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Abstract: Alzheimer’s disease (AD) is a progressive chronic illness that leads to cognitive decline
and dementia. Neuroimaging technologies, such as functional magnetic resonance imaging (fMRI),
and deep learning approaches offer promising avenues for AD classification. In this study, we
investigate the use of fMRI-based functional connectivity (FC) measures, including the Pearson
correlation coefficient (PCC), maximal information coefficient (MIC), and extended maximal infor-
mation coefficient (eMIC), combined with extreme learning machines (ELM) for AD classification.
Our findings demonstrate that employing non-linear techniques, such as MIC and eMIC, as features
for classification yields accurate results. Specifically, eMIC-based features achieve a high accuracy
of 94% for classifying cognitively normal (CN) and mild cognitive impairment (MCI) individuals,
outperforming PCC (81%) and MIC (85%). For MCI and AD classification, MIC achieves higher
accuracy (81%) compared to PCC (58%) and eMIC (78%). In CN and AD classification, eMIC exhibits
the best accuracy of 95% compared to MIC (90%) and PCC (87%). These results underscore the
effectiveness of fMRI-based features derived from non-linear techniques in accurately differentiating
AD and MCI individuals from CN individuals, emphasizing the potential of neuroimaging and
machine learning methods for improving AD diagnosis and classification.

Keywords: functional connectivity; fMRI; alzheimer’s disease; pearson correlation; maximal
information coefficient; machine learning; deep learning; extreme learning machine

1. Introduction

One of the most commonly reported causes of dementia in the elderly is AD, which is
a chronic, irreversible neurological disease [1]. It is a degenerative, inevitable, progressive
neurological disorder and complex disease that continually damages brain cells, leading
to memory and cognitive skills loss and, eventually, the inability to carry out the most
basic activities. This condition causes cognitive deterioration, which eventually leads to
dementia. In the context of neurodegenerative dementia, such as AD, the initial stages are
characterized by mild deterioration, which progressively worsens over time. The diagnosis
of AD cannot be made solely through a single test. Instead, healthcare professionals gather
comprehensive information on a patient’s medical and mental health history, as well as
their family background. Additionally, they engage in consultations with relatives and
conduct neurological and cognitive tests. To exclude other potential causes of dementia,
participants undergo additional assessments, including blood tests and brain imaging. The
process of data collection and physician interpretation can take several weeks [2]. In the AD
development stage, MCI represents a small cognitive decline in mental skills, which shows
the pathophysiology from cognitively normal to AD. Eventually, more than 33 percent
of subjects with MCI will develop AD within five years or more [3,4]. Early diagnosis
of individuals with MCI before the emergence of AD is crucial for the effectiveness of
potential treatments. This is because patients in the MCI stage do not exhibit the same
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level of significant brain damage as those already diagnosed with AD. Determining a
comprehensive treatment plan for AD poses challenges due to its unknown cause and
mechanisms. However, a combination of medication, exercise, and memory training has
shown potential in slowing the progression of the disease. Precise diagnosis of MCI and
early detection of AD are crucial in order to delay disease advancement and enhance the
patient’s overall quality of life [5].

Neuroimaging techniques are commonly employed in research due to their high preci-
sion and accuracy in diagnosing AD. For example, statistical models and MRI are frequently
utilized to predict early stages of AD [6]. While neuroimaging methods offer powerful
diagnostic capabilities, their effective analysis requires specialized expertise. Therefore,
it is crucial to enhance neuroimaging techniques to further support the diagnosis of AD.
The fMRI technique is a non-invasive approach that utilizes blood oxygen level-dependent
(BOLD) signals to assess hemodynamic changes induced by neuronal activity. The fMRI
technique in neuroimaging employs cerebral blood flow measurements to determine how
the brain is functioning. It is primarily utilized to visualize the activation patterns and
temporal interactions among different brain regions. It is believed that functional changes
in the brain occur before the appearance of anatomical abnormalities [7]. Resting-state
FC measurements, which involve fMRI scans without specific tasks or stimuli, have been
previously shown to be effective in detecting and predicting the early stages of AD [8].

