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Abstract: Knee osteoarthritis (OA) is a painful condition characterized by joint and bone changes. A
growing number of studies suggest that these changes only partially explain the pain experienced
by individuals with OA. The purpose of the current study was to evaluate if corticospinal and
bulbospinal projection measurements were interrelated in patients with knee OA, and to explore
the relationship between these neurophysiological measures and temporal summation (excitatory
mechanisms of pain) on one hand, and clinical symptoms on the other. Twenty-eight (28) patients
with knee OA were recruited. Corticospinal projections were measured using transcranial magnetic
stimulation, while bulbospinal projections were evaluated with a conditioned pain modulation (CPM)
protocol using a counter-irritation paradigm. Validated questionnaires were used to document clinical
and psychological manifestations. All participants suffered from moderate to severe pain. There was
a positive association between corticospinal excitability and the effectiveness of the CPM (rs = 0.67,
p = 0.01, n = 13). There was also a positive relationship between pain intensity and corticospinal
excitability (rs = 0.45, p = 0.03, n = 23), and between pain intensity and temporal summation (rs = 0.58,
p = 0.01, n = 18). The results of this study highlight some of the central nervous system changes that
could be involved in knee OA and underline the importance of interindividual variability to better
understand and explain the semiology and pathophysiology of knee OA.

Keywords: pain; knee osteoarthritis; transcranial magnetic stimulation; motor cortex; corticomotor
excitability; motor evoked potentials; pain modulation; conditioned pain modulation; temporal
summation

1. Introduction

Osteoarthritis (OA) is the most common form of arthritis and remains one of the
leading causes of pain in older adults, affecting more than 33% of people over the age
of 65 [1]. Various treatments are available to alleviate OA symptoms and reduce its
impact on physical function, such as therapeutic exercises, manual therapy, dry needling,
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and pain education [2,3]. Unfortunately, these approaches provide only partial relief for
affected patients.

OA is traditionally viewed as a disease affecting the musculoskeletal system [4,5].
Nonetheless, recent data suggest that the central nervous system (CNS), via central sensiti-
zation and changes in the structure and function of the brain, can play an important role
in OA pain [6–8]. Studies support the hypothesis that an impairment of endogenous pain
control mechanisms, such as a deficit in pain-inhibiting mechanisms and/or an increase in
pain-facilitating mechanisms, could play an important role in the development and mainte-
nance of chronic pain [7–9]. The dysregulation of these pain mechanisms could explain, at
least in part, poor treatment outcomes in some patients with chronic pain [9–11]. Petersen
et al. demonstrated that patients with reduced pain inhibition combined with increased
pain facilitation prior to knee arthroplasty were more likely to experience pain 12 months
after surgery, compared to patients who exhibit only one of these impairments [9]. These
lines of evidence challenged prior conceptions and prompted a redefinition of the phys-
iopathology of OA, which is now considered as a multifactorial disease involving both
musculoskeletal and neurophysiological mechanisms [7,12].

Conditioned pain modulation (CPM) and temporal summation are frequently used in
research to assess pain inhibition and pain facilitation, respectively [13]. Decreased CPM and
increased temporal summation are documented in many chronic pain conditions [10,11],
including knee OA [9,14]. Interestingly, CPM alterations in OA patients tend to subside
following successful knee arthroplasty [15]. This observation suggests that changes in
bulbospinal projections could be considered a consequence of knee OA rather than a cause,
thus supporting the idea that this pain-inhibiting mechanism may play an important role
in pain modulation in this population.

A recent study found increased corticospinal excitability of the primary motor cortex
(M1) to be associated with more efficient inhibitory pain modulation, as assessed by CPM,
in healthy subjects [13]. However, it would be hasty to assume that this association is
also present in pain populations among individuals with painful conditions such as OA.
Thus, the objectives of the present study were to evaluate if corticospinal and bulbospinal
projection measurements were interrelated in participants with knee OA and to explore
the relationship between these neurophysiological measures and temporal summation
(excitatory mechanisms of pain) on one hand, and clinical symptoms on the other.

