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Abstract: The information about phytochemicals’ potential to prevent cancer is encouraging, includ-
ing for glioma. However, most studies on phytochemicals and glioma mainly focused on preclinical
studies. Their epidemiological studies were not sufficient, and the evidence on the dose–response
relationship is usually limited. Therefore, this investigation examined the association between dietary
phytochemical intake and glioma in Chinese adults. This case–control study was carried out in a
hospital in China. Based on the dietary information obtained from the food frequency questionnaire,
the researchers estimated the phytochemical intake of 506 patients with glioma and 506 controls.
Compared with participants in the lowest tertile, the highest intakes of carotene, flavonoids, soy
isoflavones, anthocyanin, and resveratrol were associated with a reduced risk of glioma. The WQS
and BKMR models suggested that anthocyanin and carotene have a greater influence on glioma. The
significant nonlinear dose–response associations between dietary phytochemicals and glioma were
suggested using the restricted cubic spline function. According to this study on phytochemicals and
glioma, higher intakes of carotene, flavonoids, soy isoflavones, anthocyanins, and resveratrol are
linked to a lower risk of glioma. So, we might not be able to ignore how phytochemicals affect gliomas.

Keywords: phytochemicals; glioma; weighted quantile sum regression; dose–response relationship;
Bayesian kernel machine regression

1. Introduction

Phytochemicals refer to multiple intermediate or secondary metabolites produced in
plant energy metabolism. They are divided into many subcategories according to their
chemical structure, such as polyphenols, alkaloids, and carotenoids [1,2]. As the name implies,
these substances are a major factor in how plants look and smell, and are commonly present
in fruits, vegetables, nuts, etc. [3]. In recent years, phytochemicals, as non-traditional nutrients,
have been considered one of the main reasons for the protective effect of plant-based foods
against chronic diseases [4]. Because phytochemicals are abundant in all kinds of foods and
have few side effects, more and more phytochemicals play essential roles in diseases, such as
cardiovascular disease [5], diabetes [6], cancers [7], and so on.

There has been interest in the connection between phytochemicals and cancer. They
can control the cell cycle and proliferation of tumor cells as well as their occurrence by
participating in various signal pathways [7]. Epidemiological research has demonstrated
that phytochemicals significantly reduce the risk of developing many malignancies. In a
case–control study involving 415 patients and 830 controls in the Korean population, Kim et al.
discovered a negative correlation between total dietary carotenoids and the risk of gastric
cancer in women (odds ratio (OR) = 0.56, 95% confidence interval (95% CI): 0.32–0.99) and
higher dietary lycopene intake and the risk of gastric cancer (OR = 0.60, 95% CI: 0.42–0.85) [8].
Intake of dietary lycopene was related to a lower risk of prostate cancer, according to a meta-
analysis of 42 studies (relative risk (RR) = 0.88, 95% CI: 0.78–0.98). Plasma exposure data
also indicated that lycopene was negatively related to prostate cancer (RR = 0.88, 95% CI:
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0.79–0.98) [9]. Feng et al. assessed the dietary flavonoid intake in the Chinese population
through FFQs and found that the highest quartile of flavonoids could reduce the risk of
breast cancer by 34% (OR = 0.66, 95% CI: 0.54–0.82) [10]. Although this association has not
been found in digestive system cancers [11,12], individual flavonoid subclasses still showed a
strong correlation with them. Wei et al. reported that moderate soy intake among Chinese
women was not related to breast cancer (RR = 1.00, 95% CI: 0.81–1.22) based on the China
Kadoorie Biobank study. However, their meta-analysis revealed that the risk of breast cancer
decreased by 3% for every 10 mg/d increase in soy isoflavone intake [13]. Similar results
were also discovered in resveratrol. Levi et al. evaluated grape intake to replace resveratrol
intake and reported that grape intake was negatively associated with breast cancer in 369
Swiss women between 1993 and 2003 (OR = 0.39, 95% CI: 0.25–0.62), and resveratrol has been
considered a promising cancer treatment [14].

Although these phytochemicals have shown different roles in all tumors, studies on
phytochemicals and gliomas are rare. Gliomas are malignant brain tumors that mainly
affect the nervous system. They are characterized by the distortion of glial cells, resulting in
uncontrollable growth and development [15]. Currently, interventions for treating gliomas
include surgical resection, radiotherapy, or chemotherapy. Although they temporarily
relieve the disease, they still cannot stop its rapid spread and expansion in the brain [16,17].
Experimental evidence has shown that phytochemicals such as quercetin and resveratrol
can inhibit cell activity and reduce the migration of glioma cells [18]. They can also reduce
the migration, invasion, and rapid growth of gliomas by inhibiting the expansion of the
cell cycle [19,20]. Although research on phytochemicals’ potential to prevent cancer is
encouraging, epidemiological studies on gliomas are insufficient, and evidence regard-
ing doses is typically scant [1]. Therefore, we quantified the association between five
phytochemicals and glioma based on the dose–response relationship. Considering that
dietary phytochemicals are not ingested as a single species [21], the association of dietary
phytochemicals with glioma was assessed based on a co-exposure model to provide some
evidence of phytochemicals preventing gliomas to quantitatively evaluate the effect of
dietary phytochemicals on glioma in the Chinese population.