Here are the key points explaining how imaging techniques provide significant advan-
tages in AD diagnosis:

1. Enhanced visualization: Imaging techniques provide clear and detailed visualization
of structural and functional brain abnormalities associated with AD.

2. Non-invasiveness: Imaging techniques offer a non-invasive approach, ensuring pa-
tient comfort and allowing for repeated examinations.

3. Early detection: Imaging can identify subtle brain changes even before the onset of
clinical symptoms, enabling early detection and intervention.

4. Comprehensive assessment: Imaging captures both structural and functional aspects
of the brain, providing a comprehensive evaluation of key pathological hallmarks and
assessing connectivity and activity patterns related to cognitive decline.

5. Personalized medicine: By examining individual brain characteristics, imaging allows
for tailored diagnostic and treatment approaches, considering unique variations in
disease presentation.

By analyzing alterations in the composition of deoxygenated hemoglobin in the re-
gional blood supply, neural activity patterns in specific brain regions can be assessed [9].

FC refers to the temporal correlation between neurophysiological variables mea-
sured in different brain regions, serving as a measure of the interactions between these
regions [10,11]. Among the various analytical methods for resting-state fMRI, FC analysis
is widely utilized. This method statistically demonstrates the synchrony of functional
activation between non-adjacent brain regions, providing insights into their functional
relationships. FC has definitively demonstrated its significance in investigating functional
interconnections across different brain areas. Due to the use of linear FC in examining
the brain’s operating processes, we now have a better insight into how distinct brain ar-
eas interact [12]. Hence, resting-state fMRI-computed FC can be used to investigate the
possibility that FC can serve as a predictor in AD patients, including those with CN or MCI.

Numerous studies have investigated FC between brain regions using the PCC, which
provides a linear estimation of the relationship between two random elements [13]. How-
ever, linear correlation analyses alone may not sufficiently capture the intricate connections
between brain regions. Therefore, in the context of AD patients, utilizing fMRI and non-
linear FC measures may be more suitable for capturing these intricate connections [14].

One potential non-linear measure is MIC, which has been recognized as a valuable
tool for assessing the relationship between two time variables [15] and as an effective
approach for reconstructing the functional network of the brain [16,17]. To further explore



Brain Sci. 2023, 13, 1046 3 of 15

non-linear relationships, the extended MIC (eMIC) combines MIC with PCC, allowing for
the assessment of non-linear connections between two elements [18].

Artificial intelligence (AI) and machine learning (ML) offer significant advancements
in the diagnosis of brain diseases such as AD. By leveraging AI algorithms and ML models,
medical professionals can analyze diverse data sources, including imaging scans, genetic
profiles, and clinical records, to uncover complex patterns and biomarkers associated with
AD. These technologies enhance early detection and enable accurate prediction of disease
progression, aiding in the development of personalized treatment plans. Additionally,
AI and ML provide valuable decision support tools, empowering healthcare providers
with evidence-based insights for more precise and efficient diagnoses. Deep learning
(DL) algorithms differ from traditional ML approaches. While ML models continue to
improve incrementally, they still require human intervention and adjustment when in-
accurate predictions are made. In contrast, DL models leverage their neural networks
to autonomously evaluate prediction accuracy. This capability enables DL algorithms to
effectively handle unstructured data and reduces the need for extensive feature engineer-
ing, which is essential for ML models. DL algorithms have the capability to estimate an
optimal data representation of raw images, eliminating the need for extensive feature engi-
neering and enabling a more independent and object-oriented approach. This advantage
stems from their minimal image preprocessing requirements. Consequently, DL algorithms
have demonstrated enhanced effectiveness in detecting both fine and extensive anatomical
abnormalities. Furthermore, DL algorithms have achieved optimal performances across
various domains, including natural language understanding, computer vision, and speech
recognition tasks, as well as more recent applications in MRI analysis [19], X-rays [20], CT
scans [21], PET [22], and EEG [23].

