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Abstract: Accumulating efforts have been made to investigate cognitive impairment in stroke patients,
but little has been focused on mild stroke. Research on the impact of mild stroke and different lesion
locations on cognitive impairment is still limited. To investigate the underlying mechanisms of
cognitive dysfunction in mild stroke at different lesion locations, electroencephalograms (EEGs) were
recorded in three groups (40 patients with cortical stroke (CS), 40 patients with subcortical stroke
(SS), and 40 healthy controls (HC)) during a visual oddball task. Power envelope connectivity (PEC)
was constructed based on EEG source signals, followed by graph theory analysis to quantitatively
assess functional brain network properties. A classification framework was further applied to explore
the feasibility of PEC in the identification of mild stroke. The results showed worse behavioral
performance in the patient groups, and PECs with significant differences among three groups showed
complex distribution patterns in frequency bands and the cortex. In the delta band, the global
efficiency was significantly higher in HC than in CS (p = 0.011), while local efficiency was significantly
increased in SS than in CS (p = 0.038). In the beta band, the small-worldness was significantly
increased in HC compared to CS (p = 0.004). Moreover, the satisfactory classification results (76.25%
in HC vs. CS, and 80.00% in HC vs. SS) validate the potential of PECs as a biomarker in the detection
of mild stroke. Our findings offer some new quantitative insights into the complex mechanisms of
cognitive impairment in mild stroke at different lesion locations, which may facilitate post-stroke
cognitive rehabilitation.

Keywords: EEG source localization; power envelope connectivity; graph theory; cognitive impairment;
mild stroke

1. Introduction

Stroke has become the leading cause of disability and death in China, with more than
2 million patients suffering from stroke each year [1]. Notably, cognitive impairments
are common after stroke, and their combined impact substantially increases the cost of
care and healthcare costs [2]. Consequently, a growing body of research investigates the
neural mechanisms and functional rehabilitation of cognitive dysfunction after stroke [3,4].
However, most studies to date have focused on moderate to severe stroke patients [5,6],
while patients with mild stroke have received less attention. According to the National
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Institutes of Health Stroke Scale (NIHSS), mild stroke is defined as NIHSS < 5 [7]. Cognitive
impairments, including executive function and attention, are found in mild stroke, although
the deficits are subtle in comparison to the more obvious symptoms of moderate to severe
stroke (e.g., hemiparesis and aphasia) [8]. Previous longitudinal studies demonstrated that
even in the chronic phase of mild stroke, cognitive dysfunction persists and affects the
daily life of mild stroke patients [9,10]. Given that mild stroke accounts for a significant
proportion of post-stroke patients [11], it is necessary to further explore the cognitive
impairments and the underlying mechanisms induced by mild stroke.

Cognitive dysfunction has been demonstrated to be related to lesion location [12].
However, there is limited and inconsistent evidence on the effect of different lesion locations
on cognitive impairment. For example, neuropsychological tests have shown that patients
with acute subcortical lesions have significantly worse cognitive function, including at-
tention and memory, than those with acute cortical lesions [13]. Clinically, it is generally
believed that cortical damage is more severe than subcortical damage, even though basal
ganglia strokes can affect the performance of any cognitive function [14]. However, a
comprehensive neuropsychological assessment, focusing specifically on executive and
attentional functions, found no significant differences between acute cortical and subcor-
tical stroke patients [15]. Of note, these studies did not include mild stroke. Mild stroke
patients often exhibit cognitive dysfunction, and the effect of lesion location on cognitive
deficits remains unclear. Therefore, extending the investigation to mild stroke and further
including patients with different lesion locations may help to understand the neurological
mechanisms of lesion location-dependent cognitive impairment in mild stroke patients.

Electroencephalogram (EEG), as a non-invasive neuroimaging technique, has been
widely employed to analyze the functional pathophysiology of brain disorders and neu-
romechanisms in cognition [16,17]. Essentially, the structural lesion caused by a focal
brain lesion has a profound impact on the topology of the entire functional brain network,
altering the connectivity of the lesion and remote regions from the lesion [18]. Recently,
EEG functional connectivity features were found to be associated with lesion location in a
study that focused on patients with different lesion locations [19]. Moreover, by assessing
resting-state EEG functional connectivity, Dubovik et al. found a unique correlation of
cognitive function with alpha-band functional connectivity in post-stroke patients [20].
Although EEG has advantages, such as high temporal resolution, good clinical practicality,
convenience, and low cost, there is a challenge that needs to be overcome. Specifically, the
issue of volume conduction can lead to confusion in determining whether scalp EEG chan-
nels are detecting unique or shared sources due to the attenuation and dispersion of neural
sources as they reach the scalp [21]. This limitation in spatial resolution can result in the
inaccurate determination of the location of the neural source. To overcome this challenge,
power envelope connectivity (PEC) was recently introduced, effectively mitigating the
impact of volume conduction and providing accurate estimates of the associated structure
of EEG spontaneous oscillatory activity [22]. PEC estimation uses orthogonalization to
remove signals with zero phase lag to reduce spurious correlations due to volume conduc-
tion [23]. It differs from connectivity measures based on coherence and phase, which rely
on correlations between the instantaneous amplitudes of oscillatory signals across regions
(called power envelopes). Notably, PEC has been used to delineate the connectomic profile
of disorders and identify disease subtypes with satisfactory results [23,24], demonstrating
the validity and reliability of this method in connectivity construction.