2. Materials and Methods
2.1. Study Population

Our methodology has been described in great detail in previous research [22]. In
short, we carried out this case–control study at Beijing Tiantan Hospital during 2022.
Participants for the case and control groups were chosen via convenient sampling by the
inclusion criteria. Except for glioma, the study individuals had to be adults (older than
18) before being chosen, and no further inclusion criteria were used. According to the
2021 diagnostic criteria for central nervous system cancers, the cases were glioma patients
who were simultaneously identified by neuro-oncologists and pathologists within a few
months [23]. After reading the written materials and hearing the oral description of the
study methodology, and with the participants’ permission, the pertinent information was
gathered using a face-to-face questionnaire. Exclusion criteria mainly included major
eating behavior changes (such as weight loss), hormone use, and other treatments that
had an impact on nutrition, endocrine, digestive, and neurological diseases, abnormal
energy expenditure (>5000 or 400 kcal/d), and pregnancy [22]. The control group was
healthy residents from the community who were also screened according to the inclusion
and exclusion criteria described above and matched 1:1 with the case population by age
(±5 years) and sex. The Institutional Review Board of Beijing Tiantan Hospital, Capital
Medical University authorized the study (No. KY2022-203-02).
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2.2. Dietary Intake Assessment

The food frequency questionnaire (FFQ) was the primary tool to assess dietary con-
sumption. The FFQ was utilized by researchers with medical backgrounds to gather data on
the types and amounts of food consumed over the previous 12 months. The reproducibility
and validity of this FFQ have been verified in previous studies [22,24], and we have made
simple modifications (adding and deleting several foods) based on the actual needs of
this study. A total of 114 questions were asked about their intakes of food items. Each
food item’s consumption was evaluated in three ways: whether it was consumed, how
frequently (daily, weekly, or monthly), and how much was consumed overall. To increase
the accuracy of meal estimation, the researchers also gave the subjects photographs of
various food amounts and qualities during the survey. For statistical analysis, this was
transformed into the daily intake of all food types based on the consumption frequency
and each intake filled out by the individuals.

2.3. Assessment of Phytochemical Intake

The intake of phytochemicals was mainly calculated according to the dietary intake
of individuals and the China food composition table. According to the intake frequency
and intake of each food reported by the study subjects, the consumption of all foods was
converted into the daily intake (g or mL). The China Food Composition Table provided
the unit amounts of carotene, flavonoid, soy isoflavone, anthocyanin, and resveratrol in
each food [25]. The total intake of these phytochemicals was calculated by multiplying the
daily intake of each food by the unit amount of each phytochemical in the food and then
summing the intake of each phytochemical in the different foods.

Among them, flavonoids included quercetin, myricetin, luteolin, kaempferol, and api-
genin; soy isoflavones included daidzein, glycitein, and genistein, anthocyanins included
delphinidin, cyamidin, and peonidin; and resveratrol included resveratrol and polydatin.

2.4. Other Variables

A questionnaire survey was used to gather all necessary data. Age, household income,
education level, occupation, disease history (allergies, cancer, head trauma), and lifestyle
habits were all asked about in the questionnaire (including smoking status and physical
activity). The International Physical Activity Questionnaire was used by the individuals to
rate their recent physical activity. The physical activity was then assessed and computed
as a metabolic equivalent [26]. Qualified professionals determined the body mass index
(BMI) during the survey using calibrated tools to assess weight and height. Additionally,
over the past ten years, living close to electromagnetic fields and broadcast antennas has
been categorized as residing in high-risk residential zones, which was also thought to be a
potential complicating factor [27].

2.5. Statistical Analysis

To compare differences between the two groups, t-tests and chi-square tests were
performed after describing the research population’s basic features. The ORs and 95% CIs
of gliomas were estimated using the logistic regression model. Confounding variables were
not adjusted in the rough model (Model 1). The multivariate model (Model 2) was modified
to take into account all demographic information, disease history, and dietary preferences.
To account for potential confounding variables, age, BMI, and energy intake were included
as continuous variables. Other variables were considered classified variables.
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Based on the subgroups organized by confounding factors, the multivariate model’s
logistic regression was used for the subgroup analysis. Sensitivity analysis was performed
by calculating the phytochemical intake per unit body weight and repeated logistic re-
gression to avoid the influence of body weight difference. Additionally, to get around the
inherent limitations of using phytochemicals as grade variables, the restricted cubic spline
function was used to explore the dose–response relationship in Model 2, in which four
nodes were located in the 20th, 40th, 60th, and 80th percentiles of phytochemical intake,
and the 10th percentile was used as the reference group (OR = 1) [28].