In contrast, traditional ML techniques typically follow specific pipelines or steps for
image analysis. These steps include data preprocessing, data augmentation, segmenta-
tion, feature extraction, and classification. Furthermore, ML algorithms often rely on a
substantial amount of high-quality data to achieve highly accurate results. Therefore, it is
strongly recommended to prepare the data appropriately and, if necessary, take additional
steps to ensure optimal results. In 2012, researchers introduced an advanced convolutional
neural network (CNN) known as AlexNet [24]. This study utilized complete brain fMRI
scans as part of their research. Subsequently, other researchers employed MRI data and
pre-trained CNN models, including 3D convolutional autoencoders, for binary and multi-
class classification tasks such as AD/MCI vs. NC (normal control), AD vs. MCI, MCI vs.
NC, and AD vs. MCI vs. AD. Additionally, they utilized the LeNet model to differentiate
AD from NC [25]. Several subsequent studies continued to leverage the CNN approach,
incorporating a combination of MRI and PET brain scans [26,27]. In another study [28], the
authors introduced a novel strategy by implementing a deep belief network (DBN) that
accepts 3D patches as input. They further employed a support vector machine (SVM) to
classify gray and white matter areas extracted from MRI and PET scans, with the objective
of distinguishing between NC and AD.

Motivated by the previously mentioned characteristics and research findings, our
study aims to contribute to the field of AD research. Specifically, we intend to analyze fMRI
data using the PCC, MIC, and eMIC to evaluate both linear and non-linear FC measures.
Our objective is to investigate the discriminative abilities of linear and non-linear FC
for different cognitive levels among CN, MCI, and AD patients based on their specific
characteristics.

To accomplish this, we constructed correlation matrices based on the FC values be-
tween distinct regions of interest (ROIs), effectively representing the brain network. These
matrices depict the relationships between different brain regions, forming a graph-like
structure. Notably, this graph exhibits non-Euclidean properties. To address these struc-
tural invariances, we utilized graph embedding techniques, employing node2vec, which
transforms graph data into vectors or sets of vectors.
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Finally, we utilized the MLELM classifier to distinguish AD participants from indi-
viduals with CN and MCI. This classification was achieved by leveraging the extracted
graph-based features obtained through the previously mentioned FC analyses and graph
embedding approach.

2. The Pathophysiology of Alzheimer’s Disease

The most reliable diagnostic method for AD is currently based on pathological ex-
amination. Although several macroscopic characteristics of AD can be identified, no
single characteristic or combination of characteristics can definitively diagnose the disease.
However, certain features strongly indicate the presence of AD.

In the human body and brain, the protein amyloid naturally develops. In AD, normal
amyloid groups undergo structural changes that disrupt their normal functioning. Abnor-
mal amyloid groups can trigger alterations in nearby healthy amyloid groups, resulting
in the formation of large clusters called plaques. These plaques, depicted as the brown,
cloud-like substance in Figure 1, are associated with the formation of brain lesions, which
are a distinctive feature of AD and contribute to the degeneration of brain cells [28,29]. The
hippocampus, a brain region particularly susceptible to plaque formation, plays a crucial
role in the processing of short-term to long-term memories. Damage to the hippocampus
has been linked to the symptoms of AD. Another protein naturally present in the human
body and brain is tau. Its primary function in the brain is to maintain the stability of
brain cell axons, which are tube-like structures through which electrical impulses pass. In
AD, tau proteins undergo structural changes that lead to their aggregation with other tau
fibers. This entanglement of tau proteins disrupts the stability of brain cell axons, resulting
in their degeneration and eventual death [30]. Hyperphosphorylation of tau disrupts its
normal function in stabilizing microtubules, leading to the formation of neurofibrillary
tangles. These tangles contribute to neuronal dysfunction and ultimately result in cognitive
decline and neurodegenerative diseases, such as Alzheimer’s disease. Understanding the
role of tau hyperphosphorylation in disease progression is crucial for developing targeted
therapies and interventions to mitigate its detrimental effects. The tau tangles, depicted
in purple in Figure 1, interfere with the transmission of signals between neurons, thereby
disrupting synaptic communication.