Graph theory analysis (GTA) has been applied to the analysis of functional brain
networks due to its ability to evaluate the topological properties of the network [25]. Graph
measures characterize local and global network properties, including the degree of local
connectedness of the network (e.g., clustering coefficient (CC) and local efficiency (Elocal))
and the ability to transmit information throughout the entire network (e.g., characteristic
path length (L) and global efficiency (Eglobal)) [25,26]. In addition, small-world networks
are characterized by high CC and small L, which measure the ability of the brain net-
works to process the flow of information both locally and globally [27]. By calculating
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the small-worldness (σ) of resting-state EEG signals, Caliandro and colleagues found that
network rearrangements in stroke patients were found in delta, theta, and alpha bands [18].
Additionally, a study focusing on the cognitive process in stroke patients showed longer
L and decreased CC in the mental rotation process, suggesting impaired segregation and
integration [28]. The study of the impact of focal damage on functional brain networks
using GTA not only reveals stroke-related changes from the local to the global scale [29,30]
but also promotes the investigation of topological changes and neural communication
during cognitive tasks [28]. Of note, it is widely accepted that executive control and at-
tention are the cognitive processes most commonly impaired in stroke patients [31], and
attention is critical for several cognitive functions, including visual selection and attentional
allocation [32]. Given that the visual oddball paradigm adopted in this work has widely
been used to investigate the mechanisms of attention and executive functions [33,34], and
that mild stroke is usually accompanied with cognitive deficits [35], we, therefore, hypothe-
size that cognitive impairment would be demonstrated through task performance and the
altered functional network topology of the brain. Furthermore, the effect of different lesion
locations on cognitive function remains unclear [14,15]. Thus, we propose a second hypoth-
esis that functional brain network structures differ in cortical and subcortical stroke patients
during cognitive processes. In addition, to explore the feasibility of PEC as a biomarker,
we further attempted to identify patients with mild stroke based on PEC characteristics.
In order to investigate the discriminative ability of PEC in a global manner (i.e., whether
satisfactory classification accuracy was achieved despite the different feature selection (FS)
methods and classifiers employed), several common FS methods and classifiers validated
in previous studies for brain disease classification were used in this study [36–38]. To this
end, EEG data were recorded during the visual oddball task in three groups (i.e., patients
with cortical stroke, patients with subcortical stroke, and healthy controls). Specifically,
to determine the effect of lesion location, we divided patients into two groups (a cortical
(CS) lesion group and a subcortical (SS) lesion group). Brain lesions assessed by computed
tomography (CT)/magnetic resonance imaging (MRI) were defined as CS if they involved
the frontal, temporal, parietal, and occipital lobes, and as SS if the lesions involved the
subcortical regions, including the internal capsule, basal ganglia, thalamus, and cerebellum.
We first constructed PEC based on the source-space EEG signals obtained by performing
source localization. Subsequently, changes in the functional brain network properties
were quantitatively assessed using GTA. A further exploratory classification analysis was
conducted on patients using PEC as a feature to explore the potential of PEC as a biomarker.

2. Materials and Methods
2.1. Participants

Forty CS patients and forty SS patients with mild stroke were recruited during annual
routine health check-ups at the Department of Neurology, Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine. Inclusion criteria for patients with mild stroke
included (1) age > 18 years, (2) diagnosed with mild stroke symptoms based on the NIHSS
with a score < 5), (3) no neurological or psychiatric comorbidity, (4) reported no visual im-
pairment, and (5) able to understand task instructions and perform the task independently.
Forty age- and sex-matched healthy controls (HCs) were recruited through advertisement
as a control group. All of the HCs reported having no history of psychiatric or neurological
conditions. All participants in the current study had a normal or corrected-to-normal vision
and were right handed. The specific forms of rehabilitation performed on the patients
recruited in the current work are listed in Table A1. Table 1 shows the characteristics of the
three groups. The experimental protocol was approved by the Institutional Review Boards
of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (protocol code
20200115-33, 15 January 2020). Each participant in the study provided written informed
consent according to the Declaration of Helsinki.
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Table 1. Characteristics of the healthy controls and the stroke patients.

HC (N = 40) CS (N = 40) SS (N = 40) p-Value

Gender (M/F) 15/25 22/18 22/18 0.195 a

Age (years) 62.58 ± 0.92 64.93 ± 1.73 62.20 ± 1.68 0.376 b

NIHSS - 1.74 ± 0.36 c 1.67 ± 0.27 d 0.377 e

Educational attainment (years) 6.83 ± 0.65 7.50 ± 0.69 6.83 ± 0.67 0.647 e

Time after stroke (days) - 72.05 ± 27.53 64.80 ± 39.14 0.379 f

Values are expressed as mean ± standard error of mean (SEM). a Chi-square test. b One-way ANOVA test.
c Missing data for 5 patients in the CS group. d Missing data for 4 patients in the SS group.e Kruskal–Wallis test.
f Mann–Whitney U test.

2.2. Experimental Paradigms

To investigate mild stroke-induced functional brain network changes in cognitive
processing, the visual oddball task, a previously validated paradigm involving executive
and attentional functions [33,34], was adopted in this study. Specifically, participants sat in
a soundproof room, facing a computer monitor. Figure 1 illustrates the visual oddball task
paradigm. The visual stimuli were presented through the software E-prime. Infrequent
target stimuli (white number 2) were presented randomly with frequent standard stimuli
(white number 8). The probabilities of target and standard stimuli were 20% and 80%,
respectively. The presentation of visual stimuli lasted for 50 ms. The inter-stimulus interval
(ISI) ranged from 800 to 1200 ms. In total, 500 visual stimuli were presented. The task took
approximately 9 min. Participants were required to respond by pressing the response button
(the leftmost button on the response pad) as soon as the target stimulus was presented.

2
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8
+

2

Target

Target

Standard

Standard

50 ms

800-1200 ms

50 ms

50 ms

50 ms

800-1200 ms

...

time
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Figure 1. Experimental paradigm of the visual oddball task.

