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Abstract: In the present scenario, Alzheimer’s Disease (AD) is one of the incurable neuro-degenerative
disorders, which accounts for nearly 60% to 70% of dementia cases. Currently, several machine-
learning approaches and neuroimaging modalities are utilized for diagnosing AD. Among the
available neuroimaging modalities, functional Magnetic Resonance Imaging (fMRI) is extensively
utilized for studying brain activities related to AD. However, analyzing complex brain structures
in fMRI is a time-consuming and complex task; so, a novel automated model was proposed in this
manuscript for early diagnosis of AD using fMRI images. Initially, the fMRI images are acquired
from an online dataset: Alzheimer’s Disease Neuroimaging Initiative (ADNI). Further, the quality
of the acquired fMRI images was improved by implementing a normalization technique. Then,
the Segmentation by Aggregating Superpixels (SAS) method was implemented for segmenting the
brain regions (AD, Normal Controls (NC), Mild Cognitive Impairment (MCI), Early Mild Cognitive
Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Significant Memory Concern
(SMC)) from the denoised fMRI images. From the segmented brain regions, feature vectors were
extracted by employing Gabor and Gray Level Co-Occurrence Matrix (GLCM) techniques. The
obtained feature vectors were dimensionally reduced by implementing Honey Badger Optimization
Algorithm (HBOA) and fed to the Multi-Layer Perceptron (MLP) model for classifying the fMRI
images as AD, NC, MCI, EMCI, LMCI, and SMC. The extensive investigation indicated that the
presented model attained 99.44% of classification accuracy, 88.90% of Dice Similarity Coefficient
(DSC), 90.82% of Jaccard Coefficient (JC), and 88.43% of Hausdorff Distance (HD). The attained results
are better compared with the conventional segmentation and classification models.

Keywords: Alzheimer’s disease; functional magnetic resonance imaging; Honey Badger Optimization
Algorithm; Multi-Layer Perceptron; normalization technique; Superpixels

1. Introduction

AD is one of the leading chronic diseases, which generally affects people over
65 years [1]. AD is a cause of dementia, which leads to behavioral issues at the acute
stage, memory loss, lack of time sense, loss of spatial orientation, MCI, and retrograde
amnesia [2]. The common symptoms of AD are excessive fatigue, lack of mental clarity,
and mental fogginess. Generally, medical images are effective in predicting AD, where the
medical images are generated from different modalities [3]. The medical imaging modality
is a set of methods, which are utilized for creating visual representation of interior parts
of the human body [4,5]. Medical images play a crucial role in the early prediction of
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abnormalities and are used for both therapeutic and diagnostic purposes [6]. Currently,
several medical image acquisition modalities are invented on the basis of physical princi-
ples. Specifically, several non-invasive and invasive medical imaging methods are utilized
for diagnosing AD-like fMRI, Magnetic Resonance Imaging (MRI), structural Magnetic
Resonance Imaging (sMRI), cerebrospinal fluids, computerized tomography, and Positron
Emission Tomography (PET) [7–9]. The medical imaging methods assist clinicians and
physicians in improving the healthcare systems for AD.

Among the available medical imaging methods, resting state fMRI is increasingly
used for AD detection, because it is a useful tool for studying the brain, in terms of low-
frequency fluctuation of Blood-Oxygen-Level-Dependent (BOLD) signal and alteration
related to AD [10]. The resting state fMRI image is non-invasive, where it is effective in
mapping AD spreads and captures the variations of blood oxygenation levels of individu-
als [11]. Additionally, the fMRI images are effective in measuring brain activity by detecting
the changes associated with blood flow [12]. In recent decades, numerous machine-learning
approaches have been implemented for diagnosing AD. The machine-learning approaches
are efficient in identifying and classifying the resting state fMRI images utilizing prede-
termined and labeled categories. The automatic diagnosis of AD plays a crucial role in
healthcare systems because timely treatment significantly decreases the mortality rate [13].
Whereas, investigating complex brain structures in fMRI images is a time-consuming and
complex task [14,15]. So, a novel automated system is implemented in this manuscript for
effective segmentation and classification of AD and its types in resting state fMRI images.
The primary contributions are depicted below:

• Implemented a normalization technique for improving the quality of raw resting state
fMRI image by adjusting its contrast. The resultant image superiorly differentiates
both bright and dark regions;