Numerous studies have provided evidence that microwave radiation poses risks
to the human brain [31]. The exposure to microwaves can induce protein damage and
disrupt mitochondrial activity by affecting the generation of reactive oxygen species (ROS)
and levels of adenosine triphosphate (ATP). These effects can result in DNA damage,
including breaks in single- and double-stranded DNA, and contribute to the development
of neurodegenerative diseases, including AD [32].
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Figure 1. Pathophysiology of AD in the brain. The metabolism of APP sometimes follows a non-
amyloidogenic pathway and forms amyloid plaques. Tau, a microtubule-associated protein, generates
insoluble filaments that congregate as neurofibrillary tangles in AD.

3. Materials and Methods

The proposed method, as depicted in Figure 2, consists of several steps to classify AD
versus CN, CN versus MCI, and AD versus MCI. The first step involves retrieving the
fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The
fMRI data are then subjected to standard preprocessing steps, including motion correc-
tion, slice timing correction, normalization, and spatial smoothing, to ensure data quality
and consistency.

Next, FC measures are computed using the PCC, as well as the MIC and eMIC
correlation methods. These measures capture the statistical dependencies between brain
regions and provide insights into the underlying functional networks. The FC matrices are
formed based on these measures, representing the connectivity patterns between different
regions of the brain.

To facilitate further analysis, the FC measure graph data are transformed into vector
data using the node2vec method. Node2vec leverages the concept of random walks in the
graph to generate embedding vectors that capture the structural properties of each node in
the graph. These vectors serve as the input to the M-ELM for classification tasks.

3.1. Dataset

One of the most widely used datasets for diagnosing AD is the ADNI dataset [33].
ADNI is a long-term study that aims to investigate the use of serial MRI, CSF measures, PET,
clinical assessments, and other neuropsychological criteria for tracking MCI and early AD
progression. The identification of sensitive and accurate markers for early AD diagnosis in
this study will benefit clinical specialists and researchers in developing effective treatments,
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monitoring treatment efficacy, and reducing the time and cost of clinical tests. The principal
investigator of the initiative is Michael W. Weiner, MD, from the University of California
and VA Medical Center. ADNI involves collaboration between numerous co-investigators
from various academic institutions and corporate enterprises, with subjects recruited from
over 50 sites across the United States and Canada.
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Figure 2. Architecture of proposed method.

In this study, we utilized the ADNI dataset, which includes 1534 patients and 402,446
resting-state functional MRIs (rs-fMRI) [33]. The dataset used in our analysis consisted of a
total of 383 patients (male: 223, female: 160), including 135 patients with CN, 148 patients
with MCI, and 100 patients with AD labels. The average age of the patients was 75.8. After
the image extraction process, a total of 4364 MR images were acquired, and 58 unnecessary
images were removed through data cleaning.

For preprocessing the original fMRI data, we employed Statistical Parametric Map-
ping software (SPM8) in Matlab [34]. The preprocessing procedures involved slice tim-
ing, normalization, realignment to the Montreal Neurological Institute (MNI) space, and
smoothing with a Gaussian kernel. Subsequently, the REST toolkit, an open source software
(https://www.nitrc.org/projects/rest/, accessed on 1 July 2023) was used to filter the data
within a low-frequency range of 0.01–0.08 Hz to eliminate very low-frequency drift and
high-frequency noise [35]. Table 1 provides a description of the dataset after applying
image preprocessing techniques.

Table 1. Dataset description.