2.3. EEG Recordings and Preprocessing

EEG signals were acquired during the task at a sampling rate of 1000 Hz according
to the international 10–20 system using a 60-channel NeuroScan SynAmps2 Amplifier.
Electrodes placed lateral to the external canthus and above/below the orbit of the left
eye were used to record horizontal and vertical electrooculogram (EOG) signals. In the
Quik-Cap supplied with the SynAmps2, the electrode placed between the CPZ and CZ was
used as the reference electrode. During data collection, the impedance of the electrodes
was kept below 5 kΩ, and a 50 Hz notch filter was employed to minimize interference. A
previously validated pre-processing procedure was employed [39]. Raw EEG signals were
downsampled to 256 Hz and bandpass filtered (1–40 Hz), and the average was re-referenced.
Bad epochs were then removed by visual inspection. The mean ± SEM numbers of rejected
epochs were 4.73 ± 1.55, 6.43 ± 1.68, and 8.90 ± 2.11 for the HC, CS, and SS groups,
respectively, with no significant group difference (F2,117 = 1.364, p = 0.260). Afterwards,
independent component analysis (ICA) was employed to eliminate artifacts resulting
from muscle activity, as well as ocular artifacts by removing components with strong
correlations to the EOG signals. The mean ± SEM numbers of rejected ICA components
were 6.05 ± 0.56 in the HC group, 4.45 ± 0.60 in the CS group, and 4.92 ± 0.43 in the
SS group, with no significant group difference (F2,117 = 2.368, p = 0.098). EEG data were
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then filtered into four canonical frequency bands: delta (1–4 Hz), theta (4–7 Hz), alpha
(8–12 Hz), and beta (13–30 Hz). Then, they were segmented into [−100, 500] ms, with 0 ms
indicating the target stimulus onset. Baseline correction was performed using [−100, 0]
ms data. The preprocessing of the EEG data was carried out with custom scripts and the
EEGLAB toolbox [40] in MATLAB 2021a (The MathWorks Inc., Natick, MA, USA).

2.4. Source-Space PEC Calculation

In order to delineate the functional brain network topology during cognitive process-
ing and investigate the potential of functional connectivity as a feature for the identification
of mild stroke, the source-space PEC of EEG signals was estimated. Figure 2 illustrates the
overall framework of PEC construction.

Figure 2. A framework for source-space PEC estimation. EEG source localization was implemented
using weighted minimum norm estimation (wMNE) to transform sensor space EEG signals into
source-space signals. The power envelope of each vertex was computed from the analytic signal
derived from the Hilbert transform and orthogonalized for all the other vertices. The PEC was
calculated as Pearson’s correlation coefficient between the power envelopes of each vertex pair. To
extract ROI-level PEC values, 68 cortical regions were selected based on Desikan–Killiany atlas
segmentation, and PEC values were averaged across all corresponding vertex pairs in these regions.

2.4.1. EEG Source Reconstruction

To minimize the influence of volume conduction, the source imaging approach was
applied to transform the EEG signals into source-space signals [41]. In this study, source
reconstruction was carried out according to [24]. Briefly, the three-layer head model was
obtained based on the standard anatomical template ICBM152 [42]. The lead-field matrix
was calculated using the boundary element method (BEM) [43] with the OpenMEEG
plugin from BrainStorm toolbox [44]. The weighted minimum norm estimate (wMNE) was
employed to estimate the free-oriented (3 orthogonal components for each dipole) source
activities, and the regularization parameter was set to δ = 1/100. Then the Euclidean norm
of three-dimension source signals at each dipole was calculated to obtain the one-dimension
time series for the following analysis.

2.4.2. EEG Functional Connectivity Measurement

A Hilbert transform was utilized to generate the source-space analytical time series
for each frequency band [23]. To eliminate spurious correlations introduced by limited
spatial resolution, the analytical signal of each vertex was orthogonalized to that of all
other vertices, followed by the calculation of their power envelopes [22]. In particular, at
the sampling point t, the orthogonal component of the analytic signal Y(t) relative to the
analytic signal X(t) was defined as

Y⊥(t) = imag
(

Y(t)
X(t)∗

|X(t)|

)
, (1)

with X(t)∗ being the conjugate of X(t). To eliminate zero-phase lag signals, the orthogonal
components of each signal pair were obtained after orthogonalization. The power envelopes
were then calculated by squaring the orthogonalized analytical signals and applying a
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logarithmic transformation to improve the normality of the power statistics [22]. Pearson’s
correlation coefficient was used to estimate the PEC at each vertex pair, which was further
extracted in 68 regions of interest (ROI) defined according to the Desikan–Killiany (DK) atlas
parcellation [45]. For each pair of regions, PEC values were averaged across all possible
vertex pairs. Thus, the number of unique regional pairwise connectivity features was
68× (68− 1)/2 = 2278 for each frequency band. Estimation of the PEC was implemented
with custom scripts written in MATLAB 2021a.

