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Abstract: Accurate sleep stage detection is crucial for diagnosing sleep disorders and tailoring
treatment plans. Polysomnography (PSG) is considered the gold standard for sleep assessment since
it captures a diverse set of physiological signals. While various studies have employed complex
neural networks for sleep staging using PSG, our research emphasises the efficacy of a simpler and
more efficient architecture. We aimed to integrate a diverse set of feature extraction measures with
straightforward machine learning, potentially offering a more efficient avenue for sleep staging.
We also aimed to conduct a comprehensive comparative analysis of feature extraction measures,
including the power spectral density, Higuchi fractal dimension, singular value decomposition
entropy, permutation entropy, and detrended fluctuation analysis, coupled with several machine-
learning models, including XGBoost, Extra Trees, Random Forest, and LightGBM. Furthermore, data
augmentation methods like the Synthetic Minority Oversampling Technique were also employed to
rectify the inherent class imbalance in sleep data. The subsequent results highlighted that the XGBoost
classifier, when used with a combination of all feature extraction measures as an ensemble, achieved
the highest performance, with accuracies of 87%, 90%, 93%, 96%, and 97% and average F1-scores of
84.6%, 89%, 90.33%, 93.5%, and 93.5% for distinguishing between five-stage, four-stage, three-stage,
and two distinct two-stage sleep configurations, respectively. This combined feature extraction
technique represents a novel addition to the body of research since it achieves higher performance
than many recently developed deep neural networks by utilising simpler machine-learning models.

Keywords: polysomnography; electroencephalography; electromyography; electrooculography;
power spectral density; Higuchi fractal dimension; singular value decomposition entropy;
permutation entropy; detrended fluctuation analysis; XGBoost

1. Introduction

On average, people spend a third of their 24 h day sleeping, making it an essen-
tial physiological process that significantly impacts an individual’s overall health [1].
Understanding sleep stages and their characteristics is essential for diagnosing and treating
sleep disorders, affecting millions worldwide [2,3]. Sleep can be broadly classified into
two primary stages: non-rapid eye movement (NREM) and rapid eye movement (REM)
sleep. NREM is further divided into three distinct stages, characterised by different levels
of brain activity and physiological responses. The five distinct stages of sleep identified in
this study are as follows [4]:

1. Wake (W): Marked by low-amplitude, mixed-frequency brain waves, with normal
muscle tone and high mentation.

2. Stage 1 (N1): First NREM stage. EEG shows low-voltage and mixed-frequency activity
while eye movement and muscle activity begin to decrease.
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3. Stage 2 (N2): Marked by sleep spindles and K-complexes in the EEG signal. Muscle
tone, heart rate, and eye movement further slow down, and body temperature drops.

4. Stages 3 and 4 (N3/N4): Deepest stage of NREM. Crucial for physical restoration
and memory consolidation. This stage is also known as the slow-wave sleep stage.
EEG shows high-amplitude and low-frequency delta waves. There is minimal eye
movement, and muscle tone is at its lowest during NREM sleep.

5. REM (R): Marked by rapid eye movement, dreaming, and temporary muscle paralysis
to prevent physical stimulation from dreams. EEG shows low-amplitude and mixed-
frequency activity, which is similar to the N1 stage.

Sleep stages N1 and N2 signify Light Sleep, while N3 and N4 signify Deep Sleep.
The accurate detection of sleep stages plays a pivotal role in both clinical and research

settings. Clinically, the comprehensive characterisation of a patient’s sleep architecture, in-
cluding the distribution and duration of the different sleep stages through the course of the
night, is fundamental for diagnosing a diverse set of sleep disorders. For instance, disrup-
tions in sleep stage patterns in a patient are integral diagnostic criteria for insomnia [5–7],
sleep apnoea [8,9], and narcolepsy [10,11]. Moreover, sleep stage classification is not only
essential for diagnosing these disorders but also for monitoring the efficacy of various
treatments. Sleep stage detection enables clinicians to accurately assess the impact of
treatments such as Continuous Positive Airway Pressure (CPAP) for sleep apnoea [12] or
Cognitive Behavioural Therapy for insomnia (CBT-I) [13].

In the research setting, accurate sleep stage classification is pivotal for examining
sleep’s impact on cognitive functions like learning and memory consolidation.
Notably, slow-wave sleep (SWS) is crucial for memory consolidation and synaptic plastic-
ity [14]. Clinically, sleep stage detection can aid in studying sleep’s correlations with ageing
and neurodegenerative disorders like Alzheimer’s [15]. Hence, advancing sleep staging
can enhance diagnostics and treatments for sleep and neurodegenerative issues.

However, the task of sleep stage detection has traditionally been performed manually
by trained specialists analysing polysomnography (PSG) data. Recording these PSG data is
a tedious task, wherein the subject has to stay overnight in the lab. Due to the presence of
multiple modalities and long recording durations, accurately detecting sleep stages from
PSG is a challenging task. On the other hand, modalities like actigraphy [16] present an easy
alternative to record data that can be used to detect sleep stages using wearable devices, like
wristbands or watches, that measure movement and activity levels over extended periods
of time. However, the ease of recording sleep data using actigraphy presents an inherent
tradeoff. Actigraphy can lack the degree of precision and reliability of the information
captured, making it often less accurate than PSG [17]. Additionally, ECG and heart rate
variability (HRV) can also be recorded to identify sleep stages. However, this approach does
not provide any information regarding brain activity, which is a crucial aspect of sleep stage
analysis [18]. Since the data’s accuracy and consistency are paramount to creating a model
that can effectively differentiate between sleep stages, PSG data have been chosen as the
modality in this study. With its multimodal nature, PSG captures fine physiological details,
like eye and muscle movements and brain wave changes, with high temporal resolution.
Furthermore, sleep stage classification with PSG adheres to standardised criteria from
systems like the American Academy of Sleep Medicine (AASM) and Rechtschaffen and
Kales (R&K), ensuring consistency across different studies and clinical settings.

Due to the extensive nature of polysomnography (PSG) data, which includes hours-
long recordings of multiple signals such as electroencephalography (EEG), electromyo-
graphy (EMG), and electrooculography (EOG), processing this vast amount of data can
be challenging. The complexity arises from the numerous sources of voltage fluctua-
tions captured within the recordings, making direct data processing quite demanding.
Therefore, feature extraction methods must be employed to accurately capture the sub-
tleties and minute variations in all of these signals in order to uniquely identify different
sleep stages. Although previous research has been conducted on multiple feature extraction
measures, an exploratory study highlighting the comparative analysis of all the feature
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extraction measures reported in this paper is yet to be reported. We aim to fill this research
gap by presenting an in-depth performance analysis of multiple measures drawn from
different categories, such as entropy, fractal dimensions and spectral analysis features. We
also extract statistical features like the mean, standard deviation, kurtosis, and skewness
from all bio-signals in the PSG data. This in-depth feature extraction and machine-learning
approach is a novel strategy that has not been deeply explored previously for the specific
measures explored in this study.

Although extracting relevant features is a critical step, having a mechanism that
can learn from these features and accurately distinguish between various sleep stages is
equally crucial. In recent studies, deep neural networks have been widely employed for
feature extraction and classification [19]. However, these neural networks can get highly
complex and require longer training times than simpler statistical and machine-learning
models. Additionally, neural networks are intrinsically black-box models, which makes it
challenging to interpret the results yielded by the model.

In light of these drawbacks, we explore machine-learning techniques in this study
instead of neural networks to highlight the efficacy of straightforward machine-learning
models in classifying sleep stages when trained on an enriched set of features that capture
salient biomarkers of sleep stages from PSG data. This approach can potentially circumvent
the need for complex deep-learning models for the classification of sleep stages.