Type CN MCI AD Total

Number of patients (M/F) 66/69 106/44 52/48 383
Average age (years) 77.25 75.21 75.1 75.8

3.2. FC Matrix Formation

The preprocessed fMRI scan data were parcellated into 116 brain areas using the
Automated Anatomical Labeling (AAL) template from the WFU Pick Atlas program [36].
Subsequently, three FC matrices were generated for each subject by computing individual

https://www.nitrc.org/projects/rest/
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brain FC using PCC, MIC, and eMIC. Each FC value between two brain regions was
considered a feature.

The PCC between two variables is calculated using the covariance and the product of
the standard deviations of the two variables, which can be expressed as [13]

ρAB =
cov(A, B)

σAσB
=

E[(A− µA)(B− µB)]

σAσB
(1)

Here, cov(A, B) is the covariance between two variables A and B. σA and σB are the
standard deviation of A and B, respectively. µA and µB correspond to the means of A and
B, respectively.

The mutual information of two random variables is defined as follows:

I(A, B) = H(A) + H(B)− H(A, B)
= H(A)− H(A | B)
= H(B)− H(B | A)

(2)

where H(A) and H(B) are the marginal entropies of A and B, respectively. H(A|B) and
H(B|A) correspond to the conditional entropies, and H(A, B) is the joint entropy of A and B.
Thus, the mA×B of the characteristic matrix can be expressed as

mA×B =
max{I(A, B)}

logmin{(nA, nB)}
(3)

Here, I(A, B) is the MI of the probability distribution function. n is the number of data
points, and nA and nB are the number of bins of the partition. MIC can be calculated as the
maximum mA×B over all ordered pairs (A, B). Thus, MIC can be expressed as [14]

MIC = max
AB<n

{mA×B} (4)

eMIC is an estimate of the non-linear correlation between two variables A and B that can
be expressed as [18]

eMIC = MIC− ρ2 (5)

where ρ corresponds to the PCC of the two variables.
The technique of network embedding serves as a dimensionality reduction tool that

transforms networks into vector spaces. In our study, we focus specifically on nodal
embedding, which involves mapping a graph into a set of vectors, where each vector
corresponds to a specific vertex in the graph. To achieve the vector representation of the
graph, we employ the node2vec method, which has demonstrated its ability to capture
the structural similarities of nodes [37]. This method utilizes the skip-gram architecture,
which learns to generate feature representations of words based on their surrounding
context. In the context of networks, the notion of context is translated into the concept of
neighborhood. Node2vec precisely captures the flexible notion of a node’s neighborhood,
considering various properties of interest, such as structural or relational similarities
between neighborhoods.

3.3. Classification

The extreme learning machine (ELM) is a single hidden layer feedforward neural
network (SLFN) that demonstrates faster convergence rates compared to traditional ap-
proaches, resulting in remarkable outcomes [38,39]. The SLFN randomly selects hidden
layer weights, and the Moore–Penrose inverse is used to analytically estimate the parame-
ters of the output layer [40]. As a result, the tuning of hidden layer parameters does not
require gradient-based backpropagation. This enables exceptionally fast training, mak-
ing it particularly suitable for analyzing big data. ELM offers several advantages over
conventional neural networks and support vector machines, including rapid learning,
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straightforward implementation, and minimal user intervention [41]. However, due to
its shallow architecture, feature learning with ELM approaches may not be practical for
certain applications, even with a large number of hidden nodes. In this study, we utilized a
multilayer ELM as described in [42]. As illustrated in Figure 3, each layer is connected to
the layer above it in a feedforward manner.
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The multilayer ELM architecture, as depicted in Figure 3, establishes a feedforward
connection between each layer and the one above it. By introducing additional layers, the
multilayer ELM expands the depth of the network, enabling enhanced feature learning
capabilities. The Algorithm 1 of the multi-layer ELM can be outlined as follows [42]:

Algorithm 1 Multi-layer ELM Algorithm

Input: Training data (X) with corresponding labels (Y), number of hidden layers (L), and the
number of neurons in each hidden layer (Nl).