To further investigate the relationship between phytochemical combinations and
glioma, we assessed it using weighted quantile sum (WQS) regression analysis [29,30].
According to the bootstrap sampling, each phytochemical was assigned a weight, and the
sum of the weights was 1. The weight of each component in the mixture reflected the
contribution of that component. Specifically, 40% and 60% of random samples were used
in this study to test and verify the data, and the bootstrap setting was 1000. Additionally, it
was explored from the two directions of positive correlation and negative correlation.

We also used Bayesian Kernel Machine Regression (BKMR) to assess the association
between the combined effects of these phytochemicals and glioma. BKMR model analyzed
the nonlinear and non-additive exposure–response relationship through iterative regression
and Bayesian algorithm [31,32]. The model used a Markov Chain Monte Carlo algorithm
with 10,000 iterations using a Gaussian kernel. By comparing the estimated effects of all
phytochemicals for a particular percentile with the estimated effects of all phytochemicals
for the 50th percentile, we were able to assess the total impact of the consumption of the five
phytochemicals on glioma. While maintaining the consumption of other phytochemicals
at the median, the exposure-response function was used to investigate the connection
between specific phytochemicals and gliomas. Finally, the interaction between the effects
of any two phytochemicals on glioma was investigated and the effect of different quantiles
of one phytochemical on the association between the other phytochemical and glioma
was evaluated by establishing a bivariate pairwise exposure–response function. The phy-
tochemical’s likelihood of being included in the model was computed as a conditional
posterior inclusion probability (condPIP) by the model.

R 4.1.1 and SPSS 26.0 were used for all statistical analyses. The statistical significance
level for all bilateral statistical tests was p < 0.05.

3. Results
3.1. Characteristics of the Study Population and Phytochemicals

The study involved 506 participants in the case group out of a total of 1012 participants.
The two groups had a comparable age distribution (case: 42.62 ±13.09 years, control:
41.15 ± 12.85 years), identical sex distribution, and no differences in high-risk residential
areas or history of head trauma. However, patients with gliomas had higher BMIs, lower
educational levels, greater levels of smoking and physical activity, fewer allergies, and
higher rates of cancer in their families than non-glioma patients. Additionally, there were
variations in family income and occupation. However, regarding BMI (p= 0.095), occupation
(p= 0.354), and history of allergic diseases (p= 0.471) in the male population, there was no
distinction between them. In the female population, there was no difference in smoking
(p= 0.308) and family history of cancer (p= 0.078). Other conditions were consistent with
the whole population (Table 1).

In terms of phytochemicals, as shown in Figure 1, the intake of phytochemicals
was substantially higher in the controls than in the cases. Additionally, the analysis of
phytochemicals revealed significant correlations between them in Table S1 (Spearman
correlation coefficients range from 0.386 to 0.815).
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Table 1. Basic characteristics of the study participants.

Male Female p-Value a,b

Case Control p Value a Case Control p Value a

Age (years) 42.29 ± 12.93 41.01 ± 12.83 0.235 43.04 ± 13.31 41.33 ± 12.90 0.171 0.072
BMI 24.60 ± 3.08 24.16 ± 3.21 0.095 23.30 ± 3.32 21.63 ± 2.76 <0.001 <0.001

High-risk residential area (%) 0.688 0.138 0.534
Yes 21.8 23.2 20.7 15.3
No 78.2 76.8 79.3 84.7

Occupation (%) 0.354 0.002 0.024
Manual workers 29.6 25.0 22.5 14.4
Mental workers 59.5 61.3 43.3 59.5

Others 10.9 13.7 34.2 26.1
Education level (%) 0.003 <0.001 <0.001

Primary school and below 3.5 2.8 11.3 2.3
Middle school 39.8 26.8 43.7 23.0

University and above 56.7 70.4 45.0 74.7
Household income (%) <0.001 <0.001 <0.001

<3000 CNY/month 8.1 20.1 11.7 15.8
3000–10,000 CNY/month 75.4 49.6 76.6 48.6

>10,000 CNY/month 16.5 30.3 11.7 35.6
Smoking status (%) 0.036 0.308 0.039

Never smoking 47.9 56.3 98.2 99.5
Former smoking 22.2 14.4 0.9 0
Current smoking 29.9 29.2 0.9 0.5

History of allergies (%) 0.471 <0.001 <0.001
Yes 8.5 10.2 6.8 20.3
No 91.5 89.8 93.2 79.7

History of head trauma (%) 0.374 1.000 0.474
Yes 13.7 11.3 8.1 8.1
No 86.3 88.7 91.9 91.9

Family history of cancer (%) 0.005 0.078 0.001
Yes 27.1 17.3 33.8 26.1
No 72.9 82.7 66.2 73.9

Physical Activity (%) <0.001 <0.001 <0.001
Low 16.2 45.1 10.4 46.8

Moderate 44.7 34.8 36.9 38.3
High 39.1 20.1 52.7 14.9

a. p-values were derived from Student’s t-tests for continuous variables according to the data distribution and the chi-square test for the classified variables. b. Results of the overall case
group and the overall control group.
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Figure 1. Phytochemical intakes among study participants.