In the initial phase of this study, the following machine-learning models were evalu-
ated to establish baseline performance metrics—Extreme Gradient Boosting, Light Gradient
Boosting Machine, Random Forest, K-Nearest Neighbours, Linear Discriminant Analysis,
Quadratic Discriminant Analysis, Support Vector Machines, Naive Bayes, Ridge Classifier,
and Extremely Randomized Trees. These models were trained on 80% of the ensemble
feature data and tested on the remaining 20%. Table 1 presents the baseline metrics of these
models. The top four models demonstrating the highest performance metrics were selected
for further use in this study:

• Extreme Gradient Boosting (XGBoost);
• Light Gradient Boosting Machine (LGBM);
• Random Forest (RF);
• Extremely Randomized Trees/Extra Trees (ET).

Table 1. Baseline metrics of all models initially tested. Top four models finally chosen for this study.

Model Accuracy AUC Recall Prec. F1

XGBoost 0.8744 0.9793 0.8547 0.8777 0.8755
LGBM 0.8714 0.9791 0.8561 0.8764 0.873

RF 0.8614 0.9743 0.8396 0.8661 0.863
ET 0.86 0.9732 0.8329 0.8612 0.8601

SVM 0.7922 0.9112 0.7954 0.8166 0.7979
KNN 0.786 0.9295 0.794 0.8227 0.794
LDA 0.7688 0.9387 0.7622 0.7957 0.7771
Ridge 0.7401 0.8988 0.7493 0.7739 0.7459
QDA 0.4053 0.781 0.5103 0.6533 0.3153
NB 0.3388 0.7714 0.4021 0.5742 0.2118

Notably, all these algorithms are ensemble methods based on decision trees.
XGBoost and LGBM are boosting models, wherein each new tree is built one at a time. On
the other hand, RF and ET are bagging models, wherein many trees are independently built,
and their predictions are averaged. Therefore, bagging and boosting algorithms illustrated
superior performance to others in recognising the key differentiating characteristics of dif-
ferent sleep stages from the extracted features. Therefore, based on the rationale of choosing
explicit feature extraction for capturing salient biomarkers for sleep staging, coupled with
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straightforward machine-learning models for the predictive task, the following objectives
were designed for this study:

• To develop a model that combines an optimal feature extraction method with an
optimal supervised learning model to distinguish between the different sleep stages
with high accuracy.

• To evaluate the performance of the following feature extraction measures:

– Power spectral density (PSD);
– Singular value decomposition (SVD) entropy;
– Higuchi fractal dimension (HFD);
– Permutation entropy (PE);
– Detrended fluctuation analysis (DFA);
– Mean;
– Standard deviation (Std Dev);
– Kurtosis;
– Skewness.

• To evaluate the performance of this model in accurately distinguishing between
various sleep stages in the following configurations:

– Five sleep stages, consisting of Wake (W), N1, N2, N3/4, and REM (R);
– Four sleep stages, consisting of W, Light Sleep, Deep Sleep, and R;
– Three sleep stages, consisting of W, Non-REM, and REM;
– Two sleep stages, consisting of Non-REM and REM;
– Two sleep stages, consisting of Wake (W) and Sleep (Non-REM and REM).

The objectives are framed to answer the following Research Question (RQ):

RQ: To what extent do SVD entropy, PSD, HFD, PE, DFA, mean, Std Dev, kurtosis,
and skewness, as feature extraction measures, differentiate between the different stages of
sleep?

The subsequent sections of this article are structured as follows. In Section 2, we
thoroughly analyse existing sleep stage detection approaches, summarising the most recent
breakthroughs in this domain. Then, Section 3 delineates our adopted methodology and
design strategy, which involves a rigorous examination of various feature extraction and
machine-learning approaches for creating an optimal pipeline that is capable of effectively
differentiating between various sleep stage configurations using polysomnography (PSG)
data. Subsequent to this, Section 4 presents our research findings, followed by Section 5,
where we compare the performance of our model with other recent works performed in
the same domain. Afterwards, in Section 6, we delve into a detailed discussion of the
potential reasons behind the results observed in our study. The paper concludes with
Section 7, where we accentuate the unique contributions of this study to the existing body
of knowledge and present the key takeaways and insights gathered from our explorations.

2. Related Work

Multiple studies have been conducted that employ different methods for detecting
sleep stages, ranging from state-of-the-art machine-learning models that distinguish be-
tween sleep stages based on features extracted from PSG data to complex deep-learning
models [20] designed to work independently without the need for any explicit feature
extraction or dimensionality reduction techniques. In one such study, a one-dimensional
convolutional neural network (CNN) was developed to detect sleep stages directly from the
raw data with high accuracy [21]. Another study [22] implemented a 1-D CNN model to
detect cyclic alternating patterns (CAPs) in the EEG data, achieving an accuracy of 90.46%
for classifying three-class sleep stages. Studies like [23] proposed a light and efficient
deep neural network model based on fractional Fourier transform (FRFT) features derived
from the EEG signal, which achieved an accuracy of 81.6% in sleep stage classification.
Other studies like [24] developed a novel non-contact sleep structure prediction system
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(NSSPS) using radio-frequency signals and a convolutional recurrent neural network.
This study achieved accuracies ranging from 66 to 83% for classifying various sleep stages.
One of the notable contributions to the body of research was the SleepEEGNet [25] pre-
sented in 2019. This study utilised the EEG signal and implemented a combination of a
Recurrent Neural Network (RNN) sequence-to-sequence model with a CNN for classifying
sleep stages. This study used the same dataset (PhysioNet Sleep-EDF) employed in our
study and achieved an overall accuracy of 84.26%.

The PhysioNet Sleep-EDF dataset is one of the most widely utilised datasets for sleep
analysis. Multiple studies have analysed this dataset for sleep stage classification using
neural networks. One such study [26] developed an automated system for sleep stage
classification using a deep convolutional long short-term neural network (CNN-LSTM).
Another similar study [27] on the same dataset employed a CNN-LSTM model for sleep
stage classification using a single-channel Fpz-Cz EEG channel and achieved an accuracy of
84.19%. Single-channel EEG is one of the most popular choices of modalities for sleep stage
analysis, and multiple studies, like [28], have been conducted for sleep stage classification.
However, the utilisation of EMG and EOG data along with EEG using a diverse spectrum
of feature extraction measures, like DFA, entropy, fractal dimensions, PSD, and statistical
measures, has not been deeply explored yet.

Deep-learning models achieve high accuracy; however, such models often take a long
time to train and test due to the sheer volume of PSG data, which are often recorded
over long durations for each subject. In order to reduce the complexity and increase the
efficiency of a predictive model, there is a need to extract the salient features from PSG data
that capture the nuances and principal characteristics that mark the differences between
the various sleep stages without any loss of information. Numerous methods have been
implemented in previous research to efficiently extract features by using measures such as
fractal dimensions [29], entropy measures [30], wavelet transforms [31], and power spectral
density [32].

Although PSG data are one of the most widely accepted modalities for sleep analysis,
recent technological developments have opened up new avenues that are much easier
for the same task. With the surge of sleep-tracking devices, such as smart watches, smart
rings, and other actigraphy-based devices, a new phase of sleep stage detection research
is underway. Many studies have been conducted to compare the performance of the pop-
ular consumer-grade product Oura Ring with PSG data when recorded simultaneously.
In one such study, sleep-onset latency (SOL), total sleep time (TST), and wake after on-
set (WASO) were computed and compared from the recordings of both PSG and Oura
Ring [33]. Multiple discrepancies were observed between PSG and Oura, indicating a
need for further enhancement of such consumer products in order to increase their overall
accuracy. In a study bearing significant similarity, physiological data gathered through
both the Oura Ring and polysomnography (PSG) were employed in an examination of
various sleep-related factors. Specifically, the study focused on exploring the influence of
peripheral signals mediated by the autonomic nervous system (ANS), circadian characteris-
tics, and accelerometer data on sleep stage detection [34]. The Oura Ring includes a triaxial
accelerometer, a negative temperature coefficient (NTC) thermistor as a temperature sensor,
and an infrared photodetector that measures heart rate variability (HRV). The research
indicated that combining the small size of wearable ring technology, multidimensional
biological data streams, and effective artificial intelligence algorithms can result in notable
precision in discerning sleep stages.