2. Methods
2.1. Participants

Twenty-eight (28) persons with moderate-to-severe knee OA (mean age 69 ± 7 years
old) agreed to participate in this study. For various reasons (described in the following
sections), not all 28 participants completed all the experiments. To be included, participants
were required to be 55 years old or over, have a diagnosis of knee OA by an orthopedist
of the orthopedic clinic of the Centre intégré universitaire de santé et de services sociaux
de l’Estrie–Centre hospitalier universitaire de Sherbrooke (CIUSSS de l’Estrie–CHUS),
and have a referral for knee arthroplasty. Participants were asked to refrain from taking
analgesics and consuming caffeine 6 h preceding each experimental session, and tobacco
products 2 h prior to testing to avoid potential effects on pain and neurophysiological
measures [16,17]. For security reasons, potential participants with neurological disorders,
pacemakers, neurostimulators, metal implants, or epilepsy were excluded from the study.
Individuals suffering from a painful condition (other than knee OA), or from any other
major pathology, were also excluded. The research protocol was approved by the ethics
committee of the CIUSSS de l’Estrie–CHUS (Sherbrooke, QC, Canada; approval # 2015-454-
IUGS) and registered on ClinicalTrials.gov (#NCT03556423). Each participant provided
informed written consent before participating in the study.
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2.2. Inhibitory Pain Mechanisms (Bulbospinal Projections)

Conditioned pain modulation was assessed using a counter-irritation paradigm. First,
pretests were used to familiarize participants with the Peltier-type thermode (30 × 30 mm,
TSA-II, Medoc advanced Medical System, Israel) and the use of the computerized visual
analog scale (CoVAS), and to determine the thermode temperature, for each participant,
inducing a pain of 50/100 (moderate pain) [see [18] for more details]. Following the pretests,
painful thermal stimuli were applied on the participant’s right forearm. The test stimulus
was maintained at a constant temperature (determined during the pretest) for 2 min and
the participants were asked to evaluate pain intensity with the CoVAS. Thereafter, the
conditioning stimulus was performed by immersing the participant’s left forearm into
cold water (10 ◦C) for 2 min, a procedure known as the cold pressor test (CPT). During
the CPT procedure, pain intensity was evaluated every 30 s using a numerical pain rating
scale (NRS, 0 = “no pain”, 100 = “worst imaginable pain”). Immediately after the CPT, the
thermode was applied a second time using the same temperature. To facilitate comparisons
for pain inhibitory mechanisms, pain intensity ratings obtained during the 2 min of the
test stimulus were averaged and used in subsequent analyses. The magnitude of CPM was
obtained by subtracting the post-CPT test stimulus pain scores from pre-CPT test stimulus
pain scores, such that positive values represented an activation of inhibitory mechanisms.

2.3. Excitatory Pain Mechanisms (Temporal Summation)

The pain excitatory mechanisms (temporal summation) were measured using pain
fluctuations, evaluated by the CoVAS during the 2 min when the test stimulus was applied
prior to the conditioning stimulus, in the previous counter-irritation paradigm [18]. Because
temporal summation can be quantified using several methods [13,18,19], we decided to
calculate it by two different methods. First, temporal summation was calculated with the
method used in Tousignant-Laflamme (2018), which proposes subtracting the pain score at
30 s from pain score at 120 s; a positive score corresponds to an increased activation of pain
excitatory mechanisms. Second, temporal summation was calculated from the slope from a
linear regression function obtained from the pain scores at 30, 60, 90, and 120 s. In this way,
the risks of misattributing early, non-sustained fluctuations in pain scores are considerably
reduced. Higher slope values represent an increased activation of excitatory mechanisms.

2.4. Corticomotor System (Corticospinal Projections and Intracortical Mechanisms)

Magnetic stimuli were delivered with a double-cone coil connected to a Magstim 2002

(mono-phasic single pulse; Magstim Co., Dyfed, UK). To record motor-evoked potentials
(MEP), surface electromyography (EMG) electrodes (PicoEMG system; Cometa, Milan,
Italy) were positioned over the vastus lateralis of the affected leg, according the SENIAM
recommendations (http://www.seniam.org/; accessed on 28 July 2023). Electromyographic
signals, elicited by magnetic stimuli, were amplified directly at the PicoEMG recording
system (sampled at 2000 Hz, filtered at 1000 Hz, cutoff 20–2000 Hz) and then transferred to
the acquisition computer using a Power 1401 mk II interface and Spike 2 software (version
7.10; Cambridge Electronic Design Limted, Cambridge, UK).