• Developed SAS methods for tissue segmentation such as AD, NC, MCI, EMCI, LMCI,
and SMC. The SAS method partitions the denoised resting state fMRI image into
multiple segments (a set of image pixels called super-pixels). The primary objective of
the SAS method is to alter the image representation into perceptual meaning;

• Performed hybrid feature extraction (combination of Gabor and GLCM features) in
order to extract vectors. Introduced HBOA for optimizing the dimensions of the
extracted vectors. The feature extraction and optimization significantly reduce the
number of redundant vectors that decreases the model’s effort and increases the
generalization steps and learning speed;

• Used MLP classifier to classify the tissues like AD, NC, MCI, EMCI, LMCI, and SMC.
The MLP classifier has two main benefits in medical image classification; (i) effectively
manage enormous amounts of data and (ii) resolves complex non-linear concerns. As
depicted in the resulting segment, the efficacy of the presented model is zanalyzed in
light of precision, HD, f1-measure, JC, accuracy, DSC, and recall.

In this manuscript, the articles on the topic “AD detection using raw resting state fMRI
image” are surveyed in Section 2. The methods, results, discussion, and conclusion of the
presented model are depicted in Section 3, Section 4, Section 5 and Section 6, respectively.

2. Literature Review

Guo and Zhang [16] presented a new framework based on deep neural networks
for early detection of AD by utilizing different medical data: fMRI images and texts that
include genetics, sex, and age. In this literature, the intellectual functional networks
were developed based on the signal correlation of fMRI. The presented framework almost
increased 25% of diagnostic accuracy related to the conventional models. In this application,
the presented improved deep learning model has two main concerns such as vanishing
gradient and overfitting.
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Li et al. [17] have integrated a three-dimensional Convolutional Neural Network
(CNN) with Long Short-Term Memory (LSTM) network for the early detection of AD. The
experiments performed on the benchmark datasets confirmed the efficacy of the hybrid
model by means of accuracy. On the other hand, Alorf and Khan [18] combined brain
connectivity-based Graph-Convolutional Neural Network (G-CNN) with a stacked sparse
autoencoder for classifying the stages of AD from resting state fMRI images. Generally, the
hybridization of two deep learning models increases the time complexity of the system.

Ramzan et al. [19] integrated a transfer-learning model with a Deep Residual Neural
Network (DRNN) for automated diagnosis and multi-class classification of AD stages
utilizing resting-state fMRI images. In this study, different network architectures and
weight initialization methods were developed for analyzing the efficacy of the DRNN
model on a benchmark dataset by means of Area under Curve (AUC), f1-measure, recall,
precision, and Receiver Operating Characteristic (ROC) curve. The simulation analysis
indicated that the DRNN model was effective in clinical decision-making related to the
traditional models. The DRNN model has a deeper network, so it consumes more time for
model training and testing.

Duc et al. [20] implemented a three-dimensional CNN model for the automatic diag-
nosis of AD. Here, tree regression, support vector regression, linear least square regression,
group-independent component analysis, and ensemble regression based on the bagging
technique were implemented to predict Mini-Mental State Examination (MMSE) score for
the patients with AD. In addition to this, recursive feature elimination with Support Vector
Machine (SVM) was implemented for enhancing the performance of MMSE regression.
The presented model faces three main problems in AD diagnosis such as class imbalance,
vanishing gradient, and overfitting.

Sethuraman et al. [21] implemented a new Deep Neuro-Functional Network (DNFN)
for predicting AD using fMRI images. The presented DNFN needs limited hardware re-
sources and was computationally more effective than the existing models. Amini et al. [22]
presented a new CNN architecture for diagnosing the severity of AD. The primary aim of
this study was to analyze the relationship between MMSE score and fMRI images. In this
study, a multi-task feature learning approach was utilized for extracting vectors. The MMSE
score was computed to analyze the severity of AD categories such as severe, moderate,
mild, and low. The obtained experimental results demonstrated the efficacy of the CNN ar-
chitecture over the existing machine learning models, and the CNN architecture superiorly
diagnoses the stages and severity of AD with maximal accuracy. The combination of CNN
with clinical imaging assists clinicians in finding prognostic markers and risk factors.