2.5. Network Analysis

To explore the impact of different lesion locations on functional brain networks, a GTA
was employed to quantitatively estimate the network properties. Notably, weak and non-
significant connections in a brain network may indicate that there are spurious connections
present, which can potentially mask the topology of strong and significant connections [26].
Prior to the following GTA, to retain significant interactions, the widely used thresholding
method was adopted, defining the threshold as the top 10% connections [46–48]. Therefore,
the original PEC matrix was transformed into a binary connectivity matrix. The current
work estimated five well-established graph metrics (i.e., CC, L, σ, Eglobal , and Elocal). A net-
work is defined as G, containing N nodes (N = 68 in the current work), and CC is a
measure of the number of triangles in the graph, which quantifies how well individual
nodes are embedded in their local neighborhood. To evaluate the functional segregation of
the network, a global measure called CC was computed as follows:

CC =
1
N ∑

k∈G

1
NGk

(
NGk − 1

) ∑
i,j∈Gk

aijaikajk, (2)

where aij means the edge value between node i and j. L quantifies the network’s overall
routing efficiency, which is a global measure of network functional integration, calculated
as follows:

L =
1

N(N − 1) ∑
i 6=j∈G

Li,j, (3)

where Li,j indicates the shortest distance between node i and j. Small-worldness σ is a
measure for quantitatively evaluating small-world properties, which is defined as

σ =
CC/CCrand

L/Lrand
, (4)

where CCrand and Lrand indicate the mean CC and mean L derived from 100 matched
random networks, which are obtained by randomly reshuffling the edge while preserving
the degree distribution and connectedness.

Since the small-world topology, characterized by higher CC compared to the random
network and higher or similar L compared to the random network, is deemed to be optimal
for the synchronization of neural activity between different brain regions [49], Eglobal and
Elocal were evaluated to give a direct and explicit physical interpretation for the notion of
small-world properties from an information flow perspective. Specifically, Eglobal quantifies
the overall efficiency of the parallel information exchange throughout the entire network,
which is inversely proportional to the L. Eglobal is computed as

Eglobal =
1

N(N − 1) ∑
i 6=j∈G

1
Li,j

. (5)

Elocal assesses the average efficiency of information transfer within subgraphs, calcu-
lated as

Elocal =
1
N ∑

i∈G
Eglobal(Gi), (6)
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where Eglobal(Gi) denotes the global efficiency of the subgraph Gi, which is composed of
the neighbors of the node i. The GTA in the current study was assessed by means of the
Brain Connectivity Toolbox (BCT) [26] in MATLAB 2021a.

2.6. Feature Selection and Classifier

In order to further explore the feasibility of using PECs as features for the identifi-
cation of mild stroke, a data-driven analysis was performed in this work. Different from
hypothesis-driven statistical comparison methods, a classification framework based on
data-driven analysis can eliminate the family-wise error rate, which often occurs in mass
univariate analysis [50]. Data-driven analysis was performed for the classification of HC
and CS, and HC and SS, respectively. Specifically, to explore the feasibility of PEC as a
feature for identifying mild stroke from a more universal perspective, several widely used
feature selection (FS) methods and classifiers were used in this work. The FS methods
include correlation coefficients (Corr), the Fisher score algorithm (Fisher), relief, and least
angle regression (LARS). The classifiers include the logistic regression model (LR), Ad-
aBoost (Boost), decision tree (Tree), and random forest (RF). The selected FS methods and
classifiers were validated in previous studies using functional connectivity as features for
brain disease classification [36–38]. For those interested in the detailed description of the
methods and classifiers, several recent reviews are available [51,52]. To evaluate the classifi-
cation performance, leave-one (subject)-out cross validation (LOOCV) was employed in
this study. In each iteration, all subjects were randomly assigned to either a training set or
a test set, while the FS procedure was performed only on the training data, without using
information from the test set, to avoid introducing bias. The training data set was used to
build the model, while the accuracy was estimated on the test set [53]. The classification
framework is shown in Algorithm 1.

Algorithm 1 Classification framework.
Input:

PEC features: PEC ∈ RN×F

Subject Index: Subject ∈ RN , Subjecti ∈ {1, 2, ...N}
Labels of health/patient: Label ∈ RN , Labeli ∈ {1, 2}

Output:
Classification accuracy: ACCCV
The selected features: OptimalFeatures

Begin:
FeatureIndex = ∅
for Subjecti = 1 : N do

PECtest = PECSubjecti

PECtrain = PEC− PECtest
rank = FS(PECtrain, Label)
for j = 1 : F do

selected = rank(1 : j)
Dtrain = PECtrain(:, selected)
Dtest = PECtest(:, selected)
model = train(Dtrain, Label)
acc(Subjecti, j) = classi f y(model, Dtest, Label)
FeatureIndex(Subjecti, j) = selected

end for
end for
ACCCV = mean(acc, 1) ∈ R1×F

Optimal number of features: K = argmax(ACCCV)
Optimal feature sets: Fsets = FeatureIndex(:, K)
Rank features by occurrence rate:

ranko = f requency(Fsets)
Get index of K optimal features:

f Idx = Fsets(ranko(1 : K))
OptimalFeatures = FC(:, f Idx)

End



Brain Sci. 2023, 13, 1143 8 of 20

2.7. Statistical Analysis

Prior to the statistical analysis, the normality of all variables was evaluated by means of
the Shapiro–Wilk test. This was followed by an estimation of homogeneity using Levene’s
test. In the following analysis, parametric or non-parametric statistical methods were
employed depending on the normality results. The statistical differences in the behavioral
performance among the three groups were analyzed utilizing the Kruskal–Wallis test. To
further compare these behavioral measures between groups, multiple comparison post hoc
analysis with Bonferroni correction was performed. One-way ANOVA was employed to
analyze the difference in the PECs across the three groups in each frequency band. The
post hoc analysis was performed by the Bonferroni method in multiple comparisons of
PECs between each two groups, and all p-values were multiple corrected. To reveal the
differences in network metrics (i.e., CC, L, σ, Eglobal , and Elocal), the Kruskal–Wallis test was
applied. Then the Bonferroni post hoc test was utilized to identify specific differences. In
this study, the statistical significance level was set to less than 0.05 (p < 0.05). Statistical
analysis was executed with the use of SPSS 26 software (IBM, New York, NY, USA).