Apart from wearable rings, wristwatch-type sensing devices have also been employed
for sleep stage detection in previous studies. In one such study, a combination of a reflective
photoelectric volume pulse sensor and a triaxial accelerometer was utilised for sleep quality
assessment and compared with PSG data, recorded simultaneously [35]. An analysis of
pulse-to-pulse (PPI) and body movement indexes derived from the physiological signals
recorded by the wristwatch sensor were used to develop an automated sleep stage classifi-
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cation system. In other studies, novel approaches like non-contact radar technology have
also been implemented to accurately distinguish between sleep stages [36].

While many studies utilise multiple modalities of data and multidimensional biomet-
ric streams, as discussed previously, some studies focus on heart rate variability (HRV) for
the classification of sleep stages and even other disorders. In one such study, detrended
fluctuation analysis (DFA) and spectral analysis were employed to quantify cyclical varia-
tion related to the heart to investigate the effect of sleep stages and sleep apnea on HRV [37].
Similarly, another study utilises the Firstbeat sleep analysis method, which is based on
measurements derived from HRV and accelerometer data [38].

3. Materials and Methods
3.1. Dataset

The PhysioNet Sleep-EDF expanded (sleep-edfx) dataset was utilised in this
study [39,40]. The dataset contains two different studies:

1. Sleep Cassette (SC): This project focused on analysing age-related effects on sleep in a
healthy Caucasian demographic ranging from 25 to 101 years old, with participants
abstaining from any sleep-related medications. This investigation conducted two
successive polysomnography (PSG) recordings, each spanning approximately 20 h,
during consecutive day–night cycles at the participants’ residences. The components
of each PSG incorporated electrooculography (EOG), electroencephalography (EEG),
and submental electromyography (EMG) signals. While the EEG and EOG data were
sampled at a rate of 100 Hz, the EMG data were gathered at 1 Hz. Furthermore,
parameters such as oro-nasal airflow, rectal body temperature, and event markers
were logged at a frequency of 1 Hz. The recording of the PSG data was facilitated by
a device akin to a Sony Walkman cassette.

2. Sleep Telemetry (ST): This study investigated temazepam medication effects on sleep
in 22 Caucasian men and women with no other medications. The subjects complained
of having mild difficulty falling asleep but had no other conditions. Nine-hour PSG
recordings were conducted in a hospital for two nights. Prior to recording PSG,
temazepam was administered to the patient on one of the nights, and a placebo was
given on the other. EOG, EMG, and EEG signals were sampled at 100 Hz with an
event marker at 1 Hz.

Furthermore, the dataset also contains a hypnogram containing expert annotations of
sleep stages for each PSG recording. In this study, PSG obtained from the ST study was
utilised. Since two sessions were conducted for each of the 22 subjects, there were a total of
44 sessions, with each session having two files, one each for PSG and the hypnogram.

All files are present in the European Data Format (.edf). Each recording contains EEG
from Fpz-Cz and Pz-Oz electrode locations, EOG, and EMG recorded from the chin and
event markers.

Expert technicians manually labelled the hypnograms in accordance with the Rechtschaf-
fen and Kales standard [41]. The different labels used to denote classes in the dataset include
Wake (W), N1 (Stage 1), N2 (Stage 2), N3 (Stage 3), N4 (Stage 4), M (movement time), and “?”
(not scored).

3.2. Preprocessing

For preprocessing, the MNE and NumPy Python libraries were employed. Figure 1A
presents an overview of the preprocessing pipeline implemented in this study.
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Figure 1. Illustration of the architecture designed for sleep stage detection. (A) PSG preprocessing
pipeline consisting of the following steps: annotation of PSG sleep stages from hypnogram, band
pass filtering, and epoching. (B) Robust features are extracted from the epoched PSG using vari-
ous feature extraction measures. Different combinations of these measures were employed with
classifiers to find the optimal model. (C) Training pipeline incorporating Synthetic Minority Oversam-
pling Technique (SMOTE) for rectifying class imbalance and stratified K-fold cross-validation across
15 folds. (D) Testing pipeline utilising imbalanced dataset for evaluating trained classifiers.

• Data ingestion: Raw PSG files were loaded using the MNE python package [42].
A Finite Impulse Response (FIR) filter was implemented to perform filtering with a
high-pass filter of 0.3 Hz to reduce low-frequency drift and a low-pass filter of 40 Hz.
The Firwin method was used for this filter, which incorporates a Hamming window
with 0.0194 passband ripple and 53 dB stopband attenuation. Raw hypnogram files
were loaded using the MNE package and integrated with the PSG data as annotations.
These annotations provided information about the different sleep stages and their
durations in the time domain.

• Sleep stage mapping: Sleep stages were mapped to different configurations as 5-stage
(Wake, N1, N2, N3/N4, REM), 4-stage (Wake, Light, Deep, REM), 3-stage (Wake, Non-
REM, REM), 2-stage (REM, NREM), and another 2-stage (Wake and REM). Figure 2
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shows the distribution of these sleep stages with respect to time for 3 different subjects.
Each event was mapped to an Event ID, as shown in the figure. As is evident, Wake
stages are skewed towards the left, which is the initial part of the sleep cycle, while
the REM stages are skewed towards the right, indicating their occurrence towards
the later phases of the sleep cycle. Furthermore, sleep stage 2 has the highest number
of events, indicating that the average individual spends the most amount of time in
Light Sleep. Stages 3 and 4 were combined into one class named N3/N4. Furthermore,
classes M and ‘’?” were excluded. Execution of the whole pipeline was conducted for
each configuration, making a total of 6 different runs.

• Event and epoch extraction: After defining the sleep stage mapping configuration,
the PSG data were segmented into epochs, each representing a 30 s window. Using
the MNE package, the annotations were converted into events. Based on these events,
epochs were extracted from the PSG data, wherein each epoch was labelled with the
corresponding sleep stage.

• SMOTE: An imbalance in the classes of the target variable (i.e., sleep stage) was
observed in the dataset, wherein the number of events for the different sleep stages
was highly varied. This issue became more pronounced in 2-stage and 3-stage sleep
classification tasks, where multiple classes were integrated. To balance the dataset, the
Synthetic Minority Oversampling Technique (SMOTE) was employed [43].

Figure 2. Sleep stage distribution plot. (a) Patient A, (b) Patient B, (c) Patient C.

3.3. Feature Extraction

A set of feature extraction measures was computed for every epoch. Figure 1B repre-
sents the steps taken for extracting features using various measures. While most studies
employ entropy and fractal dimension measures to extract features from EEG signals, this
study also employed the standard deviation, skewness, and kurtosis as statistical feature
extraction measures from EOG and EMG to capture all relevant features from each bio-
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signal in PSG data. A brief overview of every feature extraction method employed in this
study is given below.

3.3.1. Power Spectral Density

Power spectral density (PSD) is a measure that provides information about the
distribution of signal power across a range of frequencies. By applying PSD, more in-
formation about dominant frequencies in the PSG data can be gained. In this study,
Welch’s method [44] was employed to compute PSD for each epoch of the PSG signal.
Figure 3 represents the power spectral density plot of three subjects from the dataset
utilised in this work. For all three plots, the Wake sleep stage exhibits the highest power
spectral density, with Deep Sleep (N3/N4 stages) having the lowest values. For calculating
PSD, in the first step, the input signal—x(0)), x(1), . . . x(N − 1), where N is the number of
data points—is segmented into K partitions or batches.

Figure 3. Power spectral density plot. (a) Patient A, (b) Patient B, (c) Patient C.

For every partition (k = 1 to K), the Discrete Fourier Transform (DFT) is computed at a
frequency of v = i/M with −(M/2− 1) ≤ i ≤ M/2 [44]:

Xk(v) = ∑
m

x(m)w(m)exp(−j ∗ 2πvm) (1)

where m = (k − 1)S, . . . M + (k − 1)S − 1, and w(m) is the window function. For each
segment (k = 1 to K), a new value called the periodogram value, Pk( f ), is computed from
the DFT:

Pk(v) =
1

W
|Xk(v)|2 (2)

where

W =
M

∑
m=0

w2(m) (3)
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Then, Welch’s PSD is computed by taking the average of the values for every peri-
odogram.