A neuronavigation system (Brainsight, Rogue Research Inc., Montreal, QC, Canada),
was used to ensure the consistency of brain stimulation location over M1. To ensure optimal
use of the neuronavigation system, a magnetic resonance imaging (MRI) session to obtain
weighted brain anatomical images (T1; 1.0 mm × 1.0 mm × 1.0 mm, 3T Philips Medical
system) was performed with each participant.

During the transcranial magnetic stimulation (TMS) procedure, the optimal loca-
tion for eliciting MEP in the vastus lateralis (hotspot) was first identified. Subsequently,
the TMS Motor Threshold Assessment Tool (MTAT 2.0), available online (http://www.
clinicalresearcher.org/software.htm; accessed on 28 July 2023), was used to determine the
resting motor threshold (rMT) for each participant, which was defined as the minimal
intensity of stimulation required to induce MEP with an amplitude of over 50 µV. Then,
with the participants at rest, eight blocks of different stimulation intensities (i.e., 90, 100, 105,

http://www.seniam.org/
http://www.clinicalresearcher.org/software.htm
http://www.clinicalresearcher.org/software.htm
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110, 120, 130, 140, and 150% of the rMT) were randomly administered, each block consisting
of five magnetic stimuli (delay between each stimulation varied between 5 and 8 s). The
peak-to-peak amplitude of MEP responses were measured offline and averaged for each
patient to derive mean values. The slopes of the recruitment curves were calculated and
used as a metric to reflect the strength of the corticospinal projections [20].

The cortical silent period (CSP) was measured to assess intra-cortical inhibition
(Rossini, 2015). Five stimulations, performed at 120% of the rMT with the coil applied
over the affected hemisphere, were delivered to participants while they actively contracted
their quadriceps (10% of maximum voluntary contraction [MVC]; ~15 s between each
stimulation). The CSP duration (time elapsing from onset of the MEP until the recurrence
of voluntary tonic EMG activity) was calculated offline, trial-by-trial, and the individual
mean value was used for subsequent analyses [21].

2.5. OA Signs and Symptoms Assessment

The Kellgren–Lawrence (KL) score, a radiographic classification reflecting the sever-
ity of articular damage, was determined by an experienced orthopedist (CG). Patients
were also required to complete a series of questionnaires to assess pain and pain-related
outcomes. Questionnaires were handed out at the first session, completed at home, and
reviewed on arrival at the second session (see Figure 1). The selection of the different
clinical measures used was based on the IMMPACT recommendations [22]. Specifically,
participants completed two separate visual analog scales (VAS) to measure pain inten-
sity and unpleasantness [23], the McGill Pain Questionnaire [MPQ] (qualitative aspect
of pain) [24–26], the Brief Pain Inventory [BPI] (severity of pain and impact of pain on
physical functioning) [27,28], the Western Ontario and McMaster Universities Osteoarthri-
tis Index [WOMAC] (pain, stiffness, and functional mobility) [29–31], and the Central
Sensitization Inventory [CSI] (central nervous system hypersensitivity) [32,33]; all these
questionnaires were used to document OA clinical symptoms. The Pain Catastrophizing
Scale [PCS] [34–36], the Tampa Scale of Kinesiophobia [TSK] [37–39], the Spielberger State-
Trait Anxiety Inventory [STAI] [40,41], and the short form of the Beck Depression Inventory
[BDI] [42–44] were also used to document psychological symptoms. Given the population
studied, the validated French translations of all the questionnaires were used.
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2.6. Statistical Analysis