3. Results
3.1. Visual Task Results

The statistical comparison of behavioral performance, including the response accuracy
(RA) and reaction time (RT), among the three groups is shown in Table 2. The relatively
high RA in both patient groups showed that all patient participants had sufficient initiative
and motivation (mean RA > 0.97 in the two patient groups), though the task adopted in this
work was relatively simple. The main group effect was revealed in both RT (H = 28.342,
p < 0.001) and RA (H = 16.081, p < 0.001) in the visual oddball task. Further multiple
comparison tests showed that the RT of the HC group was significantly shorter than that of
the CS (p = 0.006) and SS (p < 0.001) groups. Meanwhile, RA was significantly higher in
the HC group compared with the CS (p = 0.010) and SS (p < 0.001) groups. After multiple
comparison analysis, no significant difference was observed in the behavioral metrics
between the two groups of patients. Considerably worse behavioral performance in both
groups of patients may indicate impaired cognitive function involving visual information
processing in mild stroke patients.

Table 2. Statistical comparison of visual oddball behavioral results using the Kruskal–Wallis test.

HC CS SS
H-Value p-Value

Multiple Comparison Test (p-Value a)

Mean ± SD Mean ± SD Mean ± SD HC/CS HC/SS CS/SS

RT 316.754 ± 37.880 366.390 ± 82.805 388.662 ± 76.989 28.342 <0.001 0.006 <0.001 0.087
RA 0.993 ± 0.009 0.976 ± 0.037 0.974 ± 0.034 16.081 <0.001 0.010 <0.001 1.000

RT means reaction time, RA means response accuracy. H is the test statistic for the Kruskal–Wallis test. a means
p-value corrected by Bonferroni. A p value in bold represents the difference is statistically significant (p < 0.05).

3.2. Differences in EEG Functional Connectivity

To visualize the comparison of PEC characteristics across the three groups, Figure 3
depicts the PEC difference matrices between each of the two groups in each frequency
band. Figure 4 shows the distribution of PECs with statistically significant differences
among the three groups, which were assessed by one-way ANOVA. Of note, to obtain a
clearer distribution of PEC in the specific brain regions, in the presentation of the statistical
results, the parcels were grouped into seven different ROIs, including frontal, temporal,
parietal, occipital, posterior cingulate cortex (PCC), anterior cingulate cortex (ACC), and
insula [45,54] (Figure 4c). As shown in Figure 4, among the three groups, statistically
significant PEC differences occurred mainly in the delta, theta, and alpha frequency bands,
with the least distribution in the beta band (visualization of the patterns of connectivity
differences among the three groups on the brain is shown in Figure 4b). Specifically, in
the delta band, most PECs with significant differences occurred in the frontal cortex. In
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the theta band, the PECs with significant differences were mainly from the frontoparietal
and temporal–occipital regions. In addition, the most frequently occurring PEC differences
in the alpha band were located in the frontal–temporal area. In the beta frequency band,
although the number of significant PEC differences was the least, they were mainly dis-
tributed in the frontal area. Complex distribution patterns in the frequency band and cortex
were observed in PECs with significant differences among the three groups, indicating
intricate topological changes induced by mild stroke with different lesion locations during
cognitive processing.

Figure 3. PEC differences between each two groups. The PEC difference was defined as the difference
between the mean PEC values of the two groups. Top panel: differences between the HC and CS
groups. Middle panel: differences between the HC and SS groups. Bottom panel: differences between
the CS and SS groups.

3.3. Analysis of Networks Metrics

Table 3 presents the statistical results of the network metrics in four frequency bands.
Significant main effects of group were found in the delta and beta bands. Specifically, in
the delta frequency band, significant differences in network topological metrics, including
CC (H = 6.839, p = 0.033), Eglobal (H = 8.481, p = 0.014), and Elocal (H = 6.802, p = 0.033),
were observed among the three groups. In the beta band, σ showed a significant difference
among the three groups (H = 10.313, p = 0.006). Figure 5 showed further post hoc statistical
results for the network metrics in the delta and beta bands. As illustrated in Figure 5a,
the analysis revealed a marginally significant effect of CC between the two patient groups
(p = 0.054), with slightly higher values in the SS group. In terms of efficiency metrics, Eglobal
was significantly higher in the HC group in comparison with the CS group (p = 0.011),
while Elocal of the CS group was significantly lower than that of the SS group (p = 0.038).
The post hoc statistical results of the beta band are shown in Figure 5b; the σ of the HC
group increased significantly compared with the CS group (p = 0.004).
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Figure 4. (a) Spatial and spectral distribution of significantly different PECs among the three groups
(assessed by one-way ANOVA, and Bonferroni corrected). PECs with significant differences (p < 0.05)
are highlighted in red. According to [45,54], the 68 ROIs were further grouped into 7 ROIs to obtain a
clearer distribution of PEC in specific brain regions. L, left; R, right. (b) Topographies of significantly
different PEC patterns in the brain. (c) Illustration of the grouped 7 ROIs (frontal, temporal, parietal,
occipital, posterior cingulate cortex (PCC), anterior cingulate cortex (ACC), and insula).
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Figure 5. Post hoc statistical analysis of global metrics in the (a) delta and (b) beta frequency bands.
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p value in bold represents that the difference is statistically significant (p < 0.05).
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Table 3. Kruskal–Wallis test results for network metrics.

Delta Theta Alpha Beta

H-Value p-Value H-Value p-Value H-Value p-Value H-Value p-Value

CC 6.839 0.033 0.235 0.889 3.019 0.221 5.222 0.073
L 3.862 0.145 0.726 0.696 0.199 0.905 0.487 0.784
σ 4.950 0.084 0.505 0.777 0.824 0.662 10.313 0.006

Eglobal 8.481 0.014 1.639 0.441 4.544 0.103 1.952 0.377
Elocal 6.802 0.033 0.565 0.754 3.344 0.188 4.987 0.083

H is the test statistic for the Kruskal–Wallis test. A p value in bold represents that the difference is statistically
significant (p < 0.05).