Hojjati et al. [23] initially used a graph theory algorithm for characterizing the aspects
of fMRI images by computing segregation and integration measures. Secondly, the subcor-
tical and cortical measurements were computed from the fMRI images. Then, sequential
feature collection and discriminative correlation analysis were employed for feature selec-
tion and reduction. The selected features were given to the SVM classifier for classifying
dissimilar groups of AD patients. The numerical analysis states the potential of the pre-
sented model based on the combination of structural and functional MRI in AD prediction,
but the presented model was computationally costly.

Sun et al. [24] developed a hybrid model based on the LSTM network and CNN for
predicting MCI and diagnosing AD. After collecting the fMRI images, the training samples
were increased by implementing an adversarial network. The collected images were fed to
the hybrid model (combination of LSTM network and CNN) for automatic prediction and
classification of AD. The presented hybrid model not only predicts stable and progressive
MCI but also distinguishes AD from normal health conditions. The presented hybrid
model was superior to the existing machine learning models but has the problems of
overfitting and high time complexity. Sarraf et al. [25] developed an optimized CNN model
for recognizing the stages of cognitive impairments; however, the developed optimized
CNN model was computationally expensive.
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Janghel and Rathore [26] presented a novel model for the early diagnosis of AD from
fMRI images. Initially, image resizing and Visual Geometry Group (VGG)-16 were em-
ployed for image pre-processing and feature extraction. Then, the AD classification was
performed using different machine learning models such as decision trees, k-means cluster-
ing, linear discriminant analysis, and SVM. The evaluation measures such as sensitivity,
specificity, and accuracy demonstrated the effectiveness of the presented model over the
existing models. The use of traditional machine learning classifiers has two major concerns
in image classification, including outliers and overfitting.

Zhang et al. [27] developed a new machine-learning framework for the automatic
prediction of MCI to AD. In this study, three algorithms (sparse linear regression, minimal
redundancy-maximal relevance, and random subset) were utilized for feature selection.
The obtained features were given to the SVM classifier for AD and MCI prediction. The
integration of three feature-selection algorithms increases the complexity of the devel-
oped framework.

Odusami et al. [28] have developed a fine-tuned ResNet-18 network for the early
detection of AD using MRI images. In this study, the effectiveness of the developed ResNet-
18 network was validated by means of specificity, accuracy, and recall. Shi and Liu [29]
initially used the Hilbert Huang transformation technique for decomposing the collected
fMRI signals into several Intrinsic Mode Functions (IMFs). Secondly, Hilbert weighted
frequency was employed to extract vectors from the IMFs. Finally, the obtained vectors
were given to the SVM for classifying the stages of MCI. However, the SVM classifier
supports only binary class classification, which was inefficient in multi-class classification.

Anter et al. [30] have integrated a neuro-fuzzy scheme with an effective swarm intelli-
gence optimization algorithm for the recognition of MCI from resting state fMRI images.
The developed optimization algorithm has a main issue of poor convergence rate. For
addressing the above-mentioned concerns, a novel model is proposed for the effective
detection of AD utilizing resting-state fMRI images.

3. Methods

The proposed system includes six phases for predicting AD in resting state fMRI im-
ages such as dataset description: ADNI, denoising: normalization technique, segmentation:
SAS method, feature extraction: GLCM and Gabor features, feature optimization: HBOA,
and classification: MLP model. The flow diagram of the proposed system is shown in
Figure 1.
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3.1. Database Description and Denoising

In this manuscript, the proposed HBOA-MLP system’s performance is tested on a
benchmark dataset named ADNI [31]. The ADNI is a multi-site study, which aims in
generating clinical, neuroimaging, biochemical, and genetic biomarkers for AD tracking,
prognosis, and diagnosis. The ADNI comprises neuro-images in different modalities such
as Diffusion Tensor Imaging (DTI), fMRI, MRI, and PET. Here, the resting state fMRI images
are utilized for experimental investigation. The collected datasets comprise 138 individuals
(25 AD, 25 NC, 13 MCI, 25 EMCI, 25 LMCI, and 25 SMC) [19]. The respective individuals
are labeled and diagnosed based on clinical dementia rating and MMSE score. The statistics
of the ADNI dataset are mentioned in Tables 1 and 2.

Table 1. Statistics of the ADNI dataset.

Properties Description

Format Digital imaging and communications in medicine
Slice thickness 3.31
Pixel spacing 3.31

Slices 6720
Height, width 64, 64

Flip angle 80◦

Field strength 3.0
Acquisition scanner Philips medical systems

Echo-planar imaging 140 images per volume

Table 2. Overview of the ADNI dataset.

