency band energy) is a widely used feature extraction method in
AD signal classification [37,38] and also for other EEG-based disease classification. Four
types of frequency domain features were extracted from all channels of the EEG signal,
including mean power (MP), signal energy (SE), spectral entropy, and asymmetric features.
The frequency bands were divided into δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz),
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and γ (30–45 Hz). The mean power was calculated for each frequency band on each channel
for a total of 20 features, i.e., the five bands of the four channels of the MUSE headband.
The signal energy is obtained by calculating the sum of squares of the absolute values
of all samples of the EEG signal for a total of 20 features, i.e., the five bands of the four
channels of the MUSE headband. The spectral entropy was defined as the Shannon entropy
(ShE) of the signal power spectrum; the entropy measures the predictability of random
variables and can be used as a measure of signal complexity. The total number of features
obtained from the Shannon entropy was 20, including the 5 bands of the four channels of
the MUSE headband. The asymmetric features include differential asymmetry (DASM)
and rational asymmetry (RASM). DASM is the difference in band power between the left
and right hemispheres corresponding to the electrode positions (TP9 and TP10, and AF7
and AF8). There are 10 DASM features, including 5 band powers for the two electrode pairs
used. RASM is the band power ratio of the left and right hemispheres corresponding to
the electrode locations (TP9 and TP10, and AF7 and AF8), and a total of 10 RASM features
were used, including 5 band powers used by the two electrode pairs. In this study, the
above 80 EEG features were analyzed separately for each VR language task.

For the speech data recorded by each VR language cognition task, this study extracted
2 types of speech features, including acoustic features and rhythmic features, using the
Python-based audio processing libraries Librosa and Signal_Analysis2. Acoustic features
include formant frequencies (F1, F2, F3) and jitter (local, local absolute, rap, ppq5, ddp).
Formant frequencies are a major feature of the voice, and the accurate detection of formant
frequencies is useful for distinguishing different rhymes and for improving the recognition
of the semantics of speech. Jitter is the measurement of random perturbations in period
length, a measure of fundamental frequency and amplitude perimeter variation. A total
of five different types of jitter were calculated for the acoustic intervals. The rhythmic
features include pitch, pause time, and effective speech duration. The minimum, maximum,
range, mean, standard deviation, skewness, and kurtosis were calculated for the formant
frequencies and pitch. The minimum, maximum, range, mean, sum, and standard deviation
were counted for pause time and effective speech duration. In addition, we counted the
ratio of long pause/speech counts, ratio of short pause/speech counts, total characters, and
articulation rate. Thus, a total of 49 speech features were analyzed for each VR language
task. For the digitization parameters during each VR language cognitive task, the total time
spent on the test and the duration of the recording were extracted for each participant.

In order to maximize the classification accuracy of the extracted features, this study
utilized the band selection algorithm proposed by Arsalan et al. [39] for EEG features. The
band selection algorithm works to select optimal bands by maximizing the classification
accuracy achieved from all combinations of the five bands. Afterwards, the wrapper
feature selection method was applied to the EEG features at the optimal frequency band,
speech features, and digitization parameters to select the optimal subset of features. This
study used recursive feature elimination with cross-validation (RFECV), which uses cross-
validation based on recursive feature elimination (RFE) to retain the best-performing
features. Unlike RFE, which eliminates features by feature importance, this method uses
cross-validation for different feature combinations to obtain the importance of different
features to the score and finally retains the best feature combinations. Task 1 retained 4 EEG
features, 3 speech features, and 1 digital cognitive parameter, while Task 2 retained 5 EEG
features, 4 speech features, and 1 digital cognitive parameter. The EEG features, speech
features, and digital cognitive parameters selected for each test were fused into a feature
vector for the final MCI classification detection. The final feature vectors obtained for the
two VR-based language cognition tasks were 8 and 10 in length, respectively.