Sx(v) =
1
K

K

∑
k=1

Pk(v) (4)

Welch’s method is also known as the periodogram averaging method. To summarise,
the input time series is divided into successive blocks, after which periodograms are formed
for each block using Equation (2). The values of periodograms across time give the value
for PSD.

3.3.2. Singular Value Decomposition (SVD) Entropy

SVD entropy is a measure that quantifies the intricacy or uncertainty present in time-
series data. It is rooted in the singular value decomposition algorithm, a mathematical
approach that decomposes a matrix into three distinct matrices revealing the hidden
patterns in the data. It employs eigenvectors to provide an accurate representation of the
data. As the complexity of the data increases, more orthogonal vectors are necessary to
represent it effectively, which consequently leads to a higher SVD entropy value.

For an input signal, [x1, x2, . . . xn], the first delay vectors are defined as follows:

y(i) = [xi, xi+τ , . . . xi+(dE−1)τ ] (5)

where τ and dE are the delay and embedding dimension, respectively. A dE of 3 and a τ of
1 were used in this study. Afterwards, the embedding space is constructed by:

Y = [y1, y2, . . . yn−(dE−1)τ ]
T (6)

The SVD entropy is then defined as follows [45–47]:

HSVD = −
M

∑
i=1

σi log2 (σi) (7)

where M is the number of singular values of an embedded matrix Y, and σ1, σ2, . . . σM are
the normalised singular values such that σi = σi/ ∑M

j=1 σj.

3.3.3. Higuchi Fractal Dimension (HFD)

Introduced by T. Higuchi in 1988, this technique generates multiple time series by
systematically sub-sampling the signal into individual time series [48]. For each new time
series, the length of the signal curve is calculated, averaged across all samples, and subse-
quently plotted on a logarithmic graph. The slope of this graph signifies the Higuchi FD
value of the signal. In the first step, for a signal with the data points x(1), x(2), x(3), . . . x(n),
Higuchi’s technique generates a new time series for each value of k (K = 1, 2, 3 . . . kmax),
where k represents the interval length or time duration. For each time series, the signal is
sampled at intervals of size k.

For each of these new signals, the length of the signal is calculated as:

Lm(k) =
∑
b N−m

k c
i=1 | X(m + ik)− X(m + (i− 1))k | y

k
(8)

where y represents the normalisation factor as:

y =
(N − 1)
bN−m

k ck
(9)
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The length of the time series for the interval k, denoted by L(k), is computed as the
mean value across k groups of Lm(k) as follows:

L(k) = ∑k
i=1 Lm(k)

k
(10)

The slope of the linear least-squares fit of log(L(k)) plotted against log(1/k) gives
the Higuchi FD. Consequently, the mean across k groups of Lm(k), computed as L(k) in
Equation (10), follows the power law given by:

log(L(k)) ∝ D.log(1/k), (11)

and then the time series has the fractal dimension D [49]. A default kmax = 10 was taken for
this study’s calculation of the Higuchi FD.

3.3.4. Permutation Entropy

PE is based on finding a signal’s ordinal patterns (also known as permutations). The
ordinal pattern of a tuple of m real numbers (x1, x2, . . . xm) provides information about the
relationship between its elements. PE quantifies the complexity of the signal by capturing
the order relations between values of the signal and extracting a probability distribution of
ordinal patterns [50].

In this study, for every epoch consisting of a time series of length D, the segments
w(i) = w(i1), w(i2), w(i3), . . . , w(iD) are extracted from the original time series:

x1, x2, x3, . . . , xN (12)

by taking consecutive components xi, which can be separated by a time delay or latency
τ as:

τ : xi, xi+τ , xi+2τ , . . . , xi+(D−1)τ (13)

The recommended value of D ∈ [3, 7] and τ = 1 [50]. Consequently, a sequence of D-
length vectors is formed from the original time series using the delay τ. For each D-length
vector, ordinal patterns are created by ranking the data points in the vector. The occurrence
of each possible ordinal pattern is counted in the entire series and normalised to obtain the
relative frequency of each ordinal pattern, after which the permutation entropy is computed
as follows:

PED = −
D!

∑
i=1

pilog2 pi (14)

where D! is the total number of possible ordinal patterns, and pi is the relative frequency.

3.3.5. Detrended Fluctuation Analysis

DFA is a statistical technique used for analysing non-stationary time-series data.
It evaluates long-range correlations and self-similarity properties within the data. DFA
is founded on examining the fluctuation behaviour of a time series after removing local
trends at different time scales, which helps assess the scaling properties of the data and
determine the absence or presence of long-range correlations [51].

For a time series [x1, x2, . . . xN ], the procedure to compute DFA is as follows:

1. First, x is integrated into series y = [y(1), . . . y(N)], where y(k) = ∑k
i=1(xi − x), and x

is the mean of x1, x2, . . . xN .
2. The integrated series is then divided into segments of equal length n, such that in

each segment, a least-squared line is fit to the data, which represents the trend within
that segment. The y-coordinate of these linear segments is labelled yn(k).
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3. Using the equation:

F(n) =

√√√√(1/N)
N

∑
k=1

[y(k)− yn(k)]2 (15)

the variation in the root-mean-square of the integrated series is calculated. The part
y(k)− yn(k) in the equation is called detrending.

4. Lastly, the fluctuation is calculated by computing the slope of the line relating
log(F(n)) to log(n).

3.3.6. Statistical Time-Domain Features

The following statistical measures were computed for every 30 s epoch in the signal
and used as features for the classification task.

• Mean

Mean =
Sum of the values of data points in the epoch

Total number of data points in the epoch
(16)

• Standard Deviation

σ =

√
∑(xi − µ)2

N
where
σ = standard deviation;
N = the length or total data points in the epoch;
xi = each data point in the epoch;
µ = mean of all data points in the epoch.

(17)

• Skewness

µ̃3 =
∑N

i (Xi − X)3

(N − 1) ∗ σ3

where
µ̃3 = skewness;
N = total number of data points in the epoch;
Xi = each data point in the epoch;
X = mean of the distribution;
σ = standard deviation.

(18)

• Kurtosis
Kurt =

µ4

σ4

where
µ4 = Fourth Central Moment;
σ4 = standard deviation.

(19)

3.4. Classification

After feature extraction, for PSD, the output was a 3-dimensional list of the follow-
ing dimensions: number of epochs, number of channels, and number of frequencies,
where the number of epochs was 41,490, and the number of channels was 4, namely,
EEG Fpz-Oz, EEG Pz-Oz, EOG horizontal and EMG submental. The initial list was flat-
tened and converted into a dataframe of the following dimensions: number of epochs,
number of channels * number of frequencies, where the number of channels * number
of frequencies is equal to 405. Therefore, the final input table consisted of 405 columns
and 41,490 rows of data that were fed into the classifiers, wherein each row signified
the features extracted from a particular epoch. For SVD Ent, HFD, PE, and DFA, the
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input table consisted of the 4 PSG channels as columns, namely, EEG Fpz-Cz, EEG Pz-
Oz, EOG horizontal, and EMG submental, and 41,490 rows, wherein each row contained
the 4 features computed for each epoch. For statistical measures, the input table con-
sisted of 16 columns. For each of the 4 PSG channels, 4 statistical measures, namely,
mean, standard deviation, skewness, and kurtosis, were calculated. After feature ex-
traction, the number of rows for all tables was equal to the total number of epochs,
i.e., 41,490.

Supervised multi-class classification was performed on the features extracted using
the previously mentioned feature extraction measures. The following machine-learning
algorithms were employed for this task:

• Extreme Gradient Boosting (XGBoost);
• Light Gradient Boosting Machine (LGBM);
• Random Forest Classifier (RF);
• Extra Trees Classifier (ET).