Classes Subjects Mean Age

AD 25 74.69
NC 25 75.09
MCI 13 75

EMCI 25 71.87
LMCI 25 72.27
SMC 25 72.51
Total 138 -

After acquiring the resting state fMRI images, the image denoising is accomplished by
using the normalization technique. In this scenario, the normalization technique improves
the quality of resting-state fMRI images by altering the contrast of the images [32,33]. The
sample acquired and normalized resting-state fMRI images are graphically specified in
Figure 2. The formula of the normalization technique is mentioned in Equation (1). Where,
the normalized fMRI image is specified as IN, the original resting state fMRI image is
stated as I, minimum and maximum pixel intensity value are represented as Min and Max,
which generally range between 0 and 255, and the pixel intensity value of the normalized
image is mentioned as newMax and newMin.

IN = (I −Min) +
newMax− newMin

Max−Min
+ newMin (1)
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3.2. Segmentation

The segmentation process is performed once the denoised resting state fMRI image is
obtained. In this scenario, the aligned super-pixels are considered for image segmentation.
Diverse patterns and multi-scale visual patterns are generally used for natural images. The
super-pixels have a dissimilar combination of the cues to show promising results, but not
fully explored. The super-pixels are collected from the SAS for partitioning, here; bipartite
graph partitioning is linear to the pixels. The resultant images are negligible and constant
compared to the super-pixels [34,35]. The strong connections are relatively provided among
the super-pixels and pixels of resting-state fMRI image. Steps involved in the SAS method
are given below;

Input: IN is the normalized image and k is the number of segments.
Output: IS is the segmented image using k-way segmentation.

• From the image IN, super-pixels S are collected in the bag;
• The bipartite graph is constructed;
• k Groups are derived from the bipartite graph to apply the T-cut methodology;
• The pixels are treated as the segment taken from the same group.

After the calculation of SAS, the mean orientation is determined for the extracted
resting state fMRI image. The information of the objects and the regions are merged, which
provides detailed information for the mean shift and resultant segmentation. The process
of mean shift performs clustering, and then the data point is calculated for every data that
describes the mean shift. After describing the mean shift, image segmentation, tracking,
mode seeking, visual tracking, etc. are performed. The obtained data points are fed to
the most important and popular estimation methodology called kernel density, where the
data points are represented as i = 1, . . . n in Rd dimensional space, K(x) is specified as a
multi-variate estimator, which is defined along with a matrix H for bandwidth, and x is
indicated as computed data points, which are estimated using Equations (2) and (3).

f̂ (x) =
1
n

n

∑
i−1

KH(x− xi) (2)

where,
KH(x) = |H|−

1
2 K
(

H−
1
2 x
)

(3)
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Hence, K1(x) is a symmetric univariate kernel that generates multivariate kernel
functions in different ways, as shown in Equation (4).

Kp(x) =
d

∏
i=1

K1(x)KS(x) = ak,dK1(‖x‖) (4)

where, Kp(x) represents kernel product, which is univariate. The KS(x) form K1(x) in Rd,
i.e., KS(x) is radially symmetric. The constant a−1

k,d =
∫

Rd K1(‖x‖)dx, which assures that
KS(x) is summed into one. The kernels are symmetric, and it is mathematically specified in
Equation (5).

K(x) = ck,dk
(
‖x‖2

)
(5)

where, K(x) represents kernel profile, which satisfies x ≥ 0, ck,d states the normalization
constant; here ck,d makes K(x) into one by integrating and the results obtained are assumed
to be positive. The Euclidean measure h for the feature space needs to be confirmed initially,
and then the parameter for the bandwidth is utilized, as expressed in Equation (6).

f̂ (x) =
1

nhd

n

∑
i−1

K
(

x− xi
h

)
(6)

The kernel density is estimated to be superior using the mean square error that
determines the optimal density. The density estimated in Equation (6) is rewritten and
represented in Equation (7).

f̂h,k(x) =
ck,d

nhd

n

∑
i=1

K
(∣∣∣∣∣∣∣∣ x− xi

h

2∣∣∣∣∣∣∣∣) (7)