1. Initialize the input-to-hidden layer weights randomly for each layer l from 1 to L.
2. For each layer l from 1 to L, compute the hidden layer output Hl using the following

equation:
Hl = gl(X×Wl)

where gl is the activation function of layer l, X represents the input data, and Wl is the
weight matrix of layer l.

3. Concatenate the outputs of all hidden layers to obtain the final hidden layer output H.
4. Compute the output weights β using the equation:

β = pinv(H) x Y

where pinv(H) is the Moore–Penrose pseudoinverse of the hidden layer output H.

Output: The trained M-ELM model with the calculated output weights β.

The MLELM algorithm allows for efficient training of deep architectures, benefiting
from the fast learning properties of ELM while leveraging the representational power of
multiple hidden layers. This enables MLELM to effectively capture intricate patterns and
extract high-level features from complex datasets, enhancing its classification performance.

The performance of the classifier was evaluated using three performance metrics:
accuracy, sensitivity, and specificity. The percentage of participants that were correctly
classified is measured by accuracy, while sensitivity and specificity are used to evaluate the
true positive (TP) and true negative (TN) rates. These two parts represent the rightfully
identified subjects. Both false positives (FP) and false negatives (FN) suggest subjects that
were misclassified.
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Accuracy is measured by computing the ratio of a classifier’s correctly classified
examples using equation [43]:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

This result may not serve as an absolute performance metric when the class distribution
of the dataset is unstable. For instance, if class C1 significantly outweighs class C2, a
classifier that labels all examples as belonging to class C1 could yield a high accuracy value.
Sensitivity refers to the rate of true positives (TP), while specificity denotes the rate of true
negatives (TN). Sensitivity and specificity can be defined as follows:

Sensitivity =
TP

TP + TN + FP + FN
(7)

Specificity =
TN

TP + TN + FP + FN
(8)

Sensitivity is concerned with the proportion of correctly identified patients, also known
as the true positive rate. It measures the ability of a classifier to correctly identify positive
instances from the total actual positive instances. On the other hand, specificity relates to
the proportion of correctly identified controls, also referred to as the true negative rate. It
measures the ability of a classifier to correctly identify negative instances from the total
actual negative instances. Sensitivity and specificity are crucial performance measures
in classification tasks, as they provide insights into how well a classifier can accurately
distinguish between different classes.

The effectiveness of classifiers and feature selection approaches was assessed overall
using a 10-fold cross-validation method. First, we divided the subjects into ten equal groups
(folds), with 10% of the test subjects and 90% of the training subjects in each fold. The
top-ranked features retrieved by PCC, MIC, and eMIC were used to train the classifier in
the form of FC matrices, which were then converted into feature vectors. We calculated the
average cross-validated accuracy as well as sensitivity and specificity.

4. Results and Discussion

In this paper, the PCC, MIC, and eMIC methods were utilized to identify significantly
diverse linear and non-linear FC using resting-state fMRI data from AD patients. Patients
with AD were divided into three groups based on their cognitive levels: CN, MCI, and AD.

Each participant’s FC matrix was generated using PCC, MIC, and eMIC, measuring
the statistical degree of connectivity across brain regions (Figure 4).

Using PCC, MIC, and eMIC, we evaluated the total brain resting-state FC matrices of
AD patients and CN. The FC matrices of the CN (Figure 3, the first row) and the AD patients
(Figure 3, the second row) derived using the PCC, MIC, and eMIC methods are shown.
The FC matrices generated using the PCC, MIC, and eMIC methods were transformed to
their vector representation using the node2vec method, and these data are further used
for classification using multilayer ELM. The number of hidden layer nodes utilized has a
significant impact on the multilayer ELM classifier’s performance. We used 1000 hidden
layers to generate highly accurate performance results in this experiment.

