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Abstract: As a major public-health concern, obesity is imposing an increasing social burden around
the world. The link between obesity and brain-health problems has been reported, but controversy
remains. To investigate the relationship among obesity, brain-structure changes and diseases, a
two-stage analysis was performed. At first, we used the Mendelian-randomization (MR) approach to
identify the causal relationship between obesity and cerebral structure. Obesity-related data were
retrieved from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and the UK
Biobank, whereas the cortical morphological data were from the Enhancing NeuroImaging Genetics
through Meta-Analysis (ENIGMA) consortium. Further, we extracted region-specific expressed genes
according to the Allen Human Brian Atlas (AHBA) and carried out a series of bioinformatics analyses
to find the potential mechanism of obesity and diseases. In the univariable MR, a higher body mass
index (BMI) or larger visceral adipose tissue (VAT) was associated with a smaller global cortical
thickness (pBMI = 0.006, pVAT = 1.34 × 10−4). Regional associations were found between obesity and
specific gyrus regions, mainly in the fusiform gyrus and inferior parietal gyrus. Multivariable MR
results showed that a greater body fat percentage was linked to a smaller fusiform-gyrus thickness
(p = 0.029) and precuneus surface area (p = 0.035). As for the gene analysis, region-related genes were
enriched to several neurobiological processes, such as compound transport, neuropeptide-signaling
pathway, and neuroactive ligand–receptor interaction. These genes contained a strong relationship
with some neuropsychiatric diseases, such as Alzheimer’s disease, epilepsy, and other disorders. Our
results reveal a causal relationship between obesity and brain abnormalities and suggest a pathway
from obesity to brain-structure abnormalities to neuropsychiatric diseases.

Keywords: obesity; body mass index; cerebral cortex; Mendelian randomization analysis; gene
expression; cognitive impairment

1. Introduction

Obesity remains a major public-health challenge due to its rising prevalence [1]. It
is well documented that obesity is associated with an increased risk of mortality as well
as numerous health disorders, including diabetes, hypertension, cardiovascular diseases,
metabolic syndromes, and even cancer [2]. The effect of obesity on the central nervous
system is receiving growing wide attention. Obesity impairs cognitive function, manifest-
ing deficits in episodic memory, selective attention, executive functions, decision-making
processing, and other cognitive domains [3]. Regarding obesity as a risk factor for de-
mentia, several international initiatives have adopted weight management as a dementia-
prevention measure [4]. Neuroimaging studies have reported brain-structural alterations
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in obese individuals [5–8]. Recent evidence has documented that obesity is linked to de-
creased gray-matter volume or density at both global and regional levels [3]. There was
a significant correlation between elevated body mass index (BMI) and cortical atrophy in
the prefrontal, frontal, temporal, and occipital cortex [9]. However, this association was
different in other studies [9,10]. A higher volume of intra-abdominal fat is associated with
greater cortical thickness, including the cingulate, fusiform, and insular cortex [11–13].
All results are based on observational studies, but observational associations are not able
to discriminate between correlations and causal relationships. More importantly, reverse
causation and residual confounders may bias the results, leading to distortion of the true
relationship. For example, impairments in regions responsible for energy intake or eat-
ing behavior make people prone to aberrant overeating, thus contributing to obesity [9].
Therefore, the relationship between obesity and brain structure remains unclear.

At the same time, little is known about the underlying mechanisms if obesity does
affect the brain. Previous studies have revealed the shared genetics between obesity and
neuropsychiatric disorders [14]. Obesity influences the transcriptional activity of the brain
genes [15–17]. Great progress has been made in this field, but too little work has been
devoted to linking obesity to gray matter and genetic information in the human brain. If
obesity does affect certain brain structures, would there be changes in gene expression
in those affected brain regions, and would these gene changes be associated with certain
diseases? The brain-wide gene-expression atlases have connected spatial variations in gene
expression to brain structure and function [18], which will be helpful to offer a clearer
understanding of the association between obesity and brain structure.

Mendelian randomization (MR) is a statistical approach that uses genetic variants,
such as single-nucleotide polymorphisms (SNPs), as instrumental variables to infer causal-
ity between exposure and diseases [19]. The alleles of a given SNP are randomly allocated
to individuals during human-gamete formation, which happens before any exposure or
outcome, so inherited variants are independent of potentially confounding environmen-
tal exposure [20]. A common strategy used to study the human brain is neuroimaging
techniques, mainly magnetic resonance imaging (MRI). Nevertheless, there is no previous
research using the Mendelian randomization approach to makes up for the problem of
obesity and the human brain. In the present research, the study set out to determine the
causal associations between obesity and the cerebral cortex using the MR approach. Using
the data from public sources, body mass index (BMI), waist-to-hip ratio (WHR), body
fat percentage (BFP), and visceral adipose tissue (VAT) were included in our study to
comprehensively investigate their relationships with the brain. Subsequently, we acquired
gene expression in obesity-related brain regions and tested which biological processes or
functional pathways were linked to obesity-related brain abnormalities. By analyzing the
relevance of obesity and diseases from the perspective of gene expression, our study will
provide a deeper insight into the effects of obesity on the brain.