3.2. Association between Phytochemicals and Glioma

Table 2 displays the relation between five phytochemicals and gliomas. After adjusting
for other variables (Model 2), the highest carotene consumption was related to a 93%
reduced risk of glioma (OR = 0.07, 95% CI: 0.03–0.14), the highest flavonoid consumption
was related to an 89% reduced risk of glioma (OR = 0.11, 95% CI: 0.05–0.23), the highest
soy isoflavone consumption was related to a 71% reduced risk of glioma (OR = 0.29, 95%
CI: 0.16–0.52), the highest anthocyanin consumption was related to a 95% reduced risk
of glioma (OR = 0.05, 95% CI: 0.02–0.10), and the highest resveratrol consumption was
related to an 82% reduced risk of glioma (OR = 0.18, 95% CI: 0.10–0.35). For the continuous
variables of phytochemicals, the results were similar to the above.

Table 2. Adjusted ORs and 95% CIs for the association between phytochemicals and glioma.

Phytochemicals T1 T2 T3 Continuous c p-Value

Carotene ≤1255.00 1255.00–2569.31 >2569.31
Case/Control 247/91 174/171 85/244

Model 1 a 1 0.33 (0.22–0.48) 0.13 (0.08–0.19) 0.76 (0.72–0.81) <0.001
Model 2 b 1 0.29 (0.15–0.54) 0.07 (0.03–0.14) 0.67 (0.60–0.75) <0.001
Flavonoid ≤42.82 42.82–93.63 >93.63

Case/Control 223/115 158/179 125/212
Model 1 a 1 0.45 (0.33–0.62) 0.29 (0.20–0.40) 0.91 (0.88–0.93) <0.001
Model 2 b 1 0.40 (0.23–0.72) 0.11 (0.05–0.23) 0.85 (0.80–0.90) <0.001

Soy isoflavone ≤1.66 1.66–6.33 >6.33
Case/Control 189/149 208/129 109/228
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Table 2. Cont.

Phytochemicals T1 T2 T3 Continuous c p-Value

Model 1 a 1 1.18 (0.85–1.64) 0.35 (0.24–0.49) 0.94 (0.92–0.96) <0.001
Model 2 b 1 1.10 (0.64–1.91) 0.29 (0.16–0.52) 0.92 (0.89–0.95) <0.001

Anthocyanin 247/91 200/137 59/278
Case/Control ≤2.76 2.76–7.57 >7.57

Model 1 a 1 0.54 (0.38–0.78) 0.07 (0.05–0.12) 0.84 (0.81–0.87) <0.001
Model 2 b 1 0.40 (0.21–0.74) 0.05 (0.02–0.10) 0.83 (0.78–0.87) <0.001

Resveratrol ≤289.85 289.85–848.88 >848.88
Case/Control 216/122 179/158 111/226

Model 1 a 1 0.60 (0.43–0.83) 0.27 (0.19–0.38) 0.79 (0.73–0.86) <0.001
Model 2 b 1 0.52 (0.29–0.90) 0.18 (0.10–0.35) 0.84 (0.75–0.95) <0.001

a. Model 1: unadjusted model; b. Model 2: adjusted for age, BMI, occupation, education level, household income,
high-risk residential areas, smoking status, history of allergies, history of head trauma, family history of cancer,
physical activity, and energy intake; c. carotene per 500 µg/d increments, flavonoid per 10 mg/d increments, soy
isoflavone and anthocyanin per 1 mg/d increments, resveratrol per 500 µg/d increments.

3.3. Phytochemicals and Pathological Classification and Grading of Glioma

The analysis of glioma’s pathological classifications revealed that phytochemicals
affected various glioma subtypes in distinct ways. For astrocytoma, carotene (OR = 0.33,
95% CI: 0.16–0.67), flavonoids (OR = 0.77, 95% CI: 0.65–0.92), soy isoflavones (OR = 0.77,
95% CI: 0.66–0.91), anthocyanins (OR = 0.71, 95% CI: 0.57–0.88), and resveratrol (OR = 0.50,
95% CI: 0.30–0.85) were significantly related to a significantly reduced risk. For glioblas-
toma, carotene (OR = 0.72, 95% CI: 0.61–0.85), flavonoids (OR = 0.85, 95% CI: 0.77–0.94),
soy isoflavones (OR = 0.88, 95% CI: 0.81–0.95), and anthocyanins (OR = 0.82, 95% CI:
0.74–0.91) were related to a significantly reduced risk. Due to the small sample size of
oligodendrogliomas, no further analysis was conducted (Table 3).