2.4. Classification Algorithm

In this study, four different machine learning algorithms were used to classify the
extracted and selected feature vectors for MCI, including decision tree (DT), random forest
(RF), support vector machine (SVM), and XGBoost. DT is based on a tree structure that
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divides the samples according to the impurity of the nodes and progressively constructs
a predictive model of the attribute structure. RF is an integrated learning algorithm
with DT as the base evaluator, which improves the accuracy and stability of prediction
by constructing multiple decision trees, and combines the prediction results of multiple
decision trees into the final result by voting in accordance with the principle of minority
rule. In this study, the tree-count of RF was set to 150. The SVM algorithm maps the feature
vector of an instance to some points in space, and by solving the separated hyperplane
that can correctly partition the training data set and has the largest geometric separation,
the features close to the hyperplane will be classified into their respective classes, which is
one of the supervised learning algorithms. In this study, the kernel function type of the
SVM was set to the radial basis function (RBF). XGBoost is an integrated learning algorithm
based on the gradient boosting algorithm (GBDT). As a stepwise forward additive model,
using the idea of boosting to reduce the risk of overfitting by adding the loss function of the
regular term, the XGBoost algorithm does not use the search method but directly uses the
first-order derivative and second-order derivative values of the loss function, and greatly
improves the performance of the algorithm by pre-ranking, weighted quantile, and other
techniques. In this study, the hyperparameter gamma was set to 0, the learning rate (eta)
was set to 0.3, and n_estimators was set to 120.

Different cognitive tasks have different degrees of contribution to the MCI detection
results, so a weighted voting strategy was used in this study. The features selected under the
three modalities for each cognitive task were fused to form the final feature vector, and the
classification result obtained from training the classifier would be multiplied by a weight as
the classification result for this cognitive task. Finally, the weighted results corresponding
to various categories in all cognitive tasks were summed up separately, and the category
corresponding to the largest value was the final MCI classification result. The weight
value was determined by the classification accuracy of each cognitive task. Specifically, the
weight of the classification accuracy of each cognitive task to the sum of the classification
accuracies of all cognitive tasks was used as the decision weight of this cognitive task to
reflect the influence of different cognitive tasks on the MCI classification performance.

3. Experimental Results
3.1. Performance Analysis of Band Selection and Feature Selection

In order to identify the bands that discriminate MCI patients at maximum validity,
this study used a band selection algorithm [39] to select the most significant EEG bands
that correctly classify MCI to the maximum extent. In the band selection algorithm, a
leave-one-out cross-validation scheme was used, where the number of folds was equal to
the number of instances in the experiment. The training of the data was formed on all but
one instance, and the iterations were repeated 1000 times to calculate the average accuracy
of all folds to select optimal EEG bands. Figure 5 shows the average accuracy of performing
optimal band selection for the EEG data in this study by using the band selection algorithm.
It can be observed that the SVM classifier gave the highest accuracy in the theta band.
The results showed that the highest MCI classification accuracy was achieved for all band
combinations when applying the features of the theta band. Thereafter, feature selection
was performed in the theta band using RFECV. The feature subsets selected for Task 1
including MP (TP9), ShE (AF8), SE (AF7), and DASM (TP9 and TP10). For Task 2 including
MP (TP10), ShE (TP9), SE (AF7), DASM (TP9 and TP10), and RASM (AF7 and AF8). For
the speech data, Task 1 applied RFECV to generate a subset of features including the sum
of effective speech duration, ratio of short pause/speech counts, and total characters. The
subset of features selected for Task 2 including jitter, sum of effective speech duration, ratio
of short pause/speech counts, and total characters. For the digital cognitive parameters,
they both chose the feature of total time spent on the test.
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3.2. Classification Performance Analysis

To explore the classification performance of features under different modalities in VR
language cognition tasks, we compared the classification performance of all VR language
cognition tasks under four machine learning classifiers (DT, RF, SVM, XGBoost) for EEG
features, speech features, time digitization parameters features, and different fused features.
The classification performance was measured based on four metrics (accuracy, precision,
recall, and F1 score). Leave-one-out cross-validation was used to verify the validity of the
proposed method in the study. In order to reduce the influence of randomness in feature
selection and classification model construction, leave-one-out cross-validation was repeated
100 times in this study, and the average value was taken as the final classification result.

The results are shown in Tables 2 and 3, indicating that the MCI detection accuracy
differs under different modalities. The best classification accuracy was achieved with the
fused features of the three modalities, where the highest classification accuracy (87%) was
obtained under the SVM classifier, and the best results were obtained for precision, recall,
and F1 score (87%, 86%, and 87%, respectively) (Table 3). In addition, the SVM classifier
showed the best classification performance in different modalities. When using data from
only one modality as features, the EEG features achieved a higher classification performance
compared to the time digitization parameters features and the speech features (Table 2).
We also compared the classification of features fused under both modalities. The results
showed that when fused features of EEG and speech were used, a higher classification
performance was achieved, second only to the classification performance under the fused
features of the three modalities (Table 3). Overall, a higher classification performance was
obtained using the fused features of both modalities than under a single modality.