2. Materials and Methods
2.1. Study Design

The workflow of this study is summarized in Figure 1. In the first stage, we performed
univariate two-sample MR analyses to evaluate the causal effect of obesity on the cortex
structure. Then, based on the result of the two-sample MR analysis, we conducted addi-
tional multivariate MR (MVMR) analyses to further investigate the impact of obesity on
the cortex. In the second stage, we extracted the specific expression genes of the brain
regions that were statistically significant in MR analyses from the Allen Human Brain Atlas
(https://human.brain-map.org/, accessed on 30 December 2022). We used these genes
to conduct several bioinformatics analyses, including enrichment analysis for functional
or disease characteristics and protein–protein interactions on the STRING website. MR
analysis was performed based on the recommendations of the STROBE-MR statement [21].
It should fulfill three core assumptions: (1) The instrumental variables (IVs) are associated
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with the exposure, (2) IVs are not associated with confounders, and (3) IVs influence the
outcome only via the given exposure [20].
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Figure 1. Flow diagram of the analysis pipeline used in the study. (A). Two-sample MR analyses
were performed to evaluate the causal effect of obesity on the cortex structure. (B). Bioinformatics
analyses were performed using genes that were differentially expressed in brain regions significantly
indicated in step A.

2.2. Data Sources for Obesity and Cortical Structure Phenotype

Four obesity-related traits, including BMI, WHR, BFP, and VAT, were considered
as the exposure factors in our analysis. The summary-level genome-wide association
study (GWAS) data correlated with BMI were obtained from a meta-analysis of GWASs
of European-ancestry participants from the GIANT consortium and the UK Biobank [22].
This meta-analysis of GWASs of BMI included nearly 700,000 individuals. Genetic vari-
ants associated with waist-to-hip ratio (WHR) were also based on a large-scale GWAS
(697,734 individuals) from the GIANT consortium (n = 212,248) and the UK Biobank
(n = 485,486) [23]. We selected SNPs associated with body fat percentage (BFP) and visceral
adipose tissue (VAT) from the UK Biobank [24]. The number of samples and other details
are shown in Table 1.
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Table 1. Summary of exposure factors.

Exposure Unit Consortium or
Study Sex Sample Size Population SNP Number F-Value

BMI SD (kg/m2) GIANT+UKB Males and females 681,275 European 513 74.036
WHR SD GIANT+UKB Males and females 697,734 European 72 71.708
BFP SD (%) UKB Males and females 492,787 European 300 42.851
VAT SD (kg) UKB Males and females 325,153 European 220 57.661

GIANT: Genetic Investigation of ANthropometric Traits (GIANT) consortium; UKB: UK Biobank; BMI: body mass
index; WHR: waist-to-hip ratio; BFP: body fat percentage; VAT: visceral adipose tissue.

The human cortical structure-related GWAS data were obtained from the Enhancing
NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium [25], including
23,909 participants of European descent from 49 cohorts. The biochemical GWASs, exclud-
ing UK Biobank GWASs, were used to eliminate statistical inflation arising from sample
overlap between the ENIGMA and UK Biobank cohorts. The measured cerebral phenotype
included cortical thickness (TH) and cortical surface area (SA). The cerebral cortex was
divided into 34 brain regions based on the Desikan–Killiany cortical atlas [26]. The regions
were averaged between both hemispheres.

2.3. Selection of Genetic Variants

We used single nucleotide polymorphisms (SNPs) as instrumental variables. To
identify the causal relationship between obesity and the human cerebral cortex, we used
four indicating different aspects of obesity, such as adipose proportion or distribution.
The threshold of genome-wide significance for SNPs was set at p < 5 × 10−8. To obtain
independent instrumental variables, all significant SNPs were clumped according to linkage
disequilibrium (r2 < 0.001 with ±10,000 kb based on the 1000 Genomes Project identified
therein as having European ancestry). Then, we harmonized all SNPs to ensure that effect
estimates corresponded to the same allele. The proportion of variance explained by each
SNP was calculated via the formula R2 = 2 × β2 × MAF × (1 − MAF). β is the estimate of
the effect of SNP on exposure, and MAF is minor-allele frequency. In addition, F-statistics
were also calculated to avoid bias due to weak IVs [27]. An SNP with F-statistics less
than 10 was defined as a weak instrumental variable [28], and all weak IVs were removed.
F-statistics for each exposure were calculated as follows (Equation (1)) [29]:

F =
N − K − 1

K
R2

1 − R2 (1)

where K means the number of SNPs, N means the number of the sample size, and R2 is
the proportion of variance explained by all SNPs. In addition, we also removed SNPs
associated with other potential risk factors based on the results in the PhenoScanner (www.
phenoscanner.medschl.cam.ac.uk, accessed on 12 December 2022). MR Pleiotropy RESidual
Sum and Outlier (MR-PRESSO) was applied to remove the underlying outliers (based on
10,000 simulations) [30]. Table 1 shows the basic characteristics of exposure factors.