3.4. Classification Performance

The classification results obtained from various combination of feature selection meth-
ods and classifiers are presented in Table 4 and in Table A2. SEM was calculated from the
accuracy of each iteration of LOOCV, reflecting the precision of the classification accuracy
obtained by LOOCV. The highest classification accuracy (76.25%; sensitivity = 78.38%,
specificity = 74.42%, Figure 6a) in discriminating HC and CS was achieved by the combi-
nation of LARS and Boost. On the other hand, the best classification performance of HC
and SS was obtained by the combination of Relief and Tree, with an accuracy of 80.00%
(sensitivity = 83.33%, specificity = 77.27%, Figure 6b). Notably, the optimal number of
features for HC and CS classification was 9, while that for HC and SS classification was
757. The selected PEC features are illustrated in Figure A1. Additionally, the classification
results of CS and SS groups are further provided in Table A3.

Table 4. Classification results of various combinations of FS methods and classifiers.

Classifiers
HC vs. CS (ACC ± SEM (%)) HC vs. SS (ACC ± SEM (%))

Corr Fisher Relief LARS Corr Fisher Relief LARS

LR 66.25 ± 5.32 67.50 ± 5.27 65.00 ± 5.37 71.25 ± 5.09 65.00 ± 5.37 65.00 ± 5.37 46.25 ± 5.61 55.00 ± 5.60
Boost 63.75 ± 5.41 63.75 ± 5.41 68.75 ± 5.21 76.25 ± 4.79 70.00 ± 5.16 70.00 ± 5.16 51.25 ± 5.62 60.00 ± 5.51
Tree 60.00 ± 5.51 60.00 ± 5.51 61.25 ± 5.21 65.00 ± 4.79 63.75 ± 5.41 63.75 ± 5.41 80.00 ± 4.50 58.75 ± 5.54
RF 57.50 ± 5.56 58.75 ± 5.54 63.75 ± 5.41 70.00 ± 5.16 55.00 ± 5.60 55.00 ± 5.60 53.75 ± 5.61 57.50 ± 5.56

The highest classification accuracy is indicated by the bold font.
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Figure 6. Confusion matrix for best classification performance. (a) Confusion matrix for HC and CS
classification in the combination of LARS and Boost. (b) Confusion matrix for HC and SS classification
in the combination of Relief and Tree.

4. Discussion

To investigate the influence of mild stroke and lesion location on cognitive function,
we assessed task performance as well as the functional brain network characteristics during
the visual oddball task. Firstly, we found that behavioral performance was significantly
worse in both patient groups. Secondly, PEC patterns across the three groups presented
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complex brain distribution in each frequency band. Moreover, the reorganization of brain
networks was shown in the patient groups, which was reflected in altered information
transfer efficiency and reduced small-worldness. Thirdly, the effectiveness of PEC features
in classifying mild strokes was demonstrated by further classification analysis. These results
are largely consistent with our hypothesis. This is described in more detail as follows.

4.1. Worse Task Performance in Patient Groups

As expected, there was a significant decline in task performance in the two patient
groups as indicated by the longer RT and lower RA. RT is a measure of information
processing speed; a longer RT indicates a delay in the target visual stimuli detection, which
was common in stroke patients [55,56]. Meanwhile, a significant reduction in RA was shown
in stroke patients in previous studies [56,57]. For instance, Hsu and colleagues recruited
patients with putamen and thalamic stroke to perform a visual oddball task to investigate
working memory function; significantly worse behavioral performance indicated deficits in
visual information processing in stroke patients [57]. RA was relatively high in both patient
groups, reflecting, to some extent, the relatively simple task design, which may explain
the lack of significant behavioral differences between the two groups. Nonetheless, our
findings extend the results of the prior research to mild stroke, which may further support
the idea that localized brain damage is strongly associated with behavioral deficits caused
by stroke [58,59].

4.2. Complex Functional Connectivity Distribution

The delta frequency band is closely associated with signal detection and decision-
making functions [60,61], whereas the visual oddball task requires participants to focus on
detecting target stimuli and making a decision. The altered EEG functional connectivity
in the delta frequency band may reflect differences in cognitive function, including signal
detection and decision making, between stroke patients and healthy controls. Similarly,
frequency-specific altered functional connectivity pairs were found in a previous study,
with stroke patients showing significantly reduced frontoparietal connectivity during a
visual oddball task [56]. Furthermore, it should be noted that the frontal cortex plays a key
role in attentional function [62], whereas frontal delta activity is related to visual percep-
tion [63]. Therefore, the predominant distribution of significant functional connectivity
differences located in the frontal region may further suggest altered cognitive functions
in the patient groups. Theta oscillation has primarily been reported to be associated with
attentional control processes [64], a critical cognitive function during performing the visual
oddball task. In addition, the frontoparietal network has been shown to be involved in
cognitive performance [65], which is supported by studies of brain lesions and the analy-
sis of cognitive data from healthy controls using various neuroimaging methods [66,67].
Given that cognitive performance can be reflected in behavioral performance, significant
differences in task performance among groups may help to explain the main connectivity
differences that came from the frontoparietal regions. Meanwhile, the important role of
temporal–occipital regions in visual object recognition suggest that cognitive abilities re-
lated to the processing of visual information differ between healthy and stroke patients [68].
Alpha band coherence measures conscious processes and provides a state of readiness to
engage in cognitive activity [69,70]. This is corroborated by studies showing that abnormal
alpha coherence is linked to neurological dysfunction, particularly in stroke patients [71].
As frontotemporal areas are involved in inhibition and executive functions [72], the signifi-
cantly different alpha band connectivity distributions can be interpreted as differences in
cognitive executive function between stroke patients and healthy participants. In addition,
frontal beta-band oscillations were shown to be associated with top-down control mech-
anisms [73], whereas during the visual oddball task, the top-down control involved was
attentional control under internal guidance [74]. Significant differences in PECs located
in the frontal regions of the beta band suggest differences in attentional function between
healthy controls and stroke patients.
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4.3. Topological Alterations of Brain Network