Table 3. Adjusted ORs and 95% CIs for the association between phytochemicals and gliomas of
different pathological classifications.

Pathological Classification c Model 1 a p Value Model 2 b p-Value

Astrocytoma
Carotene 0.70 (0.60–0.81) <0.001 0.33 (0.16–0.67) 0.003
Flavonoid 0.91 (0.86–0.96) 0.001 0.77 (0.65–0.92) 0.003

Soy isoflavone 0.90 (0.85–0.96) 0.001 0.77 (0.66–0.91) 0.002
Anthocyanin 0.74 (0.65–0.84) <0.001 0.71 (0.57–0.88) 0.001
Resveratrol 0.67 (0.53–0.86) 0.001 0.50 (0.30–0.85) 0.011

Glioblastoma
Carotene 0.79 (0.74–0.86) <0.001 0.72 (0.61–0.85) <0.001
Flavonoid 0.91 (0.88–0.95) <0.001 0.85 (0.77–0.94) 0.001

Soy isoflavone 0.94 (0.91–0.97) <0.001 0.88 (0.81–0.95) 0.001
Anthocyanin 0.86 (0.82–0.90) <0.001 0.82 (0.74–0.91) <0.001
Resveratrol 0.84 (0.75–0.93) 0.001 0.84 (0.69–1.04) 0.103

Note: No further analysis was conducted due to the small sample size of oligodendroglioma. a. Model 1:
unadjusted model. b. Model 2: adjusted for age, BMI, occupation, education level, household income, high-risk
residential areas, smoking status, history of allergies, history of head trauma, family history of cancer, physical
activity, and energy intake. c. Carotene per 500 µg/d increments, flavonoid per 10 mg/d increments, soy
isoflavone and anthocyanin per 1 mg/d increments, resveratrol per 500 µg/d increments.
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The results of phytochemicals and different grades of glioma showed that carotene
(OR = 0.23, 95% CI: 0.08–0.62), flavonoids (OR = 0.82, 95% CI: 0.70–0.95), and anthocyanins
(OR = 0.69, 95% CI: 0.55–0.86) were related to a significantly reduced risk of low-grade
gliomas. For high-grade gliomas, carotene (OR = 0.69, 95% CI: 0.60–0.80), flavonoids
(OR = 0.80, 95% CI: 0.74–0.88), soy isoflavones (OR = 0.91, 95% CI: 0.86–0.96), anthocyanins
(OR = 0.79, 95% CI: 0.72–0.86), and resveratrol (OR = 0.75, 95% CI: 0.63–0.90) were related
to a reduced risk (Table 4).

Table 4. Adjusted ORs and 95% CIs for the association between phytochemicals and glioma of
different grades.

Glioma Grading c Model 1 a p Value Model 2 b p-Value

Low grade
Carotene 0.71 (0.61–0.83) <0.001 0.23 (0.08–0.62) 0.004
Flavonoid 0.91 (0.86–0.97) 0.002 0.82 (0.70–0.95) 0.009

Soy isoflavone 0.94 (0.90–0.99) 0.009 0.95 (0.89–1.02) 0.171
Anthocyanin 0.81 (0.74–0.89) <0.001 0.69 (0.55–0.86) 0.001
Resveratrol 0.81 (0.69–0.95) 0.011 0.83 (0.62–1.11) 0.205
High grade

Carotene 0.78 (0.73–0.83) <0.001 0.69 (0.60–0.80) <0.001
Flavonoid 0.91 (0.88–0.94) <0.001 0.80 (0.74–0.88) <0.001

Soy isoflavone 0.94 (0.91–0.97) <0.001 0.91 (0.86–0.96) 0.001
Anthocyanin 0.84 (0.80–0.88) <0.001 0.79 (0.72–0.86) <0.001
Resveratrol 0.78 (0.70–0.87) <0.001 0.75 (0.63–0.90) 0.002

a. Model 1: unadjusted model. b. Model 2: adjusted for age, BMI, occupation, education level, household income,
high-risk residential areas, smoking status, history of allergies, history of head trauma, family history of cancer,
physical activity, and energy intake. c. Carotene per 500 µg/d increments, flavonoid per 10 mg/d increments, soy
isoflavone and anthocyanin per 1 mg/d increments, resveratrol per 500 µg/d increments.