The data were divided into training and testing sets comprising 80% and 20% of the
entire dataset, respectively. For the training dataset, stratified K-fold cross-validation was
conducted across K = 15 folds, wherein the subset was divided into 15 segments of equal
size, out of which 14 segments were used for training the model and one segment was
used for validating the performance of the model. This process was repeated 15 times with
different combinations of training and validating segments, and metrics across all 15 folds
were averaged to give the final result. Afterwards, the model was tested on unseen and
imbalanced testing data that were held out of the training process, wherein SMOTE was
not applied.

A total of five classification tasks were conducted in this study as follows:

1. Five-stage sleep detection: distinguishing between Wake, N1, N2, N3/4, and REM
stages;

2. Four-stage sleep detection: distinguishing between Wake, Light (N1 + N2), Deep
(N3 + N4), and REM stages;

3. Three-stage sleep detection: distinguishing between Wake, Non-REM (N1 + N2 + N3
+ N4), and REM stages;

4. Two-stage sleep detection (a): distinguishing between Non-REM (N1 + N2 + N3 + N4)
and REM stages;

5. Two-stage sleep detection (b): distinguishing between Wake (W) and Asleep (N1 + N2
+ N3 + N4 + REM).

3.5. Evaluation Metrics

• Recall

Recall =
TruePositives

TruePositives + FalseNegatives
(20)

• Precision

Precision =
TruePositives

TruePositives + FalsePositives
(21)

• Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100 (22)

TPR =
TruePositives

TruePositives + FalseNegatives
(23)

FPR =
FalsePositives

FalsePositives + TrueNegatives
(24)
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4. Results
4.1. Five-Stage Sleep Classification
4.1.1. Individual Performance of Feature Extraction Measures

Initially, all feature extraction measures were employed separately to assess their
individual performance in distinguishing sleep stages in the five-stage configuration having
W, N1, N2, N3/N4, and R sleep stages, as described in Section 3.4.

Table 2 presents the average metrics (Accuracy, Recall, Precision, AUC) across
15 folds of cross-validation for all individual feature-extraction–classifier combinations
that were implemented for five-stage sleep detection. Statistical measures consisted of the
mean, skewness, standard deviation, and kurtosis, which were computed for every epoch
of every subject’s PSG data and concatenated horizontally in a tabular format. PSD yielded
the highest accuracy with the XGB classifier: 82.25%. Statistical measures also yielded
good individual performance with the highest accuracy of 82.17% with RF. However, SVD
entropy, HFD, PE, and DFA achieved subpar accuracies.

Table 2. Results for 5-stage sleep classification with individual feature extraction measures.

Feature Extraction
Measure Classifier Model Accuracy AUC Recall Precision

Statistical
measures RF 82.17 96.45 78.84 83.51

ET 81.75 96.19 77.28 82.84
LGBM 81.2 96.14 76.25 82.21
XGB 80.93 96.07 77.32 82.4

PSD XGB 82.25 95.99 79.1 82.63
LGBM 81.67 95.92 79.21 82.47

RF 81.12 95.4 78.12 81.46
ET 80.9 95.18 79.96 81

HFD ET 67.69 88 64.66 68.06
RF 66.79 88 65.07 67.86

LGBM 64.9 88.94 67.26 68.69
XGB 67.69 88 64.66 68.06

SVD entropy ET 68.97 88.76 63.76 69.63
LGBM 68.88 89.77 66.67 71.21
XGB 68.25 89.53 65.96 70.71
RF 68.43 88.67 64.18 69.77

PE ET 72.22 91.01 68.71 73.08
RF 71.52 90.91 68.92 72.86

LGBM 71.33 91.93 71.7 74.23
XGB 70.78 91.72 71 73.73

DFA LGBM 68.64 89.51 66.25 71.03
ET 68.26 88.25 63.08 69.04

XGB 68.16 89.29 66.03 70.77
RF 67.63 88.14 63.37 69.06

Figure 4 represents a visual comparison of the performance of different feature ex-
traction measures. It can be observed that HFD gives the lowest accuracies across all
classifiers, indicating the inefficacy of HFD in accurately capturing the features of sleep
that can distinguish between the different sleep stages. PSD performs the best, followed by
the statistical measures PE, DFA, SVD Ent, and HFD, in decreasing order of accuracy. The
performance of classifiers varied for different feature extraction measures. For PSD, XGB
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achieved the highest accuracy but the lowest accuracy for statistical measures. This can
be attributed to differences in the nature of the feature extraction measures and different
dimensions of the input tables, as described in Section 3.4 of this study. Precision, recall,
and AUC were in line with the patterns followed by the accuracy metric for all feature
extraction measures shown in Table 2.

Figure 4. Accuracy of individual feature extraction measures across different classifiers for 5-stage
classification.

4.1.2. Combined Performance of Feature Extraction Measures

After conducting experimentation for sleep stage detection using one feature ex-
traction method at a time, as evident from Table 2 and Figure 4, it was found that the
accuracy, precision, and recall are suboptimal for all classifiers since they are below 88%.
Therefore, for further experimentation, multiple measures were combined together to
enrich the data and aid in better classification of the five sleep stages.

The following combinations of feature extraction measures were employed in this
study:

• SVD Ent, HFD, DFA, and PE;
• PSD and statistical measures (i.e., mean, standard deviation, skewness, and kurtosis);
• PSD, SVD Ent, HFD, DFA, and PE;
• All combined together (PSD, SVD Ent, HFD, DFA, PE, mean, standard deviation,

skewness, and kurtosis).

For creating the above combinations, the individual features extracted from the PSG
were concatenated horizontally, creating a wider input to the classifiers with a large number
of features to learn from.

Table 3 presents the average accuracies across 15 folds of cross-validation for all
coalesced feature-extraction–classifier combinations that were implemented to distinguish
between the five sleep stages, namely, W, N1, N2, N3/N4, and REM. The highest accuracy
was given by the model that consisted of all feature extraction measures combined together
with the XGB Classifier. This model achieved an accuracy of 87.44%. The lowest accuracy
was obtained by the combination of PSD and statistical measures with the RF classifier.

Figure 5 sheds more light on the performance of the combined feature extraction
measures. PSD with statistical measures yielded the lowest average accuracy, while the
combination of all measures performed the best. It can also be observed from the figure
that, as more measures were combined, an incremental rise in accuracy was achieved.
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Table 3. Classification results for 5-stage sleep classification upon combining multiple feature extrac-
tion measures.

Feature Extraction
Measure Classifier Model Accuracy AUC Recall Precision

PSD + statistical
measures XGB 85.34 97.22 82.25 85.59

LGBM 84.95 97.17 82.37 85.39
RF 83.02 96.29 79.85 83.35
ET 82.53 95.94 78.79 82.73

HFD, PE, DFA,
SVD Ent ET 85.12 97.03 82.66 85.3

RF 84.66 96.87 83 85.18
XGB 84.16 96.99 83.48 85.15

LGBM 83.58 96.89 83.44 84.81

PSD, HFD, PE,
DFA, SVD Ent XGB 86.85 97.78 85 87.19

LGBM 86.47 97.72 85.27 87.04
ET 85.49 97.17 82.67 85.6
RF 85.45 97.24 83.7 85.89

All combined XGB 87.44 97.93 85.47 87.77
LGBM 87.14 97.91 85.61 87.64

RF 86.14 97.43 83.96 86.61
ET 86 97.32 83.29 86.12

Figure 5. Accuracy of combined feature extraction measures across different classifiers for 5-stage clas-
sification. The bar “Average” represents the mean of RF, ET, LGBM, and XGB for every combination
of feature extraction measures.

The best performance was achieved by integrating all feature extraction measures for
the five-stage sleep classification. As a result, this effective approach was also employed
for the four-stage, three-stage, and two-stage sleep classification tasks.