Due to the small number of subjects and because visual inspection of the data (his-
tograms) did not allow us to assume that the data were normally distributed, nonpara-
metric tests were used. Spearman’s correlation analyses were performed to determine if
corticospinal and bulbospinal measures were correlated, and to evaluate the relationship
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between these measures and clinical symptoms. Correlation coefficients were interpreted ac-
cording to the classification of Mukaka: 0.9 to 1 = very highly correlated; 0.7 to 0.9 = highly
correlated; 0.5 to 0.7 = moderately correlated; 0.3 to 0.5 = weakly correlated; and 0 to
0.3 = negligible [45]. For all analysis, statistical significance was set at p < 0.05, and statisti-
cal tests were performed using SPSS software (version 17; IBM Corp, Armonk, NY, USA).

3. Results
3.1. Participants’ Characteristics

From the 28 participants who were recruited, 5 did not complete the TMS evaluation
(unable to find TMS rMT [n = 4], and unable to tolerate magnetic stimuli delivered by TMS
[n = 1]). Additionally, MEP amplitudes at 150% of rMT could not be recorded in three
other participants because the stimulation intensity was over the stimulator’s maximum
output. Ten (10) participants were unable to complete the 2 min forearm immersion test
in cold water (CPT), as the water temperature (10 degrees) caused intolerable pain. When
participants were unable to keep their arm immersed for more than 60 s, their CPM data
were excluded from the analyses. Every participant who completed the CPM procedure
(n = 18) experienced the CPT as painful (all NRS ≥ 12, mean ± SD = 64 ± 21). The number
of participants recruited is lower than originally planned (40) due to COVID-19. The
general characteristics and the psychophysical, neurophysiological, and clinical measures
of the participants are summarized in Tables 1 and 2.

Table 1. Participants’ characteristics.

Variable

Number (n) 28
Gender (F/M) 14/14

Age (years)
Mean ± SD 69 ± 7

Range 57–82
Time since diagnosis (years)

Mean ± SD 5.5 ± 5.5
Kellgren-Lawrence score (%)

KL 2 4
KL 3 18
KL 4 78

SD: standard deviation.

Table 2. Psychophysical, neurophysiological, and clinical measures.

Psychophysical Variables Mean Standard Deviation n

CPM
Mean pain before CPT ( /100) 49.9 17.9 18
Mean pain after CPT ( /100) 47.0 17.5
Delta score 2.9 12.7

Temporal summation
120–30 s 14 25 18
Slopes 19 25

Neurophysiological variables

rMT (% of the stimulator’s maximum output) 51 8 23
MEP amplitude (µV) @

100% of rMT 127.60 69.47 16
105% of rMT 129.53 62.45 17
110% of rMT 135.57 71.26 23
120% of rMT 243.18 134.87 17
130% of rMT 243.81 150.95 22
140% of rMT 370.91 240.28 16
150% of rMT 377.00 256.92 20

Slope of the recruitment curves 5.38 4.91 22
CSP (ms) 183.4 48.2 16
Clinical symptoms
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Table 2. Cont.

Psychophysical Variables Mean Standard Deviation n

MPQ
28Global score ( /72) 21 13

Numerical rating scale ( /10) 4 3
BPI

28

Worst pain last 24 h ( /10) 6 2
Least pain last 24 h ( /10) 3 2
Pain on average ( /10) 5 2
Pain right now ( /10) 4 3
Incapacity ( /70) 29 14

WOMAC

28
Pain ( /500) 254 110
Stiffness ( /200) 117 50
Functional mobility ( /1 700) 860 369

CSI ( /100) 31 15 22
PCS ( /52) 14 12 28
TSK ( /68) 39 9 22
STAI

22State ( /80) 33 11
Trait ( /80) 35 10

BDI ( /39) 3 3 28
Pain unpleasantness (VAS) 3 3 22

Abbreviations: rMT; resting motor threshold, MEP; motor evoked potential, CSP; cortical silent period, CPM; con-
ditioned pain modulation, MPQ; McGill Pain Questionnaire, BPI; Brief Pain Inventory, WOMAC; Western Ontario
and McMaster Universities Osteoarthritis Index, CSI; Central Sensitization Inventory, PCS; Pain Catastrophizing
Scale, TSK; Tampa Scale of Kinesiophobia, STAI; Spielberger State-Trait Anxiety Inventory, BDI; Beck Depression
Inventory, and VAS; visual analog scale.