3.4. Subgroup Analysis and Sensitivity Analysis

Model 2 was used to correct the remaining confounding factors after stratification by
confounding factors. The findings demonstrated that the majority of the five phytochemical
groupings corresponded to the general population. Due to the small sample size, individual
subgroup results are only partially representative (Table S2).

The results of sensitivity analysis showed that the significance of the results was still
consistent with the original results after replacing the original intake with the phytochemical
intake per unit body weight (Table S3).

3.5. Dose–Response Relationship

We flexibly modelled and visually predicted the association between phytochemi-
cals and the risk of glioma in Figure 2. When the daily consumption of carotenes ex-
ceeded 1186.16 µg, the risk tended to decline. Glioma risk remained largely unchanged
once the intake exceeded 2363.0 µg/d (p-nonlinearity = 0.0096). Similar to carotene, the inci-
dence of glioma decreased with increased intake of flavonoids when the intake exceeded
52.48 mg/d, but was largely unchanged once the consumption exceeded 97.37 mg/d
(p-nonlinearity = 0.0433). For soy isoflavones, the risk increased at first and then decreased,
and this downward trend gradually weakened when the intake exceeded 6.14 mg/d
(p-nonlinearity = 0.0109). For anthocyanins, when the intake exceeded 4.53 mg/d, the risk
tended to decrease with increased intake. After the intake exceeded 8.73 mg/d, the risk was
relatively stable (p-nonlinearity < 0.0001). Resveratrol, similar to anthocyanins, also showed
a significant L-shaped trend. When exceeding 572.39 µg/d of intake, the risk tended to
decrease with increased intake. After exceeding 1085.51 µg/d of intake, the risk of glioma
was largely stable (p-nonlinearity < 0.0001).
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lines represent adjusted odds ratios based on restricted cubic splines for the phytochemical intakes
in the regression model. Knots were placed at the 20th, 40th, 60th, and 80th percentiles of the
phytochemical intakes, and the reference value was set at the 10th percentile. The adjusted factors
were the same as in Model 2.

3.6. Effects of Mixed Exposure of Phytochemicals on Glioma Based on WQS and BKMR

In the WQS analysis, we observed that the increase in mixed exposure to phytochem-
icals was associated with a decrease in glioma risk (OR = 0.22, 95% CI: 0.17–0.29). The
weight chart shows that anthocyanins play a dominant role in mixed exposure (46.80%);
that is, the relationship is mainly driven by anthocyanins, followed by carotene (26.30%)
and soy isoflavones (12.40%). However, no positive correlation was found between the
phytochemical mixture and glioma (Figure 3).
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BKMR results showed that the condPIPs of five phytochemicals were greater than 0.5
(Table S4). It suggested that they all participated in the joint exposure to glioma. Among
them, the condPIP of anthocyanins, carotene, and soy isoflavones was 1.000, suggesting
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that they have the greatest contribution to the impact of glioma, which was consistent with
the WQS results. The overall relationship between mixed exposure to phytochemicals and
glioma is shown in the Figure 4. Compared with the 50th percentile, the risk of glioma
showed a downward trend, and the overall impact was statistically significant. The chang-
ing trend of the exposure–response function of five phytochemicals is shown in Figure S1.
Overall, when other phytochemicals were at were at their median intakes, carotene, soy
isoflavones, and anthocyanins showed downward trends associated with glioma, while
the trend of flavonoids and resveratrol tended to be stable. The bivariate paired exposure–
response function showed that when carotene, soy isoflavone, and anthocyanin were fixed
at the median intake, the slope of flavonoids changed with the increase in resveratrol from
the 25th percentile to the 75th percentile, suggesting that there was an interaction between
them (Figure S2).
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4. Discussion

Our research examined the relationship between gliomas and five popular phyto-
chemicals in the Chinese population. The findings demonstrated a substantial inverse
relationship between carotene, flavonoid, soy isoflavone, anthocyanin, and resveratrol
intake and glioma. Similar results were noted in various pathological subtypes and grades,
particularly for the first time. Significant nonlinear dose–response correlations between
these phytochemicals and glioma were further validated by the restricted cubic spline
model. Glioma risk tended to stabilize after a certain intake was reached. The assessment
of mixed exposure found that the mixture of phytochemicals was related to the reduction
in glioma risk, in which anthocyanin and carotene contributed more, while flavonoids and
resveratrol had some interaction.