The original density f (x) with the feature space is initially utilized for identifying the
modes of density. The gradient∇ f (x) = 0 is used for locating the modes that establish zeros
for the mean shift process. The gradient estimation of the density attained the estimator of
gradient that employed the function linearly. In the next phase, feature extraction is carried
out from the segmented tissues (AD, NC, MCI, EMCI, LMCI, and SMC) in the resting state
fMRI image. The segmentation output of the SAS method is represented in Figure 3.
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3.3. Feature Extraction

After segmenting the brain regions: AD, NC, MCI, EMCI, LMCI, and SMC from the
denoised images, the feature extraction was performed by implementing GLCM and Gabor
features. Initially, the Gabor features were calculated from the segmented fMRI images
IS by utilizing the Gabor filter bank. Generally, the obtained Gabor vectors are multi-
dimensional in nature and highly redundant [36]. Therefore, the Gabor filtering technique
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was employed for decreasing the dimensions of the extracted Gabor vectors. The extracted
2361 Gabor vectors were efficient in categorizing the brain images. The GLCM features
(difference entropy, entropy, correlation, sum entropy, information measure of correlation,
sum of squares, difference variance, contrast, sum average, homogeneity, sum variance, and
energy) efficiently provide information about the relative neighborhood of pixel positions
in the segmented resting-state fMRI images IS in order to achieve better classification
results [37]. The undertaken GLCM features extract 2102 vectors from the segmented fMRI
images. The extracted 4463 vectors were fed to the HBOA for dimensionality reduction,
where this process decreases the processing time and complexity of the proposed system.
The visual analysis of the feature importance score is stated in Figure 4.
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3.4. Feature Optimization

The extracted 4463 vectors were fed to the HBOA for feature optimization. The HBOA
follows the honey badger’s behavior to catch the prey, and this optimization algorithm has
two main steps (digging and honey) for resolving the optimization problems. In the honey
step, the honey badgers follow honey birds for determining the beehive. In the digging
step, the prey is determined based on the smelling ability of honey badgers [38,39]. First,
we initialized the agents, as shown in Equation (8).

Zi = LBi + r1 × (UBi − LBi), i = 1, 2, 3, . . . n (8)

where, the lower and upper boundaries are indicated as LB and UB and the random
number is represented as r1, which usually ranges between zeros to one. For balancing the
exploration (digging) and the exploitation (honey) searches, a density factor α is used in
HBOA, and it is mathematically depicted in Equation (9).

α = l × exp(−
iter

Miter
) (9)

where, the maximum iteration is denoted as Miter, present iteration number is specified
as iter, and the constant value is indicated as l > 1. In addition to this, a digging phase
operator is employed based on the cardioid movement formula for updating the solutions,
where it is mathematically expressed in Equation (10).

Znew = Zk + Q× β× In× Zk + Q× α× di × r3 × |cos(2πr4)× [1− cos(2πr5)]| (10)
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where, β is represented as a constant value, r3, r4, r5, and r6 are denoted as a random
number, Znew is indicated as the new value of Zi and Zk, where it specifies the best
solutions obtained so far. The term Q is utilized to control the search directions, as specified
in Equation (11).

Q =

{
1, I f (r6 ≤ 0.5),
−1, Else

(11)

where, the smell intensity of the prey is denoted as In. The distance between the honey
badger and the prey is computed utilizing Equations (12) and (13). As mentioned in
Equation (14), the solutions are updated using the honey step operators.

Ini = r2 ×
G

4πd2
i

(12)

where,

G =
(

Zi − Zi+1
)2

, di = Zk − Zi (13)

Znew = Zk + Q× r7 × α× di (14)

where, the random numbers are represented as r2 and r7. As illustrated in Equation (15),
the optimal vectors are selected based on Fit(Zi).

Fit(Zi) = η × |Zi|
d

+<× (1− γE(D)),<+ η = 1 (15)

where, the dependency degree is represented as γE(D), which is computed utilizing
Equation (16). The coefficients η and < are utilized for balancing the exploration and
exploitation abilities, and d indicates optimal vectors. The term POSC(D) is represented as
a positive region, which is mathematically denoted in Equation (17).