3.2. Correlation between CPM Responses and Corticomotor Excitability

Spearman analyses revealed the presence of a moderate and positive correlation
between CPM responses and MEP amplitude at 110% of the rMT (see Figure 2), as well as a
moderate and negative correlation between CPM and CSP (rs = −0.69, p = 0.03, and n = 16).
The slope of the recruitment curve was not correlated with CPM responses (p = 0.12).
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Figure 2. CPM responses were positively correlated with the MEP amplitude at 110% of the
rMT (rs = 0.67, p = 0.01, and n = 13).

3.3. Relationship between Inhibitory and Excitatory Pain Responses and Clinical Symptoms

Regarding the inhibitory pain responses, the results demonstrate a moderate correla-
tion between CPM magnitude and the PCS (rs = 0.59, p = 0.01), as well as between CPM
magnitude and the STAI (state) questionnaire (rs = 0.56, p = 0.03). No correlation was
observed between CPM responses and the results from the scales and subscales of the
MPQ (0.20 ≤ p ≤ 0.40), BPI (0.29 ≤ p ≤ 0.93), WOMAC (0.74 ≤ p ≤ 0.96), CSI (p = 0.10),
TSK (p = 0.66), STAI-Trait (p = 0.10), BDI (p = 0.15), as well as for the VAS reflecting pain
intensity (p = 0.23) and pain unpleasantness (p = 0.44).
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Temporal summation was moderately and positively correlated with the pain section
of the WOMAC. The correlations were the same for both of our metrics: delta score
(rs = 0.58, p = 0.01) and slope (rs = 0.58, p = 0.01). No correlation was observed between
temporal summation responses (for both metrics) and the results from the scales and
subscales of the MPQ (0.32 ≤ p ≤ 0.99), BPI (0.13 ≤ p ≤ 0.76), WOMAC (0.25 ≤ p ≤ 0.33),
CSI (0.28 ≤ p ≤ 0.41), PCS (0.11 ≤ p ≤ 0.29), TSK (0.56 ≤ p ≤ 0.66), STAI (0.66 ≤ p ≤ 0.91),
BDI (p = 0.41), as well as for the VAS score, reflecting pain intensity (0.33 ≤ p ≤ 0.54) and
pain unpleasantness (0.54 ≤ p ≤ 0.83).

3.4. Relationship between TMS Measures and Clinical Symptoms

The correlation coefficients depicting the relationship between TMS measures and clin-
ical symptoms are presented in Table 3. As can be seen from this table, pain catastrophizing
(PCS), minimal pain intensity (BPI), and the impact of pain on physical functioning (BPI)
were the measures that appear to be the most consistently correlated with MEP amplitudes.
No correlation was observed between the clinical symptoms and the rMT, the CSP, and
the slopes of the recruitment curves. Interestingly, statistical analysis revealed a positive
association between CSP and the KL score (rs = 0.53, p = 0.03, and n = 16).

Table 3. Correlations between MEP amplitudes at different TMS intensities and clinical questionnaires
scores (n = 23).

TMS Intensity
(% of rMT) 110 120

MPQ
Global score NS NS
Numerical rating scale rs = 0.50, p = 0.02 rs = 0.65, p < 0.01

BPI
Pain at its worst (last 24 h) rs = 0.54, p < 0.01 NS
Pain at its least (last 24 h) rs = 0.44, p = 0.04 rs = 0.50, p = 0.04
Pain interference (last 24 h) rs = 0.49, p = 0.02 NS
Pain on average rs = 0.55, p < 0.01 NS
Present pain rs = 0.51, p = 0.01 rs = 0.64, p < 0.01

WOMAC

NS
Pain rs = 0.45, p = 0.03
Stiffness NS
Functional mobility NS

CSI rs = 0.63, p < 0.01 NS
PCS rs = 0.43, p = 0.04 rs = 0.50, p = 0.04
TSK NS NS
STAI