Moreover, for the most effective classification model, the feature table was partitioned
into training and testing subsets at a respective ratio of 80:20. Notably, the Synthetic
Minority Oversampling Technique (SMOTE) was excluded from the application to the
testing set, thereby resulting in a class imbalance. The model, once trained, was then
evaluated on these unseen and imbalanced testing data.
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Figure 6 presents the confusion matrix obtained from the XGB classifier when features
were extracted using all measures combined. This confusion matrix represents the model’s
performance on an unseen and imbalanced testing dataset. The y -axis represents the
actual/true values, and the x-axis represents the predicted values of various sleep stages.
The number of misclassifications for W is extremely low, whereas it is mildly higher between
N1, N2, and N3/N4. Table 4 presents the classification report of the XGB classifier on testing
data. This process was conducted to understand the model’s performance on imbalanced
and unseen data. The Support column in Table 4 represents the total number of instances
of a particular sleep stage in the testing data. As is evident, the class imbalance is high.
However, the model yielded a good accuracy of 87%. High precision was observed with all
classes except the N1 sleep stage, for which the model yielded poor metrics. This may be
attributed to the extremely low number of data instances for N1 in the testing (in Table 4,
support for N1 = 685).

Figure 6. Confusion matrix for XGBoost classifier for 5-stage sleep classification using all feature
extraction measures together.

Table 4. Classification report of XGB classifier on testing data for 5-stage sleep classification when
using all feature extraction measures together.

Sleep Stage Precision Recall F1-Score Support

W 89 90 90 840
N1 61 69 65 685
N2 92 87 90 3883

N3/N4 86 91 89 1292
R 88 90 89 1598

Accuracy 87

4.2. Four-Stage Sleep Classification

In four-stage sleep classification, models were used to distinguish between four sleep
stages, namely, Wake (W), Light (N1 + N2), Deep (N3 + N4), and REM (R). Table 5 presents
the average metrics obtained from 15-fold cross-validation for the four-stage sleep classifi-
cation. As evident from the table, XGB achieves the highest accuracy of 90.08% and the
highest recall of 91.32%.

Similar to the five-stage sleep classification, the model that gave the best accuracy
(XGB) was tested on unseen and imbalanced testing data to evaluate its performance further.
Table 6 and Figure 7 present the classification report and confusion matrix obtained from
the testing set.
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Table 5. Results for 4-stage sleep classification upon combining all feature extraction measures.

Classifier Accuracy AUC Recall Precision

XGB 90.08 97.95 91.94 90.33
LGBM 89.69 97.77 91.32 90.01

RF 88.48 97.17 90.05 88.93
ET 87.66 96.9 89.21 88.11

Table 6. Classification report of XGB classifier on testing data for 4-stage sleep classification when
using all feature extraction measures together.

Sleep Stage Precision Recall F1-Score Support

W 83 93 88 840
Light (N1/N2) 93 88 91 4568
Deep (N3/N4) 85 92 88 1292

R 88 91 89 1598

Accuracy 90

Figure 7. Confusion matrix for XGBoost classifier for 4-stage sleep classification using all feature
extraction measures together.

From Table 6, it can be seen that the accuracy on the testing dataset increased to 90%
in the four-stage sleep classification from 87% in the five-stage sleep classification. The
precision for N1 and N2 also increased by a big margin to 93%. Overall, the performance
improved when moving from five-stage to four-stage sleep classification.

4.3. Three-Stage Sleep Classification

In three-stage sleep classification, models were used to distinguish between three sleep
stages, namely, Wake (W), Non-REM (N1, N2, N3/N4), and REM (R). Table 7 presents the
average metrics obtained from 15-fold cross-validation for the three-stage sleep classification.

Similar to the five-stage sleep classification, the XGB classifier was tested on unseen
and imbalanced testing data to evaluate its performance further. Table 8 and Figure 8
present the classification report and confusion matrix obtained from the model’s perfor-
mance on the testing set.
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Table 7. Results for 3-stage sleep classification upon combining all feature extraction measures.

Classifier Accuracy AUC Recall Precision

XGB 93.31 98.59 93.04 93.61
LGBM 93.18 98.57 93.22 93.56

RF 92.36 98.07 92.34 92.88
ET 91.58 97.83 91.59 92.16

Table 8. Classification report of XGB classifier on testing data for 3-stage sleep classification when
using all feature extraction measures together.

Sleep Stage Precision Recall F1-Score Support

W 83 93 88 840
Non-REM

(N1, . . . N4) 97 94 95 5860

REM (R) 86 91 88 1598

Accuracy 93

Figure 8. Confusion matrix for XGBoost classifier for 3-stage sleep classification using all feature
extraction measures together.

Figure 8 shows that the accuracy of testing data increased from 87% in the previous
section to 93%. Precision and recall for the Non-REM class are very high, followed by
those of REM and Wake. This can be attributed to a large number of data instances for the
Non-REM class, as evident in the Support column of the figure.

4.4. Two-Stage Sleep Classification

In two-stage sleep classification, the models were used to distinguish between two
sleep stages in two different sleep stage configurations as follows:

• Distinguishing between Non-REM (N1, N2, N3, N4) and REM (R);
• Distinguishing between Awake (W) and Asleep (N1, N2, N3, N4, R).

The following subsections provide results for these two classification tasks.

4.4.1. REM vs. Non-REM

Table 9 presents the average metrics obtained from 15-fold cross-validation for the
two-stage (NREM vs. REM) sleep classification. Similar to the five-stage sleep classification,
XGB was tested on unseen and imbalanced testing data to evaluate its performance further.
Table 10 and Figure 9, respectively, present the classification report and confusion matrix
obtained from the testing set.
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Table 9. Results for 2-stage (Non-REM vs. REM) sleep classification upon combining all feature
extraction measures.

Classifier Accuracy AUC Recall Precision

XGB 95.34 98.76 91.45 87.68
LGBM 95.29 98.76 92.41 87.07

RF 95.19 98.54 88.98 89.21
ET 94.56 98.23 86.74 88.43

Table 10. Classification report of XGB classifier on testing data for 2-stage sleep classification (NREM
vs. REM) when using all feature extraction measures together.

Sleep Stage Precision Recall F1-Score Support

Non-REM 98 97 97 5851
REM 88 91 90 1618

Accuracy 96

Figure 9. Confusion matrix for XGBoost classifier for 2-stage (Non-REM vs. REM) sleep stage
classification using all feature extraction measures together.

Figure 9 shows that the accuracy of testing data increased from 93% in the previous
section to 96%. Precision and recall for the Non-REM class are very high, followed by those
of REM. This may be attributed to a large number of data instances for the Non-REM class,
as evident in the Support column of the figure.

4.4.2. Awake vs. Asleep

Table 11 presents the average metrics obtained from 15-fold cross-validation, for
the two-stage (Awake vs. Asleep) sleep classification. Similar to the five-stage sleep
classification, XGB was tested on unseen and imbalanced testing data to evaluate its
performance further. Table 12 and Figure 10, respectively, present the classification report
and confusion matrix obtained from the testing set.

Table 11. Results for 2-stage (Awake vs. Asleep) sleep classification upon combining all feature
extraction measures.

Classifier Accuracy AUC Recall Precision

XGB 97.34 99.47 97.77 99.27
LGBM 97.14 99.46 97.48 99.33

RF 96.63 99.25 96.83 99.4
ET 96.7 99.34 96.9 99.43



Brain Sci. 2023, 13, 1201 21 of 29

Table 12. Classification report of XGB classifier on testing data for 2-stage (Awake vs. Asleep) sleep
classification when using all feature extraction measures together.

Sleep Stage Precision Recall F1-Score Support

Awake 84 93 88 840
Asleep 99 98 99 7458

Accuracy 97

Figure 10. Confusion matrix for XGBoost classifier for 2-stage (Awake vs. Asleep) sleep classification
using All feature extraction measures together.

Figure 10 shows that the accuracy of testing data increased from 96% in the previous
section to 97%. Precision and recall for the “Asleep” class are very high, followed by those
of “Awake”. This may be attributed to a large number of data instances for the “Asleep”
class, as evident in the Support column of the figure.

5. Comparison with Recent Works

The comparative analysis of recent significant studies on sleep stage detection is
summarised in Table 13. This table incorporates thirteen notable studies, eight of which
utilised the PhysioNet Sleep EDF Database for their investigations. Our research also
leverages the same database, specifically the Expanded Sleep-EDF Database of 2018 (notated
as Sleep-EDF-18).