γC(D) =
|POSC(D)|
|U| (16)

POSC(D) = UK(Z), Z ∈ U
D

(17)

where, K(Z) indicates lower approximation, and γE(D) denotes approximating power.
The parameters considered for HBOA are random numbers range is 0.6, dimension is four,
β is one, maximum iteration is 100, α is one, and population size is equal to extracted
vectors. From the 4463 vectors, HBOA selects 3260 vectors, which are given to the MLP
model for classifying the AD and its types. The flowchart of HBOA is graphically shown in
Figure 5. After feature optimization, the correlation between the selected feature vectors
was analyzed by implementing Pearson’s correlation method. The correlation analysis
helps in finding the association between the class features and the continuous feature
vectors. Here, the probability of Pearson’s correlation value r was 0.05, and it showed that
the selected feature vectors were statistically significant.
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3.5. Classification

After the selection of 3260 vectors, MLP was employed for classifying the AD and
its types such as AD, NC, MCI, EMCI, LMCI, and SMC. The MLP is one of the effective
feed-forward neural networks, which includes benefits such as easy implementation and
requiring only a small training set [40,41]. Generally, the MLP model has three layers such
as output, hidden, and input layers. In the hidden layer, the model with an excessive or
insufficient number of neurons leads to overfitting and bad generalization problems. In
this research manuscript, the MLP model was implemented with three hidden layers of
10 hidden neurons. In the hidden layer, every neuron was summed with selected vectors vi
with connection weight wij. The output of every neuron oj is mathematically described in
Equation (18).

oj = A
(
∑ wij × vi

)
(18)

where, the activation function is represented as A, here, the hyperbolic tangent function is
utilized as an activation function. The sum of square difference between the actual and the
desired values of the output neurons E is mathematically expressed in Equation (19).

E =
1
2 ∑

j

(
odj − oj

)2
(19)

where, oj represents the actual output value of the neuron and odj indicates desired output
value of the neuron. Further, the weight value wij is iteratively adjusted for minimizing E
based on the adopted training algorithm. In this manuscript, the back-propagation of the
MLP model is supported by the levenberg marquardt algorithm. The parameters assumed
in the MLP model are as follows: the learning rate was 0.0001, the number of hidden layers
was three, the number of hidden nodes in each layer was ten, and the activation function
was a hyperbolic tangent function. The results and discussion of the segmentation method
(SAS) and classification model (HBOA-MLP) are specified in Section 4.
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4. Results

The presented segmentation method (SAS) and classification model (HBOA-MLP)
were executed on a Matlab 2022a environment with a system configuration of 128 GB RAM,
Windows operating system, 4 TB hard-disk, and Intel Core i9 14th-generation processor.
Here, the presented SAS method and HBOA-MLP model’s performance were tested on an
online dataset: ADNI by means of JC, HD, DSC, f1-measure, recall, precision, and accuracy.
Particularly, the SAS method’s efficacy was analyzed in light of JC, HD, and DSC.

4.1. Performance Measures

The DSC was utilized for comparing the pixel-wise agreements between the ground-
truth images and the segmented images. On the other hand, the JC is one of the effective
functions that superiorly estimates the similarity measure between two resting-state fMRI
images. In addition to this, HD is a useful and informative evaluation measure used
extensively in medical image segmentation. The mathematical formulas of JC, HD, and
DSC are mentioned in Equations (20)–(22).

JC =
|GT ∩ SE|
|GT ∪ SE| × 100 (20)

HD(GT, SE) = max{ sup
gt∈GT

in f
se∈SE

d(gt, se), sup
se∈SE

in f
gt∈GT

d(gt, se)} (21)

DSC = 2
|GT ∩ SE|
|GT|+ |SE| × 100 (22)

where, in f is represented as infimum, GT is indicated as the ground-truth of the resting-
state fMRI image, SE is denoted as the segmented image, and sup is denoted as the
supremum. The data points present in the surfaces of SE and GT are denoted as se and gt,
and the term d(gt, se) is stated as the distance between the points se and gt.

Correspondingly, the classification performance of the HBOA-MLP model is analyzed
in light of f1-measure, recall, precision, and accuracy. The f1-measure is a combined
evaluation measure, which effectively captures the trade-off associated with recall and
precision values. The evaluation measure: precision is defined as the proportion of classified
positive cases, which are actually the real positive values.

On the other hand, recall is defined as the proportion of actual positive classes, which
are precisely classified. Lastly, accuracy is defined as the ratio of the total number of
predictions to the number of correct predictions. The formulas used to compute accuracy,
f1-measure, recall, and precision are given in Equations (23)–(26).