Using different feature counts, we assessed the classification accuracy for CN versus
MCI, MCI versus AD, and CN versus AD (Figure 5). To gain a more comprehensive
evaluation of the results, we calculated the sensitivity and specificity of the classification
outcomes (Figure 6).
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The classification accuracy of CN versus MCI based on various feature counts is shown
in Figure 4a. Features utilized by eMIC produced the highest classification accuracy. The
features calculated using PCC, on the other hand, produced the lowest accuracy rate. The
accuracy of the classification remained stable as the number of features increased.

Based on different numbers of features, the classification accuracy of MCI and AD is
shown in the second figure, Figure 4b. However, the final classification accuracy for MIC-
and eMIC-calculated features was not significantly different.

The classification accuracy of CN and AD is depicted in the third figure, Figure 4c.
When eMIC-based features were utilized, classification accuracy was superior to that of
PCC and MIC. The classification accuracy was the lowest when features derived from PCC
were used. Based on eMIC features, the average classification accuracy for CN and AD was
95%, which was higher than MIC’s 90% classification accuracy. The classification made with
PCC features had an average accuracy of 87%. PCC had the lowest average classification
accuracy for MCI and AD classification (58%). Classification using MIC and eMIC features
resulted in a relatively similar average accuracy rate of 81% and 78%, respectively. PCC
had an average classification accuracy of 87% for CN and AD, which was lower than the
90% and 95% for eMIC and MIC features, respectively.

Based on features extracted from PCC, the sensitivity and specificity of classification
for CN and MCI were 77 and 75%, respectively, as shown in Figure 5a. The scores for
MIC and eMIC based classification were 80 and 77%, and 87 and 92%, respectively. As per
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Figure 5b, the classification of MCI and AD showed a sensitivity and specificity of 75 and
69.5%, respectively, for features acquired from PCC, 85 and 84% for features extracted from
MIC, and 81 and 78% for features extracted from eMIC. As per Figure 5c, the sensitivity
and specificity for classifying CN and AD using features from PCC were 87 and 90%,
respectively, as compared to MIC’s 91 and 87% and eMIC’s 95 and 92%. Many studies
have been carried out utilizing rs-fMRI to differentiate AD and MCI from CN. As stated
previously, the proposed work achieves the best level of accuracy for AD classification (95%
(CN vs. AD) using eMIC-based FC matrices.

Furthermore, extensive research has been conducted to investigate a range of neu-
roimaging techniques aimed at effectively distinguishing between AD and MCI. However,
the direct comparison of our proposed method with state-of-the-art approaches is chal-
lenging due to inherent variations in datasets and classification methodologies employed
across the existing literature. It is important to acknowledge that the inclusion of additional
training and testing data in other studies introduces additional complexities in directly
comparing our method. Notably, the current methodologies employ distinct features and
feature selection strategies to explore various binary classifications, such as AD vs. CN,
CN vs. MCI, or MCI vs. AD. These variations significantly impact the overall accuracy of
performance. To provide insights into the differentiation of CN from AD and MCI, Table 2
presents accuracies reported in prior studies using binary classification, unique feature
selections, and classifiers. The compilation aims to offer a comprehensive understanding of
the classification performance across a variety of research studies.

Table 2. Comparison of CN differentiation from MCI and AD in recent works.

Authors Methods Subjects Task ACC (%) SENS (%) SPE (%)

Challis et al. [43]
Gaussian and regression

models, covariance
20 CN/50 MCI/

27 AD

AD vs. CN 80.12 70.97 90.24

CN vs. MCI 75.15 100 50.52

Ju et al. [44] Deep autoencoder 79 CN/ 91 MCI CN vs. MCI 86.5

Khazaee et al. [45] Naïve Bayes and
directed graph features 45 CN/34 AD AD vs. CN 93.3