Table 13. Comparison of performance obtained by our model with other recent works.

Study Year Dataset Classification
Method Feature Extraction Method Modality Overall

Accuracy

This study 2023 PhysioNet
Sleep-EDF-18 XGBoost

SVD entropy, Higuchi FD,
DFA, PE, PSD, statistical

measures
PSG

90.1%
(4-stage),
93.34%

(3-stage)

Zan et al. [52] 2023 PhysioNet
Sleep-EDF-13 CNN

1-D Local Binary Patterns,
Local Neighbour Descriptive

Pattern, Local Gradient
Pattern, Local Neighbor

Gradient Pattern

PSG 84.80%

Jin et al. [53] 2023
PhysioNet

Sleep-EDF-18, UCD
and CAP

GCN and
BiGRU

Short-Time Fourier
Transform PSG 80.07%
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Table 13. Cont.

Study Year Dataset Classification
Method Feature Extraction Method Modality Overall

Accuracy

Kwon et al.
[54] 2022 ISRUC CNN Multi-taper Spectrogram

and CNN PSG 81.52%

Zhai et al.
[24] 2022 Original Dataset and

MIT dataset CRNN CRNN
PSG and

Radio
Frequency

79.20%

Arslan et al.
[55] 2022 Original Dataset DNN General preprocessing and

undersampling PSG 91.60%

Loh et al.
[22] 2022 Cyclic Alternating

Pattern (CAP) dataset CNN No explicit feature extraction EEG 90.46%

Cvetko et al.
[26] 2022

PhysioNet
Sleep-EDF-13 and

Sleep-EDF-18
CNN-LSTM CEEMDAN, FFT, and PE EEG 90.43%

You et al.
[23] 2022

PhysioNet
Sleep-EDF-13

Montreal Archive of
Sleep Studies (MASS)

Bidirectional
LSTM Fractional Fourier Transform EEG 81.60%

Zhang et al.
[56] 2020 Not Open Access Orthogonal-

CNN Hilbert–Huang transform, EEG 88.40%

Zhou et al.
[57] 2020

PhysioNet
Sleep-EDF-13 and

Sleep-EDF-18

Ensemble ML
model—
Random
Forest +
LGBM

Standard deviation, spectral
entropy, Kraskov entropy,

Renyi entropy, Hjorth
parameters, Katz FD,

Petrosian FD,
Maximum-Minimum

Distance, Hurst exponent
and log root sum of

sequential variations

EEG 91.20%

Mousavi et al.
[25] 2019

PhysioNet
Sleep-EDF-13 and

Sleep-EDF-18

CNN and
Bi-RNN CNN and Bi-RNN EEG 84.26%

Hassan et al.
[58] 2017

PhysioNet Sleep Edf
and St. Vincent’s

University
Hospital/University
College Dublin Sleep

Apnea Database

AdaBoost TQWT and NIG Probability
Density Function EEG 94%

Tripathi et al.
[59] 2022 PhysioNet

Sleep-EDF-13 Ensemble ML PSD, Pan-Tompking method
for HRV extraction ECG 96% (2-stage)

GCN: Graph Convolutional Network; BiGRU: Bidirectional Gated Recurrent Unit; CEEMDAN: Complete En-
semble Empirical Mode Decomposition; TQWT: Tunable-Q Factor Wavelet Transform; NIG: Normal Inverse
Gaussian.

The examination of Table 13 reveals a clear inclination towards EEG signals derived
from PSG as the primary modality for sleep analysis. This preference stems from the capac-
ity of EEG to capture vital brain activity during sleep, offering definitive and discernible
biomarkers for different sleep stages. In contrast, EOG and EMG provide information
about eye and muscle movement and are often very noisy [60,61], which problematises
distinguishing between the Non-REM sleep stages. However, in spite of their shortcom-
ings, EOG and EMG signals provide valuable information for identifying the REM sleep
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stage [62] since they are accompanied by rapid eye movement captured by EOG and muscle
atonia, which EMG can capture. Therefore, the use of all three modalities in a judicious way
can enhance the performance of models for accurately differentiating between different
sleep stages.

Yet, this integrated approach presents its own set of challenges. The task of processing
and extracting key biomarkers from all three signals is inherently more complex than
working with the EEG signal alone. This intricacy is evident in Table 13, where studies that
have employed multiple PSG modalities along with EEG often struggle to achieve high
classification accuracies, even after implementing sophisticated deep-learning models.

As observed from the table, refs. [24,53,54] utilised multiple modalities along with
EEG from the PhysioNet Sleep-EDF dataset, which has also been used for our paper. It
is evident that the ensemble feature extraction method used in our study, coupled with a
straightforward machine-learning model like XGBoost, achieved superior results to several
deep convolutional neural networks. This highlights the significance of feature extraction
methods for enriching data quality and thereby considerably increasing the predictive
performance of models.

Furthermore, multiple studies, such as [23,24,52–54], either employed a single method
of feature extraction or multiple measures having similarity in their functioning, as observed
in [52], which used multiple measures that are similar to each other to some degree. On
the other hand, methods like [57] employed a diverse set of features along with a machine-
learning approach, which, in turn, achieved better performance than most of the other
studies. This indicates that measures having varied natures of functioning can complement
each other and uniquely identify relevant features from the signals. For instance, fractal
dimensions and entropies primarily elucidate the complexity and irregularity inherent in
brain activity, whereas the power spectral density analysis emphasises the distribution
of power across distinct frequency components within the signal. Concurrently, Hjorth
parameters provide information regarding the signal’s power, its mobility (mean frequency),
and its intrinsic complexity. The integration of these diverse methods, supplemented
by statistical measures such as kurtosis and skewness, affords a more comprehensive
approach to feature extraction. Kurtosis and skewness measure the asymmetry of the
probability distribution about the mean, along with more information about outliers and
peak sharpness. This approach can provide a comprehensive feature extraction method
that captures relevant features in a multifaceted manner.

In a deeper examination of studies that exclusively utilised the EEG signal, it can
be observed that several research efforts have employed intricate, deep neural networks
to secure high accuracies, as is evident in Table 13 in [22,26,57]. But interestingly, some
studies, such as [58], have focused on extensive feature extraction, employing the tunable Q-
factor wavelet transform (TQWT) and Normal Inverse Gaussian (NIG) Probability Density
Function modelling to capture the principal differentiating characteristics for sleep stage
classification, thereby enhancing the quality of the input data for the predictive models.
When processed through an Adaptive Boosting model (AdaBoost), these refined data
yielded an impressive accuracy rate of 94% for sleep stage classification. In contrast to
this study, which focused on EEG data, our study utilised all bio-signals from PSG data
(i.e., EEG, EMG, and EOG). Additionally, our study followed a similar feature extraction
approach but explored measures of a different nature, including fractal dimension, spectral,
entropy, and statistical features. This exploratory study gives a fresh perspective on sleep
stage classification by investigating a diverse spectrum of feature extraction measures.
Furthermore, this approach precludes the need for a deep-learning model since it achieves
higher accuracies than many complex deep neural networks implemented previously.
Thus, we posit that a focus on sophisticated feature extraction could potentially be a more
efficient path towards improving sleep stage classification performance.
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6. Discussion

We aimed to find the optimal model consisting of a feature extraction measure and
machine-learning algorithm that can accurately differentiate between different sleep stages
in PSG data. For this purpose, different feature extraction measures and their combinations
were employed with different classifiers to assess the individual as well as the grouped
performance of the measures. The results shed light upon the efficacy of an ensemble
method that combines all measures together as an effective feature extraction technique
that accurately captures relevant information from the multiple signals—EEG, EMG, and
EOG—present in PSG data. Amongst all methods implemented in this study, the most
effective method for sleep stage detection consists of the following techniques:

• Feature extraction: A combination of PSD, SVD entropy, HFD, DFA, PE, and statistical
measures, namely—mean, standard deviation, skewness, and kurtosis.

• Classifier: Extreme Gradient Boosting (XGBoost).