Accuracy =
True Positive (TP) + True Negative (TN)

TP + TN + False Positive (FP) + False Negative (FN)
× 100 (23)

F1−measure =
2TP

FP + 2TP + FN
× 100 (24)

Recall =
TP

TP + FN
× 100 (25)

Precision =
TP

TP + FP
× 100 (26)

4.2. Quantitative Study Related to Segmentation

In the initial phase, the quantitative results of the proposed SAS method and other
comparative segmentation methods are stated in Table 3. As depicted in Table 3, the pro-
posed SAS method has better segmentation results with DSC of 88.90%, JC of 90.82%, and
HD of 88.43%. The obtained results are superiorly higher than the existing segmentation
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methods such as the Otsu thresholding technique, watershed algorithm, and super-pixel
clustering technique. Hence, the primary objective of the SAS method is to simplify the
representation of denoised resting-state fMRI images into perceptual meaning. The visual
presentation of the SAS method and other comparative segmentation method results are
mentioned in Figure 6.

Table 3. Results of the SAS method and other comparative segmentation methods.

Segmentation Methods DSC (%) JC (%) HD (%)

Otsu thresholding 67.80 74.55 70.90
Watershed 72.33 80.90 72.39

Super-pixel clustering 80.12 86.53 78.90
SAS 88.90 90.82 88.43
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4.3. Quantitative Study Related to Classification

The experimental results of the HBOA-MLP model and other comparative classifica-
tion models are mentioned in Table 4. In this scenario, the classification model’s perfor-
mance was analyzed without performing optimization and with HBOA. In the case without
performing feature optimization, the MLP classifier obtained better classification results
with an f1-measure of 90.16%, precision of 90.20%, recall of 91.90%, and accuracy of 86.50%.
The results are superior to other classification models such as random forest, XGBoost,
decision tree, and SVM. Compared to the existing machine learning classifiers, the MLP
includes the following benefits: (i) makes faster predictions after training, (ii) efficiently
manages enormous amounts of input data, (iii) resolves complex non-linear concerns, and
(iv) achieves higher classification accuracy with a limited number of data samples.

On the other hand, in the case of HBOA, the MLP classifier obtained an f1-measure of
99.55%, precision of 99.28%, recall of 99.55%, and accuracy of 99.44%, which are superior
to comparative classification models. Here, the experimental investigation is performed
with 80:20% of training and testing of resting-state fMRI images. The visual presentation of
the HBOA-MLP model and other comparative classification model results are specified in
Figure 7.
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Table 4. Results of HBOA-MLP model and other comparative classification models.

Without Performing Optimization

Classifiers F1-Measure (%) Precision (%) Recall (%) Accuracy (%)

Random forest 81.23 79.28 81.18 77.90
XGBoost 83.39 81.26 84.30 79.45

Decision tree 87.59 83.86 87.28 81.28
SVM 88.99 88.33 89.26 84.38
MLP 90.16 90.20 91.90 86.50

With HBOA

Classifiers F1-Measure (%) Precision (%) Recall (%) Accuracy (%)

Random forest 90.40 88.34 90.38 92.20
XGBoost 93.30 90.98 91.42 93.82

Decision tree 95.58 93.26 93.24 94.20
SVM 98.68 98.70 95.78 96.78
MLP 99.55 99.28 99.55 99.44
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The experimental results of HBOA and other optimization algorithms are stated in
Table 5. Related to the comparative optimization algorithms: Genetic Algorithm (GA),
Dragonfly Algorithm (DA), Whale Optimization Algorithm (WOA), and Squirrel Search
Algorithm (SSA), the HBOA has higher classification results by means of f1-measure, preci-
sion, recall, and accuracy. As mentioned in the introduction section, the selection of optimal
vectors significantly decreases the system complexity to linear and the computational time
of image classification to 62.11 s. The proposed HBOA has a faster convergence rate than
other optimization algorithms and significantly avoids local optima traps, while dealing
with enormous amounts of data. The visual presentation of HBOA and other optimization
algorithm results is depicted are Figure 8.

Table 5. Results of HBOA and other optimization algorithms.