NS NSState
Trai

BDI (short form) NS NS
Pain intensity * NS rs = 0.53, p = 0.03
Pain unpleasantness * NS NS

Abbreviation: MEP; motor evoked potential, TMS; transcranial magnetic stimulation, rMT; resting motor threshold,
MPQ; McGill Pain Questionnaire, BPI; Brief Pain Inventory, WOMAC; Western Ontario and McMaster Universities
Osteoarthritis Index, CSI; Central Sensitization Inventory, PCS; Pain Catastrophizing Scale, TSK; Tampa Scale
of Kinesiophobia, STAI; Spielberger State-Trait Anxiety Inventory, BDI; Beck Depression Inventory, VAS; visual
analog scale, NS; non-significant, and * measured with VAS.

4. Discussion

The objectives of the present study were to assess whether bulbospinal and corti-
cospinal projection measurements are interrelated in patients with knee OA, and to de-
termine if there are relationships between these neurophysiological measures, temporal
summation, and clinical symptoms of OA. Our results reveal that individuals with higher
corticomotor excitability indices (MEP amplitudes at 110% of rMT) were those with higher
CPM responses. We also observed a moderate and positive correlation between temporal
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summation and the pain section of the WOMAC, as well as between CPM responses and
both pain catastrophizing and anxiety.

4.1. Relationships between Corticospinal and Bulbospinal Projections

Previous studies showed that stimulation of the motor cortex can bring relief to a num-
ber of patients with chronic pain [46]. Stimulation of M1 modulates corticospinal excitability
and promotes the release of neurotransmitters (glutamate, acetylcholine, dopamine, and
noradrenaline), which can in turn influence cortical and subcortical regions involved in
pain perception and modulation [47–51], including the brainstem periaqueductal gray
matter [52].

The results of Granovsky et al. allow us to further our understanding of the interaction
that exists between pain and the motor system [13]. In their study, performed on healthy
participants, the authors observed the presence of a moderate relationship between corti-
cospinal excitability and CPM measures, suggesting possible links between corticospinal
and bulbospinal descending projections [13]. The results obtained in our study confirm
and extend the observations of Granovsky et al. by showing that increased corticospinal
excitability measures are also associated with more efficient CPM responses in individuals
suffering from knee OA pain.

4.2. Intracortical Inhibition

The cortical silent period is a TMS measure reflecting intracortical inhibition [21].
Contrary to MEP amplitude measures, which assess corticospinal pathways, CSP yields
information about intracortical inhibitory phenomena [21]. The presence of pain can affect
inhibitory (GABAergic) and excitatory (glutamatergic) neurotransmission and influence
CSP duration [21,53]. Our results demonstrate that CSP measures were negatively corre-
lated with CPM magnitude, indicating that individuals with longer intracortical inhibition
also have lower CPM effects. These observations are contrary to those of Tarrago et al., who
noted that patients with knee OA who showed greater intracortical disinhibition (shorter
CSP duration) had lower CPM responses [54]. This discordance between our study and that
of Tarrago et al. could be partly ascribed to the differences in TMS methodology. Indeed,
Tarrago and collaborators measured the CSP over the right first dorsal interosseous (hand
muscle) for all individuals, while we measured the CPS over the vastus lateralis (thigh
muscle) of the affected limb.

4.3. Psychological Symptoms

People with chronic diseases are more likely to report psychological symptoms com-
pared to people in good general health. Depression, pain catastrophizing, and anxiety
are prevalent in people with knee OA [55,56]. Despite the fact that the participants in our
study had mild psychological symptoms – with overall little heterogeneity – our results
reveal that those with higher levels of pain catastrophizing and anxiety had higher CPM
responses. To date, the scientific literature is divergent regarding the relationship between
psychological symptoms and CPM responses. While a number of studies failed to find
an association between levels of pain catastrophizing and CPM [57,58], others observed
a positive [59] or negative [60] association between these two variables. The study by
Nahman-Averbuch et al. helps to shed some light on these contradictory results by show-
ing that the relationship between these variables would be specific to the pain modality
used to evaluate CPM [61], suggesting that these distinct CPM assessment methods reflect
different neurophysiological mechanisms [62].