Carotene is an important natural pigment that is yellow, red, or orange [33]. In recent
years, carotene has been linked to some health advantages [5]. Because the body cannot
synthesize carotene, it must be ingested through food or supplements [34]. Therefore, early
epidemiological studies on carotene and cancer mainly relied on evaluating carotene-rich
fruits and vegetables. They found that eating these plant foods can reduce the risk of
some cancers, such as prostate cancer and lung cancer [35,36], but other nutrients in these
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foods may lead to confusion, such as dietary fiber and vitamins. The correlation between
intake of carotene and cancer has been the subject of several investigations. These findings
suggested that higher carotene intake had a protective effect against a variety of cancers,
including prostate cancer (RR = 0.98, 95% CI: 0.96–0.99) [37], lung cancer (RR = 0.77, 95%
CI: 0.68–0.87) [38], and esophageal cancer (OR = 0.62, 95% CI: 0.50–0.77) [39]. Compared
with other phytochemicals, there were relatively more epidemiological studies on carotene
and gliomas. Higher carotene intake can lower the incidence of glioma (OR = 0.65, 95%
CI: 0.48–0.88), according to Tedeschi-Blok et al.’s findings [40]. Based on the Nebraska
Health Study II, Chen et al. also discovered a related association. There was a strong
correlation between two carotene subtypes—α-carotene (OR = 0.50, 95% CI: 0.30–0.80) and
β-carotene (OR = 0.50, 95% CI: 0.30–0.90) and glioma [41], and carotene-rich foods were also
negatively related to glioma (OR = 0.70, 95% CI: 0.50–0.90) [42]. These were consistent with
our findings (OR = 0.07, 95% CI: 0.03–0.14), and we also found a nonlinear dose–response
relationship in which the risk of glioma did not change when the intake of carotene
exceeded 2363.0 µg/d. However, Holick et al. did not find this significant protective effect
in three large American cohort studies, which was considered to be related to the different
carotene subtypes assessed [43]. Moreover, it may be related to the metabolism of vitamin
A. Some carotene can be transformed into vitamin A in the body [44]. According to a prior
meta-analysis, vitamin A may lower the risk of glioma (RR = 0.80, 95% CI: 0.62–0.98) [45],
and metabolites of vitamin A were also related to the prognosis of gliomas [46].

The most prevalent polyphenols found in food are flavonoids. They are ubiquitous
in plant food, especially in the epidermis of fruits or the leaves of vegetables [47,48], with
pronounced antiviral, antiallergic, anti-inflammatory, and antitumor activities [49,50]. The
results of our investigation, which examined the relationship between flavonoid consump-
tion and the risk of glioma, revealed a significant nonlinear dose–response relationship
between increased flavonoid intake and glioma (OR = 0.11, 95% CI: 0.05–0.23). This was
consistent with the results of a previous prospective study. Bever et al. found that the
increased intake of flavan-3-oleopolymeric flavonoids in the diet was related to the reduced
risk of glioma, especially flavonoids in tea [51].

Soy isoflavones are a natural compound from plants and have structures and functions
similar to estrogen. The primary dietary source of isoflavones for human consumption is
soybean and its products [52]. The mechanisms behind the antiobesity, hypoglycemic, and
cancer-prevention properties of soy isoflavones have recently been explored [6]. Because of
the antiestrogenic effect of soy isoflavones, most studies have focused on breast cancer [53].
Since there have not been many studies on soy isoflavones and gliomas, this epidemiological
study based on the Chinese population may be the first to assess the connection between
soy isoflavone intake and gliomas and has discovered that consuming more soy isoflavones
can lower the risk of gliomas (OR = 0.29, 95% CI: 0.16–0.52). When the intake exceeded
30 mg/d, the risk of gliomas stabilized. DeLorenze et al. found patients with grade III
gliomas who consumed the phytoestrogen secoisolariciresinol had a better cancer survival
rate (HR = 0.48, 95% CI: 0.25–0.92) [54].

Anthocyanin is a naturally occurring pigment that is commonly present in plant leaves,
flowers, and seeds [55], which is the main reason why plants show red, orange, purple, and
blue [56]. Recent investigations on humans and animals discovered that anthocyanins can
stop or delay the onset of some chronic diseases, including atherosclerosis [57], and can
help with weight control [58]. Another study mainly focused on the digestive tract in the
epidemiological study of cancer [59]. However, there have been few epidemiological studies
on other cancers [60]. Our study found an L-shaped dose–response relationship between
anthocyanin intake and glioma. This curve suggested that there was almost no change in
the risk of glioma after the intake exceeded 8.73 mg/d (p-nonlinearity < 0.0001). However, in
another prospective study, no negative association was observed between them [51].

A type of polyphenol known as resveratrol is advantageous to human health and
possesses several positive biological functions, including anti-inflammation, antioxidation,
heart protection, and anticancer characteristics [61,62]. This compound is widely found
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in eucalyptus, pine, and lilies, but people’s intake is mainly from berries, nuts, and red
grapes [63,64]. Although numerous studies reported that resveratrol can inhibit cancer cell
proliferation and differentiation in the colon, prostate, breast, and lungs, most evidence
was restricted to in vitro experiments and preclinical studies. Epidemiological studies are
still lacking [65]. This was the first observational study to find the protective effect of
resveratrol intake on glioma (OR = 0.18, 95% CI: 0.10–0.35). Additionally, its dose–response
relationship was nonlinear, similar to the in vitro experiment on colorectal cancer [66].
The concentration of resveratrol in grape skin reaches 50–100 mg/g, which leads to more
resveratrol in wine [67]. Studies on Mediterranean participants emphasize that moder-
ate wine consumption also reduced the risk of glioma, which might also be related to
resveratrol [68,69].