Optimization Algorithm F1-Measure (%) Precision (%) Recall (%) Accuracy (%)

GA 92.38 93.36 90.93 90.59
DA 94.26 94.56 92.36 94.43

WOA 95.45 94.94 94.87 95.95
SSA 96.67 95.65 96.38 98.45

HBOA 99.55 99.28 99.55 99.44
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4.4. Comparative Study

The efficacy of the HBOA-MLP model was validated with the existing model: DRNN
developed by Ramzan et al. [19], and it is specified in Table 6. In the existing literature,
Ramzan et al. [19] combined transfer learning with DRNN for classifying AD stages (AD,
NC, MCI, EMCI, LMCI, and SMC) using resting-state fMRI images. Here, different weight
initialization methods and network architectures were used for analyzing the effectiveness
of the DRNN model on a benchmark dataset: ADNI. The acquired ADNI datasets comprise
138 individuals (25 AD, 25 NC, 13 MCI, 25 EMCI, 25 LMCI, and 25 SMC). The experiments
conducted on the ADNI dataset demonstrated the effectiveness of the DRNN with a mean
classification accuracy of 97.84%. Compared to the existing DRNN model, the HBOA-MLP
model obtained a maximum mean classification accuracy of 99.44% on the ADNI dataset
using resting-state fMRI images.

Table 6. Comparative results of HBOA-MLP and DRNN.

Models Mean Classification Accuracy (%)

HBOA-MLP 97.84
DRNN [19] 99.44

5. Discussion

As mentioned in the introduction section, segmentation and feature optimization are
integral parts of this research. The SAS significantly segments the brain regions (AD, NC,
MCI, EMCI, LMCI, and SMC) from the denoised resting-state fMRI images. Further, the
selection of optimal vectors decreases the system complexity to linear and the compu-
tational time of image classification to 62.11 s. However, the computational time of the
HBOA-MLP model is superior to other comparative classification models and optimization
algorithms. The efficacy of the presented segmentation method (SAS) and classification
model (HBOA-MLP) are depicted in Tables 3–6.

6. Conclusions

In this manuscript, a novel segmentation method (SAS) and classification model
(HBOA-MLP) were proposed for the early diagnosis of AD using fMRI images. First, the
quality of the collected fMRI images was enhanced by implementing the normalization
technique, and, further, the brain regions (AD, NC, MCI, EMCI, LMCI, and SMC) were
superiorly segmented by employing the SAS method. Next, the hybrid feature extrac-
tion and optimization were accomplished by utilizing Gabor features, GLCM features,
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and HBOA. The dimensionally reduced vectors were fed to the MLP classifier for image
classification. In this scenario, the evaluation measures precision, HD, f1-measure, JC, accu-
racy, DSC, and recall were utilized for analyzing the efficacy of the segmentation method
(SAS) and classification model (HBOA-MLP). As mentioned in the resulting segment, the
HBOA-MLP model attained 99.44% of accuracy, and it is superior to the conventional
comparative machine-learning models. On the other hand, the selection of optimal active
vectors by HBOA diminished the proposed system complexity to linear and decreased the
computational time of segmentation and classification to 42.33 s and 62.11 s. However,
the MLP network includes too many parameters, because of its fully connected nature,
and here, every node is connected with another node in a dense web that results in higher
redundancy and inefficiency in the larger datasets.

As a future extension, an effective transfer learning based CNN model is proposed
with HBOA for precise AD prediction, because the MLP network is not ideal in processing
patterns with multidimensional data. In addition, multimodal data (a combination of
Electroencephalography (EEG), fMRI, and MRI) can be utilized for further enhancing the
performance of AD prediction.
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41. Car, Z.; Šegota, S.B.; And̄elić, N.; Lorencin, I.; Mrzljak, V. Modeling the spread of COVID-19 infection using a multilayer
perceptron. Comput. Math. Methods Med. 2020, 2020, 5714714. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s13319-019-0215-1
https://doi.org/10.1016/j.matcom.2021.08.013
https://doi.org/10.3389/fenrg.2022.875332
https://doi.org/10.1016/j.ceh.2020.11.002
https://doi.org/10.1155/2020/5714714

	Introduction 
	Literature Review 
	Methods 
	Database Description and Denoising 
	Segmentation 
	Feature Extraction 
	Feature Optimization 
	Classification 

	Results 
	Performance Measures 
	Quantitative Study Related to Segmentation 
	Quantitative Study Related to Classification 
	Comparative Study 

	Discussion 
	Conclusions 
	References