4.4. Temporal Summation

Previous studies showed that patients suffering from knee OA tend to show increased
temporal summation responses, compared to healthy (pain-free) individuals [9,14,63].
While these observations are interesting, they do not reflect the inter-individual variations
of temporal summation responses in the population with knee OA. Our results extend
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these observations by showing that the magnitude of the temporal summation varies
between individuals with knee OA and that these variations are positively correlated with
WOMAC pain measures. These results are consistent with the results of Kurien et al. and
of Neogi et al., who measured pain symptoms using the PainDETECT and the WOMAC,
respectively [63,64].

Interestingly, Petersen and colleagues observed that patients who had higher lev-
els of pain 12 months after total knee replacement were those who had higher temporal
summation responses before the surgery, suggesting that temporal summation may be a
good predictor of persistent pain [65]. In keeping with this idea, Yartnisky and colleagues
proposed a clinical spectrum, the “pain modulation profile”, where each individual can
be positioned between pronociceptive and antinociceptive, according to his/her tempo-
ral summation and CPM responses [66]. Individuals with higher temporal summation
and/or lower CPM responses (antinociception profile) would hence be more likely to
develop chronic pain. For patients with knee OA pain, this clinical spectrum could po-
tentially help better identify the individuals most likely to benefit from knee arthroplasty,
echoing the idea of personalized medicine that would tailor treatments to patients’ “pain
modulation profile”.

4.5. Clinical and Rehabilitation Perspectives

OA studies looking into the relationship between corticomotor excitability, pain, and
disability show divergent results [54,67,68]. In this study, patients reporting higher levels
of pain and disability tended to show higher MEP responses. The same was true for pain
catastrophizing, which is perhaps less surprising, considering what we know about this
psychological trait and its association with pain intensity and disability [55,69,70]. Taken
together, the results of the present study re-emphasize the potential central role of the
cortico-motor system in knee OA, highlighting not only the links between the motor system
and patient-reported symptoms (corticospinal excitability, pain, and disability), but also
those between cortico-cortical mechanisms (CSP) and joint alterations (KL radiographic
score), once again underlining the potential contribution of M1 maladaptive plasticity in
chronic pain [71–73].

4.6. Limits

This study has some limitations. First, although 28 patients were initially recruited,
less than half completed both TMS and CPM evaluation. These contingencies, combined
with the small number of participants recruited (smaller than initially anticipated, due to
the COVID pandemic), decrease statistical power and increase the risk of type II errors.
It is therefore possible that other associations could not be identified, reminding us that
non-significant correlations should be interpreted with caution. Other limitations concern
the fact that TMS experimentations were performed only on the quadricep muscle (vastus
lateralis) of the affected knee. Additional TMS measure (for instance, of a distant muscle or
of the contralateral “healthy” quadriceps muscle) would help to better circumscribe the
effects and determine whether the observed changes are widespread or localized to the
affected OA joint. However, adding other TMS measures would require much more time,
which we preferred to avoid, considering the already lengthy testing session.

We must also bear in mind that the present results apply only to the population studied.
At this stage, it might be interesting to determine whether these observations are similar for
all OA populations, or whether they are specific to knee OA patients. Although great care
must be taken to avoid erroneous generalizations, the results of Sánchez-Romero et al. [74],
who showed no difference between hip and knee OA patients for a series of hematological
markers, could suggest that the associations observed in this study could also extend to
other OA populations. Further studies, evaluating different OA patient populations, are
obviously required before any conclusions can be drawn.
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5. Conclusions

The current results reveal that there is a positive correlation in knee OA patients
between pain intensity and corticospinal excitability, as well as between pain intensity
and temporal summation. An association between corticospinal excitability and CPM
efficacy was also observed, indicating that patients with higher corticomotor excitability
tend to have higher CPM responses. These observations support the need for further
studies looking into interindividual variability to better understand OA pain symptoms
and apprehend the involvement of the CNS in the pathophysiology of knee OA.
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