In addition, we investigated the effect of different linguistic tasks on MCI classification
when using multimodal data and the effect of weighted voting strategies on classification
performance. As shown in Table 4, the results showed that the weighted voting strategy
had a significant impact on improving the MCI classification performance, and the use of
SVM with the RBF kernel produced the highest detection accuracy of 89.8%. In addition,
the fused features using all language tasks had a higher performance than the classification
using only a single task, second only to the classification performance under the weighted
voting strategy.
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Table 2. Performance comparison of classification frameworks with different classifiers under indi-
vidual modality features from VR devices and wearable EEG devices.

Classifier
EEG Time Digitization Parameters Speech

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

DT 0.74 0.72 0.76 0.74 0.71 0.75 0.69 0.72 0.73 0.72 0.75 0.73

RF 0.76 0.75 0.74 0.75 0.73 0.77 0.74 0.76 0.74 0.76 0.72 0.74

SVM 0.83 0.81 0.80 0.81 0.79 0.80 0.78 0.79 0.81 0.82 0.79 0.80

XGBoost 0.78 0.79 0.77 0.78 0.75 0.73 0.75 0.74 0.76 0.75 0.91 0.82

Table 3. Performance comparison of classification frameworks with different classifiers under multi-
modal features of VR devices and wearable EEG devices.

Classifier

EEG + Time
Digitization Parameters EEG + Speech Time Digitization

Parameters + Speech
EEG + Speech + Time

Digitization Parameters

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

DT 0.74 0.73 0.78 0.76 0.78 0.75 0.76 0.75 0.73 0.75 0.74 0.74 0.82 0.84 0.80 0.82

RF 0.77 0.76 0.76 0.76 0.79 0.77 0.78 0.78 0.77 0.73 0.76 0.75 0.83 0.84 0.81 0.83

SVM 0.83 0.83 0.82 0.82 0.84 0.84 0.84 0.84 0.83 0.81 0.81 0.81 0.87 0.87 0.86 0.87

XGBoost 0.78 0.79 0.79 0.79 0.80 0.79 0.80 0.79 0.78 0.79 0.78 0.79 0.85 0.85 0.86 0.86

Table 4. Classification performance under multimodality using features of the single language task,
features of all tasks, and using the weighted voting strategy.

Task Classifier Acc Pre Rec F1

task 1 SVM 0.826 0.849 0.818 0.833
task 2 XGBoost 0.841 0.820 0.874 0.846

all tasks SVM 0.874 0.870 0.864 0.867
weighted voting SVM 0.898 0.895 0.883 0.889

The above comparison experiments show that the fused features of multimodal data
can provide a greater contribution to MCI detection compared to single-modal or bimodal
data, while adding a weighted voting strategy for different VR language cognition task
can further improve the classification problem in multitask situations. The experimental
results demonstrate the effectiveness of the MCI detection scheme proposed in this paper
for differentiating MCI patients from healthy individuals.