Efficient neural communication within brain networks is essential for brain function [75].
Functional networks in the human brain typically have high degrees of segregation and
integration, promoting local and global information processing efficiency [76]. Specifically,
global efficiency, which reflects the efficiency with which brain-wide networks transmit
information, is related to cognitive performance and cognitive dysfunction in patients with
cerebral small vessel disease [30,77]. Consistent with previous functional brain network
studies in post-stroke patients [78,79], a significant reduction in global information flow
efficiency was shown in cortical stroke patients. Furthermore, the significant differences in
network efficiency metrics were only found in the delta band, which has repeatedly been
shown to be linked to signal detection and decision-making functions and to be important
for large-scale cortical integration [60,61,80]. We, therefore, speculate that patients with
cortical stroke have deficits in cortical integration and impairments in information process-
ing efficiency for target detection and decision making. Notably, patients with cortical and
subcortical strokes showed a significant difference in local efficiency. As a measure of func-
tional segregation, local efficiency represents specialized processing in groups of densely
interconnected regions of the brain [26]. The results suggest that cognitive dysfunction in
patients with cortical stroke may be related to decreased connection density in specialized
networks involved in cognition. However, the studies investigating the impact of different
lesion locations on cognitive function are still limited and inconsistent. By definition, σ
evaluates the balance between the global integration and the local processing of a network,
reflecting the optimal network structure associated with rapid synchronization and informa-
tion transfer [81]. In comparison with healthy controls, rearrangement of the brain network,
which is reflected in the reduction in σ, has been found in stroke patients [18,82]. Given
that beta-band oscillations are associated with executive function, our findings suggest the
reduced efficiency of neural processing during task performance in patients with cortical
stroke. Overall, the disruption of global information transmission in patients with cortical
stroke indicates that cognitive function was impaired in visual information processing.
Meanwhile, although all patients had mild stroke symptoms, cognitive impairment may be
more severe in patients with cortical lesions, as local efficiency and small-worldness were
significantly reduced in cortical stroke patients compared with subcortical stroke patients
and healthy controls, respectively. Our findings provide new evidence for differences in
cognitive function between patients with different lesion locations, from the perspective of
alterations in functional brain network architectures.

4.4. Classification Performance

The feasibility of PECs as features for identifying mild stroke was validated by satis-
factory classification performance for classifying HC and CS, and HC and SS, respectively.
Notably, patients with moderate to severe stroke were the main focus of previous studies
on differentiating stroke patients [83–85]. For instance, based on the machine-learning
approach, Rahma et al. and Hussain et al. achieved classification accuracies of 72% and
85% by using EEG spectral metrics (i.e., power spectral density (PSD)-related metrics) as
features, respectively [83,85]. Additionally, different from prior classification studies of
resting-state EEG signals using commonly univariate EEG PSD features [83,84,86], the cur-
rent work employed multivariate PECs estimated during cognitive tasks as features. In fact,
EEG functional connectivity features are suitable for detecting hidden layers of cognitive
functional reorganization in the brain, which are able to achieve high classification per-
formance [87,88]. Furthermore, although traditional scales, including the NIHSS, Barthel
Index and modified Rankin Scale, are widely used to detect stroke [89], these scales have
limited utility in the assessment of cognitive domains and have limited ability to detect
small changes in functional status [90,91]. Given that the patients recruited in this study
all had mild stroke symptoms and the classification methods adopted were all traditional
and universal, the comparable classification performance (accuracy of 76.25% in classifying
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HC and CS, 80% in classifying HC and SS) further suggests that PECs have potential as
biomarkers in identifying patients with mild stroke.

4.5. Limitations

In this paper, there are some issues that need to be considered when interpreting our
results. First, although we considered different lesion locations (i.e., cortical and subcortical
stroke), the inherent heterogeneous characteristics of the lesioned hemisphere may hinder
us from drawing clear conclusions. Additionally, the significantly larger number of features
than the sample size would introduce overfitting and limit the generalization ability of
the classification model. Therefore, future studies with larger sample sizes, including
patients with different lesion hemispheres and locations, should be considered. Second,
the cognitive task used in the current work was relatively simple in order to maintain task
cooperation and motivation in older subjects, which also limited the types of cognitive
functions that could be assessed. More and relatively complex cognitive tasks could be used
in future studies to obtain more information about other cognitive functions (e.g., working
memory, spatial processing, and visuoconstruction). Third, although the classification in the
current work was an exploratory analysis to investigate the feasibility of PEC as a feature
to identify mild strokes, future studies could further focus on using functional connectivity
as input to distinguish mild strokes at different lesion locations. Specifically, from the
perspective of input features, directed functional connectivity can be considered due to the
advantage of investigating the causal influence of one brain region on another [92]. Recently,
a study of Granger causality analysis in patients with subacute stroke showed that changes
in effective connectivity between the bilateral hippocampus and cingulate gyrus were
associated with cognitive function after stroke [93]. Furthermore, the feasibility of effective
connectivity in stroke clinical prognosis prediction was demonstrated [94]. Therefore, we
speculate that directed functional connectivity may perform well in mild stroke detection,
providing not only connectivity changes but also the direction of information flow between
brain regions. From the perspective of classifiers, deep learning methods and fusion
methods of features or decisions would be an optional promising approach to improve the
classification performance [95,96].