At present, the mechanism of phytochemicals in glioma is not clear. On the one hand,
they participate in the regulation of apoptosis and autophagy. Coelho et al. also found
that the flavonoid apigenin can decrease the survival rate and proliferation rate of rat C6
glioma cells in a time-dependent and dose-dependent manner by inducing differentiation,
apoptosis, and autophagy [70]. Other phytochemicals, such as anthocyanins [71] and
resveratrol [72], had similar mechanisms. On the other hand, they played an antioxidant
protective role in scavenging DNA-damaged free radicals and regulating DNA repair mech-
anisms [73,74]. In rats given 50 mg/kg naringenin orally for 30 days, it was discovered that
lipid peroxidation was decreased, antioxidant capacity was increased, and the expression
of nuclear factor κB was decreased in rat brain tissue. These changes significantly slowed
the proliferation of glioma cells [75]. Therefore, they may still have potential preventive
and therapeutic effects on gliomas.

This study had the limitation of not being able to investigate the connection between
the subtypes of five phytochemicals and gliomas. Previous in vitro studies have focused
on certain phytochemical subtypes, such as quercetin, lignans, etc. However, we were
unable to fully assess the impact of phytochemical subtypes on gliomas because the food
composition table only supplied these five categories of phytochemicals. Secondly, our
assessment of phytochemical intake only depended on the FFQ, which may be biased.
However, we have minimized this bias through one-on-one interviews and food mapping
assistance. Thirdly, there were significant differences in BMI, education, smoking, allergies,
and family history of cancer between the case and control groups. These were considered to
be related to other potential influencing factors of glioma. Existing studies have shown that
glioma patients and healthy people were essentially different in smoking [68], BMI [76],
allergies [77], family inheritance [78], and so on. This was similar to other study populations
on diet and glioma [68]. To avoid potential confounding factors, we also adjusted these
results in a multivariate model. Detailed subgroup analyses were performed for these
variables, and the results remained relatively robust. In addition, we were unable to
confirm a causal link between the two, and this case–control study’s intrinsic shortcomings
cannot be avoided. However, there were still some benefits to this study. Firstly, this study
investigated the connection between the consumption of five phytochemicals and glioma,
and the findings were consistent with those of previous in vitro research, particularly for
resveratrol and soybean isoflavones, which lacked clinical investigations. Moreover, it is
the first time that the dose–response relationship between phytochemical consumption and
glioma has been described, and the strong nonlinear dose–response association offers more
epidemiological evidence for preventing glioma by phytochemicals. Importantly, this is
the first time that the association with glioma has been assessed in the context of mixed
phytochemical intake. As the main source of phytochemicals, people did not take a single
phytochemical, but a variety of phytochemicals were taken together through the dietary
route. Therefore, the effect of co-exposure to these phytochemicals on gliomas had to be
considered. Based on WQS regression and the BKMR model, we found the association
between phytochemical co-exposure and glioma and further found that anthocyanins and
carotene had the greatest effect on glioma among many phytochemicals.
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5. Conclusions

In conclusion, in this study of phytochemicals and glioma, we found that higher
intakes of carotene, flavonoids, soy isoflavones, anthocyanins, and resveratrol were associ-
ated with a reduced risk of glioma, all of which had a significant dose–response relationship
with glioma, and that the risk leveled off when intakes exceeded a certain amount. When
exposure to a mixture of phytochemicals was considered, a significant association with
glioma was still demonstrated and was primarily caused by anthocyanins and carotene.
Therefore, the effect of phytochemicals on glioma may be too significant to ignore. Future
prospective studies should further confirm this relationship.
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among the case–control participants; Table S2: Adjusted ORs and 95% CIs for gliomas in subgroups;
Table S3. Adjusted ORs and 95% CIs for the association between the phytochemical intake per unit body
weight and glioma; Table S4. The condPIP of the five phytochemicals; Figure S1: Exposure–response
plots (95% CIs) for associations between log-transformed intakes of individual phytochemicals and
glioma when all other phytochemicals were fixed at their median intakes; Figure S2: Bivariate exposure–
response plots for log-transformed intakes of individual phytochemicals and glioma when a second
phytochemical was fixed at its 25th, 50th, or 75th percentile and the other phytochemicals were fixed at
their medians.
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