3.3. Language Performance of MCI Patients and Healthy Controls

A statistical analysis of some of the linguistic characteristics of the investigated groups
was performed, and the results are shown in Figure 6. The bar graphs show the mean,
variance, and their differences between groups of the linguistic characteristics data for MCI
patients and healthy controls. MCI groups typically exhibit shorter periods of effective
speech than healthy controls, and this change in function may be due to the reduced
ability of MCI patients in lexical extraction, syntactic processing, and discourse planning,
a change in the temporal domain that indicates specific impairments in the cognitive
language domain of MCI patients. During the description, we found that the ratio of short
pause/speech counts was lower in MCI patients. Short pauses usually represent pauses
within sentences and long pauses represent pauses between sentences. This indicated that a
higher use of complex sentences was observed in healthy individuals, whereas the opposite
was the case for MCI patients. The participants’ speech fluency was measured based on
the number of filled pauses within the discourse and the number of speech counts, and
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the appearance of this reduced speech fluency in MCI patients may be due to a decrease in
executive function, as lexical retrieval places a higher demand on the controlled process
after the exhaustion of automatically activated words [40,41]. Compared to healthy controls,
MCI patients produced significantly fewer characters in their discourse, which may be a
result of the reduced cognitive ability of MCI patients leading to a significant modification of
the features describing the number of characters. Fleming et al. [42] explain the reduction in
discourse content as “a deficiency in the executive skill associated with semantic processing,
which is responsible for retrieving, maintaining, monitoring, and manipulating semantic
representations.” Meanwhile, the reduction in the number of characters produced further
leads to a reduction in effective speech duration. As for the total time spent on the test, we
found that the total time spent by MCI patients was longer. We observed that they would
spend more time exploring the VR environment, which may have contributed to the fact
that MCI patients took longer to complete the test. Furthermore, as expected, we observed
that MCI patients lost details of the scene during description and they preferred to use a
large number of conjunctions, and the heavy use of conjunctions indicated hesitation to
evaluate the scene further by repeating conjunctions to gain time.
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3.4. Physiological Signal Performance of MCI Patients and Healthy Controls

We visualized the power spectral density of EEG data from MCI patients and healthy
controls at rest, as well as during the task, as shown in Figure 7. The color bar on the right
side of the figure represents the depth of color, where purple represents high brain activation
and red represents low brain activation. From the experiments, it can be concluded that:
(1) The two groups produced significantly different brain activity in the theta and delta
bands. (2) With language stimulation, an increase in power spectral density at different
levels was detected in MCI patients and healthy individuals at lower frequency bands
compared to the resting state, and a more pronounced increase in power spectral density
was detected at lower frequencies in the MCI group compared to healthy individuals. In
addition, we found that the theta band had a more pronounced different brain activity
visually compared to the delta band.
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4. Discussion

This study combined VR-based language tasks and EEG to propose a multimodal
MCI detection scheme based on language signals and EEG signals, as well as digitization
parameters, while using decision-level fusion to represent the contribution of different VR
language cognitive tasks to MCI detection. This contributes to the early detection of MCI
while collecting valuable information related to cognitive–behavioral and physiological
data to analyze the changes in MCI patients from a more comprehensive perspective.
To our knowledge, this is a rare study using a VR language cognition application and
wearable sensors for assessment, as well as monitoring language and physiological changes
in MCI patients, providing a valuable reference for the development of more effective
MCI detection protocols and preventive measures in the future. Specifically, we fused the
features selected from the three modalities of speech signals, EEG signals, and digitization
parameters for each VR language cognitive task, while using a weighted voting strategy to
achieve fusion at the decision level using differences in weights. Regarding the cognitive
assessment results, an accuracy of 89.8% was achieved, which is better than the methods
proposed by Shahzad et al. [43] and Toth et al. [44] in studies distinguishing MCI from
HC. It not only showed that the fusion of speech signals, sensor physiological signals, and
digital cognitive parameters has good synergistic effects in screening MCI patients, but
also showed that decision-level fusion can improve the accuracy of MCI detection under
multiple cognitive tasks. As we expected, the fusion of multimodal data can provide more
comprehensive information on the physiological differences between MCI patients and
healthy individuals, and dig deeper into the cognitive changes of MCI patients. This study
combined speech signals, EEG signals, and time cognitive parameters for the first time,
providing support for a new direction in the application of multimodal data fusion for the
detection of neurocognitive disorders. In addition, the superiority of decision-level fusion
for multitask classification was demonstrated, and a weighted voting strategy was used to
reflect the differences in MCI detection by different VR cognitive tasks, which can further
improve the MCI classification accuracy.
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Second, regarding cognitive tasks, we focused on the language cognitive domain.
Clinical studies have shown that both speech and language changes are associated with AD
pathology and the progression of these changes is related to the severity of the disease [45].
We observed that differences in language performance between the MCI group and healthy
control group were also significantly different in terms of diagnosis. Language is closely
associated with a wide range of cognitive functions, including working memory, attention,
and executive control, and has continuous interaction with different areas of the brain.
Compared to healthy controls, the MCI group had a worse language performance on the
task. As described in Section 3.3, the MCI group had a reduced ability to produce discourse,
as well as a lack of verbal fluency and verbal validity. This phenomenon arises due to the
fact that the successful completion of language tasks requires a large number of cognitive
operations, as well as linguistic knowledge and processing integrity, again validating
the possibility that language decline may have occurred in the prodromal phase of the
disease. In addition, statistical analysis revealed that the total time spent by participants
in completing the VR language cognitive task performed well on the MCI test, which we
explain as a possible reason for the difference between the two groups due to the fact that
MCI patients need to spend a longer time exploring in the VR environment compared to
healthy individuals. In other words, compared to paper-based and tablet-based methods of
MCI detection, VR-based language applications can capture cognitive parameters that are
not captured by traditional methods, enabling a more comprehensive and in-depth study
of cognitive changes in MCI. It also validated that the MCI detection protocol proposed in
this study can reveal the earliest points at which cognitive interventions are most useful,
which also provided further support for the application of VR and wearable physiological
devices in the field of neurocognitive disorders.