5. Conclusions

This work aims to explore the impact of mild stroke (i.e., cortical and subcortical lesion)
on cognitive function during cognitive processing, utilizing the EEG source connectivity
method. The significantly worse cognitive performance demonstrates impaired cognitive
function in visual information processing in mild stroke patients. In addition, PEC with
significant differences among the three groups presents complex distribution patterns in the
frequency band and brain region, indicating intricate brain network topology alterations
induced by different lesion locations. Reduced global efficiency and small-worldness imply
deficits in the efficiency of information transfer during cognitive processing in cortical
stroke patients. Meanwhile, significantly decreased local efficiency suggests that impaired
cognitive function may be more severe in subcortical stroke patients as compared to those
with cortical stroke. The classification results demonstrate the feasibility of PECs as features
in the classification of mild stroke. To conclude, the findings obtained provide preliminary
insights into the neural mechanisms related to impaired cognitive function in patients
with mild stroke at different lesion locations, which may help to further explore cognitive
rehabilitation in mild stroke.
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Appendix A

Appendix A.1. Supplementary Materials for Patients with Mild Stroke

Table A1 lists the specific forms of rehabilitation performed on the patients recruited
in the current work.

Table A1. The specific form of rehabilitation employed by the patients recruited in the current work.

Rehabilitation Form Number of Patients

Medication 60
Medication; Acupuncture treatment 2

Medication; Exercise therapy 1
Medication; Acupuncture treatment; Exercise therapy; Occupational therapy 6

Medication; Cerebral angiography 2
Note: Missing data for 9 patients.

Appendix A.2. Supplementary Classification Results

In Table A2, we provide additional information on the sensitivity and specificity of
the classification results presented in Table 4. In Figure A1, we provide the distribution
of the selected PEC features in the classification of the HC and CS groups, and the HC
and SS groups, respectively. Notably, the number of selected features in the HC and CS
classification is relatively small. Since LARS solves an L1-norm constrained problem,
it inherently produces sparse results, selecting only a few features most relevant to the
classification task [97], which may explain the relatively few features selected in the HC
and CS group classification.

Table A2. The sensitivity and specificity of classification results for various combinations of FS
methods and classifiers.

Classifiers
HC vs. CS (ACC (Sensitivity/Specificity) (%)) HC vs. SS (ACC (Sensitivity/Specificity) (%))

Corr Fisher Relief LARS Corr Fisher Relief LARS

LR 66.25
(66.67/65.85)

67.50
(68.42/66.67)

65.00
(63.64/66.67)

71.25
(71.79/70.73)

65.00
(66.67/63.64)

65.00
(66.67/63.64)

46.25
(46.34/46.15)

55.00
(55.26/54.76)

Boost 63.75
(62.79/64.86)

63.75
(62.79/64.86)

68.75
(67.44/70.27)

76.25
(78.38/74.42)

70.00
(68.18/72.22)

70.00
(68.18/72.20)

51.25
(52.17/50.88)

60.00
(60.00/60.00)

Tree 60.00
(59.52/60.53)

60.00
(60.00/60.00)

61.25
(61.54/60.98)

65.00
(64.29/65.79)

63.75
(64.10/63.41)

63.75
(64.10/63.41)

80.00
(83.33/77.27)

58.75
(58.54/58.97)

RF 57.50
(57.89/57.14)

58.75
(58.97/58.54)

63.75
(64.10/63.41)

70.00
(68.18/72.22)

55.00
(55.00/55.00)

55.00
(55.00/55.00)

53.75
(54.55/53.19)

57.50
(60.00/56.00)

The highest classification accuracy is indicated by the bold font.
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Figure A1. Distribution of selected PEC features in each frequency band. (a) Selected features in the
classification of HC and CS groups, and (b) selected features in the classification of HC and SS groups.

Appendix A.3. Classification Results for CS and SS Groups

In Table A3, the classification results between the two patient groups (i.e., CS and SS
groups) are shown. The combination of Tree and Corr and Tree and Fisher achieved the
highest accuracy of 76.25% (sensitivity = 73.33%, specificity = 80.00%).

Table A3. Classification results for CS and SS groups.

Classifiers
ACC (Sensitivity/Specificity) (%)

Corr Fisher Relief LARS

LR 67.50 (67.50/67.50) 67.50 (67.50/67.50) 62.50 (62.50/62.50) 55.00 (55.56/54.55)
Boost 63.75 (64.86/62.79) 63.75 (64.86/62.79) 63.75 (64.10/63.41) 63.75 (64.86/62.79)
Tree 76.25 (73.33/80.00) 76.25 (73.33/80.00) 63.75 (62.22/65.71) 65.00 (64.29/65.79)
RF 67.50 (66.67/68.42) 67.50 (66.67/68.42) 58.75 (58.97/58.54) 57.50 (57.50/57.50)

The highest classification accuracy is indicated by the bold font.

Appendix A.4. 3-Class Classification

We additionally performed a 3-class classification. The previously validated linear
support vector machine recursive feature elimination (SVM-RFE) with correlation bias
reduction (CBR) was used to filter out redundant and irrelevant PEC features from the
original feature dataset and to minimize classification bias due to overfitting [98]. K-nearest
neighbors (KNN) was used as the classifier. A classification accuracy of 55% was achieved
by the combination of SVM-RFE and KNN, which is above the chance level. The parameter
C in SVM training was set to 0.1, and the selected features were 521 PECs.
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