Eavani et al. [46]
HMM, ICA and

covariance matrix of
whole brain network

31 CN/31 MCI CN vs. MCI 62.9

Proposed work
MIC/eMIC

correlation-based FC,
multi-layer ELM

135 CN/148 MCI/
100 AD

AD vs. HC 95 95 92

AD vs. MCI 81 85 84

HC vs. MCI 94 87 92

In the research described in [43], the authors introduced a Bayesian Gaussian process
logistic regression model for the classification of AD and MCI. The model incorporated
features selected from FC measures combined with relevant phenotypic data, leveraging
Kendall’s tau correlation coefficient. The study aimed to assess the effectiveness of the
Gaussian System Logistic Regression (GPLR) template, a specific multivariate statistical
machine learning software, in stratifying patients based on functional communication
patterns throughout the brain during rest. The algorithm proposed in [44] integrates fMRI
images with essential medical information, including age, gender, and genetic data. A
stacked autoencoder architecture has been utilized to train a deep neural network using
fMRI time-series data or correlation coefficient data. In the study carried out in [45], the
authors computed integration and separation metrics from graph-based analyses. Feature
selection was performed using Fisher scoring, and AD classification was carried out using
SVM. In [46], functional brain states were estimated using the hidden Markov model
(HMM) framework. The HMM pipeline encompassed the estimation of both the functional
brain states and their dynamics. Each state was parameterized using a multivariate normal
distribution, with a particular emphasis on analyzing the covariance matrix to interpret
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each state as a distinct connectivity pattern. The impact of the number of subjects on the
accuracy of the tests is evident, with accuracy declining as the subject count increases. As
mentioned earlier, our proposed work achieves the highest accuracy of 95% in classifying
AD by employing a combination of eMIC-based correlation features and multi-layer ELM.
In comparison to existing approaches, our study outperforms state-of-the-art methods in
terms of the results obtained for MCI vs. CN and AD vs. CN classifications. However, it
is important to note that direct comparisons of performance with other studies may not
be fair or reliable due to variations in the datasets, preprocessing pipelines, features, and
classifiers employed in each study.

Limitations of This Work

The classification of medical images is a fundamental and significant issue in computer
innovation that has undergone much research over the past few decades. Even though
the reliability of various medical image classification methods has significantly increased,
these methods may not offer correct AD because of their non-universality, vulnerability
to illumination and spoofing effects, and insufficient accuracy via the poor data quality.
Therefore, in many real-world applications, standard medical picture categorization may
not be able to deliver the needed performance. In this study, we solely used the ADNI
dataset to classify AD and MCI from cognitively normal controls. The dataset we used here
is small for the entire experimentation. Additionally, this work solely uses new methods
for feature extraction and AD classification, such as MIC, eMIC and MLELM, instead of
alternative techniques.

5. Conclusions

Early identification of AD and MCI is critical for implementing preventive measures
and slowing down the progression of the disease. This study aimed to classify AD, MCI,
and CN individuals using both linear and non-linear FC features extracted from PCC,
MIC, and eMIC analyses. Our findings reveal that the non-linear FC features exhibited
superior performance compared to the linear features, demonstrating higher classification
accuracy. This suggests the potential of non-linear FC measures as robust biomarkers for AD
detection. Additionally, the non-linear features demonstrated more balanced behavior in
the classification results, further highlighting their effectiveness in distinguishing between
different cognitive states. By incorporating non-linear FC measures, this study contributes
to enhancing the precision and accuracy of clinical AD classification, ultimately aiding in
the early detection and management of AD and MCI.

Furthermore, the advancements in fMRI data analysis techniques showcased in this
study pave the way for the development of advanced tools for medical diagnosis and
treatment. These findings underscore the importance of utilizing non-linear FC measures
in improving the understanding of AD pathology and facilitating more accurate diagnoses.

Future research should focus on investigating the longitudinal progression of AD
and MCI, exploring the synergistic effects of combining multiple imaging modalities, and
assessing the impact of non-linear FC measures on treatment response. These avenues of
research will further enhance our understanding of AD and facilitate the development of
more effective diagnostic and therapeutic approaches.
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