Furthermore, this study analyzed the changes in brain activity of MCI patients and
found that the characteristics of their EEG theta band provided a greater contribution to
MCI classification, in agreement with Musaeus et al. [46] who showed that power changes
in the theta band are an early marker of cognitive decline in dementia due to AD. We
recorded EEG data from both groups of participants and visualized their power spectral
densities. The experimental results showed that during the scene description, MCI patients
detected a more pronounced increase in power spectral density at lower frequencies, and
theta had a visually more pronounced difference in brain activity. Meanwhile, under
language stimulation, MCI patients and healthy individuals produced different levels
of activation of brain activity in the low frequency band compared to the resting state,
suggesting that these VR language cognitive tasks can cause the activation of relevant brain
regions in participants. Furthermore, brain activity was activated to a greater extent in MCI
patients with language stimulation compared to healthy individuals, and possible reasons
for this could include the fact that people with cognitive decline require more brain activity
to complete cognitive tests.

However, there are still other limitations of this study that need to be considered
in future research. First, the limited sample size of this study inevitably limits us to a
relatively simple classifier model structure. The sample size should be expanded in the
future to provide the conditions to accurately evaluate the classification performance of
different classifiers. Second, only two population groups of subjects were considered in this
study: MCI and HC, while different stages of cognitive impairment (e.g., mild dementia,
severe dementia, or different types of dementia, etc.) were not considered separately.
Further inclusion of different stages and types of cognitive impairment in future analyses
will further validate the extensiveness of using the MCI detection protocol proposed in
this study. Finally, the multimodal MCI detection scheme proposed in this study was
limited to the language cognitive domain. In the next study, we will explore whether
the multimodal MCI detection scheme can be used as an efficient classification algorithm
under other cognitive domains (e.g., executive function, memory, attention, etc.) to more
comprehensively study the cognitive parameters and physiological signals of participants
under different cognitive domains.
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5. Conclusions

This study proposed a multimodal MCI detection scheme based on EEG and speech
signals, as well as digital cognitive parameters, using the VR device and the wearable
EEG device MUSE 2 to detect MCI through the designed VR-based language task. The
collected EEG data were selected using a band selection algorithm to choose the optimal
band; the RFECV method was applied to select a subset of features for EEG features
under the optimal band, speech signals, and digital cognitive parameters. Regarding
the features selected under different modality combinations for all language tasks, we
performed leave-one-out cross-validation for them using four different classifiers. We then
compared the classification performance under multimodal data fusion using features
from a single language task, features from all tasks, and using a weighted voting strategy,
respectively. The experimental results showed that the highest classification accuracy of
87% was achieved by the RBF kernel SVM classifier under multimodal data fusion. This
indicated that the feature classification effect under the fusion strategy was better than that
of the features from a single data source, providing new practical support for VR devices
and wearable EEG devices to produce good synergy for MCI detection. Meanwhile, the
overall classification performance was further improved with an accuracy of 89.8% after
using the weighted voting strategy, which proved the effectiveness of the MCI detection
scheme proposed in this study. In addition, we analyzed the differences exhibited in
the physiological signals and speech signals of the two groups of participants. With
the development of sensor technology and the wide application of VR technology, the
multimodal MCI detection framework proposed in this study provides a new direction and
support for effective MCI detection. In a broader sense, this study provides novel ideas
for the combined application of VR and wearable devices in the field of MCI language
cognition detection.
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