The accuracies yielded for different sleep stage configurations for the above model are
as follows:

• Five-stage sleep classification (W, N1, N2, N3/N4, R): 87.44%;
• Four-stage sleep classification (W, Light Sleep N1, N2, Deep Sleep N3, N4, R): 90.08%;
• Three-stage sleep classification (W, Non-REM N1, N2, N3, N4, REM R): 93.31%;
• Two-stage sleep classification (Non-REM, REM): 95.34%;
• Two-stage sleep classification (Awake W, Asleep N1, N2, N3, N4, R): 97.34%.

From Figure 11, it can be observed that the performance of all classifiers increases
when the number of sleep stages to be distinguished decreases. As evident in the figure, for
five-stage sleep detection, the performance of all classifiers was the lowest compared to all
other sleep stage configurations, while the performance for two-stage sleep detection was
the highest. However, between the two distinct two-stage sleep classification configurations
(i.e., Non-REM vs. REM and Awake vs. Asleep), each classifier achieved greater accuracy
in differentiating between Wake (W) and Asleep (N1, N2, N3, N4, R) stages than in the
case of Non-REM vs. REM, as evident from Figure 11. This may be attributed to the
possibility that all Non-REM and REM sleep stages have some intrinsic characteristics
in common [63], which makes differentiating between Non-REM and REM sleep stages
more difficult than differentiating between Sleep and Wake states since the Wake state is
associated with distinctly more movement, muscle activity, and brain function than the
sleep state.

Figure 11. Accuracy of combined feature extraction measures for each sleep stage configuration.

Furthermore, it can also be observed in Figure 4 that feature extraction measures, when
employed individually, do not achieve good performance. In particular, the Higuchi fractal
dimension, which measures the complexity or the degree of intricacy of the signal, could
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not capture relevant EEG features for differentiating between the various sleep stages since
it gave the lowest accuracy when employed individually. Amongst SVD Ent, HFD, PE,
and DFA, PE performed better by a considerable margin since it gave an accuracy of 72%.
In contrast, the other measures peaked at around 68% for the different classifiers imple-
mented. However, among all individual measures, the highest accuracies were achieved
by PSD, as evident from Figure 4, closely followed by statistical measures. The reason
behind this can be attributed to the different nature of these feature extraction measures
as well as the greater number of features extracted for the same epoch. To substantiate
further, PSD measures the power distribution of the signal across different frequency bands,
which implies that multiple features were extracted for the same epoch corresponding to
different signal frequencies. Therefore, the number of features for PSD (405, as mentioned in
Section 4) was much higher than that for HFD, DFA, ZCR, or PE (four each, as mentioned
in Section 4). Similarly, the number of features for the statistical measures was 16 (4 for
each—mean, standard deviation, skewness, and kurtosis). Having a greater number of
features enabled the classifiers to learn from more data instances and thus capture the
nuances of PSG data better than HFD, DFA, ZCR, and PE individually.

With respect to the performance of various machine-learning models, it is evident
from Figure 11 that the XGBoost classifier outperforms all other classifiers in each of the
sleep stage configurations, while the Extra Trees classifier gives the lowest accuracy in most
configurations.

Lastly, a significant observation that is clear from Figure 5 is that as more mea-
sures were combined together one by one, the performance of all classifiers increased.
For example, when HFD, SVD Ent, DFA, and PE were combined, all classifiers achieved
accuracies over 83%. In contrast, their individual performance was limited to an accuracy
of 62–72%, as evident in Table 2. Similarly, when these measures were combined with
PSD, the accuracies of all classifiers were over 85%, as evident in Table 3. This indicates
that each feature extraction measure is able to capture unique features that other measures
cannot. Therefore, each measure uniquely aids in detecting sleep stages by identifying
salient features from the PSG data. Since PSG consists of multiple signals—EOG, EMG, and
EEG, which, respectively, record eye movement, muscle movement, and brain activity—it
is clear that the data being captured by the signals differ in nature. Therefore, it is pos-
sible that a few feature extraction measures, like PSD, might capture relevant features
for accurately differentiating between sleep stages from the EEG signal but may fail to
accurately capture them from the EMG signal. Meanwhile, another feature extraction
method may complement PSD in capturing salient features from the EMG signal that helps
differentiate between the different sleep stages. There is scope to further strengthen this
study by exploring this avenue for determining the specific ways in which the feature
extraction measures uniquely aid in sleep stage detection while complementing each other.

The central premise of our study underscores the pivotal role of efficient feature
extraction, utilising measures that inherently differ in their nature of functioning. This
approach ensures the capture of a wide spectrum of characteristics from the polysomnogra-
phy (PSG) signals, namely, EEG, EMG, and EOG, thereby providing a more comprehensive
understanding of sleep stage dynamics. An approach like this enriches the data fed into
predictive models and precludes the need for training complex deep neural networks that
require immense development effort and overhead in the form of time and resources. This
study achieved high accuracy, precision, recall, and F1-score by employing an extensive
feature extraction approach coupled with a straightforward boosting machine-learning
model (XGBoost).

Furthermore, a simpler and more efficient mechanism that automates the process of
sleep staging has the potential to ease clinical diagnostics and research in sleep disorders
such as insomnia, sleep apnoea, and narcolepsy. Therefore, we hypothesise that focusing on
sophisticated feature extraction could be an efficient alternative to complex deep-learning
approaches for improving sleep stage classification performance.
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However, one of the limitations of our proposed model is its lack of interpretabil-
ity. Further research can be conducted to understand which feature extraction measures
uniquely capture which features from EEG, EOG, and EMG signals present in the PSG
data. Adding this layer of interpretability to the architectural pipeline will shed more light
on the unique contribution of each feature extraction measure for sleep stage classifica-
tion. Moreover, there is scope to further strengthen this study by testing the proposed
model on sleep datasets that follow guidelines given by the American Academy of Sleep
Medicine (AASM) for sleep scoring. The PhysioNet sleep EDF Database, which was utilised
in this study, employs the Rechtschaffen and Kales (R & K) guidelines for sleep scoring.
The widespread usage of this database in recent studies allows our work to be directly
comparable with these studies and their proposed models. Additionally, our study can
also be readily compared with studies that utilise other sleep databases, such as the Cyclic
Alternating Pattern (CAP) [64] and the University College Dublin Sleep Apnea (UCD) [65]
datasets, which also employ the R & K sleep scoring system. However, the robustness of
the model constructed in this study can be further validated by testing its performance on
other datasets following different sleep-scoring protocols.

7. Conclusions

There is a research gap in the comparative analysis of feature extraction measures, like
the power spectral density (PSD), singular value decomposition (SVD) entropy, Higuchi
fractal dimension (HFD,) detrended fluctuation analysis (DFA) and permutation entropy
(PE), with respect to sleep stage detection. This study aims to fill this research gap. Further-
more, while recent studies on sleep stage detection have utilised PSG data by developing
complex neural networks, we aim to highlight the efficacy of a simpler architectural pipeline
comprising a novel temporal feature extraction technique that combines several existing
measures together and an effective machine-learning model. From the results given in
Section 4 of this paper, it can be observed that an ensemble feature extraction method con-
sisting of PSD, SVD entropy, HFD, DFA, and PE coupled with statistical measures—mean,
standard deviation, skewness, and kurtosis—can effectively capture salient features that
can distinguish between sleep stages for all different sleep stage configurations. It was also
observed that the XGBoost classifier performed consistently better than all other classifiers
employed in this study. For five-stage, four-stage, three-stage, two-stage (NREM vs. REM),
and another two-stage (Awake vs. Asleep) sleep classification, accuracies of 87.44%, 90.08%,
93.31%, 95.34, and 97.34% were, respectively, achieved using the XGBoost model, along
with respective average F1-scores of 84.6%, 89%, 90.33%, 93.5%, and 93.5%. These results
illustrate the high performance of a simpler architecture, which achieves accuracy rates
higher than many previously built complex deep-learning models. Therefore, the results
reveal an alternative research avenue that focuses on sophisticated feature extraction as a
potentially more efficient and more straightforward path towards improving sleep stage
classification performance.
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