2.4. Mendelian Randomization

Two-sample Mendelian randomization (MR) was employed to further explore and
quantify the impact of obesity on cortex structure. Inverse-variance weighting (IVW),
weight median (WM), and MR-Egger were used to estimate the causal relationship between
exposure (obesity) and outcome (brain structure). Given the presence of heterogeneity
among SNPs, random-effect IVW was used as the primary method, in which the slope of
the weighted regression represented the resulting estimate [31]. In sensitivity analyses, we
evaluated heterogeneity by IVW and MR-Egger. Cochran’s Q test (p < 0.05 indicates hetero-
geneity) was adopted to assess the heterogeneity among SNPs in IVW estimates [32]. We
also conducted a leave-one-out analysis to estimate the influence of outlying or pleiotropic
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genetic variants. The potential pleiotropy of these SNPs was evaluated via MR-Egger
regression intercept [33]. MR Steiger analysis was performed to estimate the potential
reverse-causal impact of various obesity traits on each brain phenotype [34]. A two-sided
p-value < 0.05 was regarded as statistically significant. For region-level analyses, there
were 34 components. Therefore, a Bonferroni-corrected p-value < 0.05/34 (1.47 × 10−3)
was taken to indicate statistical significance for a causal association, whereas a p < 0.05 was
regarded as a potential, yet to be confirmed, causal association. The sample size and the
power were calculated via a web-based tool (mRnd: Power calculations for Mendelian Ran-
domization, https://shiny.cnsgenomics.com/mRnd/, accessed on 12 December 2022) [35].
We estimated sample sizes at power 80% and alpha 0.05.

As an extension of MR, multivariable MR (MVMR) uses genetic variants associated
with multiple potentially related exposures to estimate the effect of each exposure on a sin-
gle outcome [36]. In our study, multivariable MR analysis was an essential supplementary
strategy to further assess the causal effects of obesity on cerebral-cortex traits. According
to the results of two-sample MR analyses, we focused on the association between obesity
indexes and the statistically significant brain cerebral cortex. We used regression-based
IVW for MVMR. The SNPs utilized in MVMR were IV combinations of each exposure factor.
We restricted the analysis to SNPs that were clumped on r2 < 0.01 with ±10,000 kb. All
analyses were performed using the packages “TwoSampleMR” (version 0.5.6), “Mendelian-
Randomization” (version 0.6.0), and “MRPRESSO” (version 1.0) in R (version 4.1.2). The
“ggplot2” and “ggseg” packages in R were used to create plots.

2.5. Genetic Associations with Brain-Imaging Measurement

We analyzed the human-microarray dataset from the Allen Human Brain Atlas
(AHBA) (https://human.brain-map.org/, accessed on 30 December 2022). The AHBA is a
free atlas, integrating structure, function, and gene-expression database [37]. The previous
MR analyses showed which brain regions were affected by obesity, and these regions were
considered vulnerable regions in our research. By using the “differential search function”
provided by the AHBA, we downloaded genes that showed enhanced expression in those
vulnerable regions compared to the whole cerebral cortex [38]. Genes were considered
differentially expressed within each region if they had a p-value of <0.05 and an absolute
log-fold change of >2. Differentially expressed genes of obesity-related predicted by MR-
analysis regions were used to perform enrichment analysis in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, Gene Ontology (GO) terms, and Disease Ontology
(DO). FDR correction for the KEGG, GO, and DO was used simultaneously to determine
the significance using an adjusted p-value cut-off of p < 0.05. Those gene-expression experi-
ments were carried out in R version 4.1.2. Then, those genes were uploaded to the STRING
website (https://cn.string-db.org/, accessed on 30 December 2022) to draw protein–protein
interaction (PPI) network maps. Because PPI-network analysis is primarily concerned with
the biological processes at both a molecular and a systems level, the focus of GO in this
study was on the biological processes (BPs), and the results of cellular components and
molecular functions can be seen in the File S3 (Figures S1 and S2).

3. Results
3.1. Causal Association of Obesity with Cerebral Cortex

In total, 513 index SNPs were selected to genetically predict BMI, 72 index SNPs for
WHR, 300 index SNPs for body fat percentage, and 220 index SNPs for visceral adipose
tissue. F-statistics for these genetic instruments were from 23.302 to 1406.670, all larger
than the normally selected value of 10 for strong instruments [28]. Details are shown in
Table 1 and File S1. For both TH and SA analysis, sensitivity analyses were assessed by
IVW and MR-Egger, but most analyses exhibited significant sensitivity (see the results of
the heterogeneity test in File S2), so we used the random-effects models in MR analysis.
Potential pleiotropy was evaluated via MR-Egger regression intercept and all p-values of
MR-Egger intercept tests were >0.05, indicating that there was no horizontal pleiotropy.

https://shiny.cnsgenomics.com/mRnd/
https://human.brain-map.org/
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The results are shown in File S2. We estimated the genetic correlation between obesity-
related paraments with respect to cerebral imaging-derived phenotypes, such as cortical
thickness (TH) and surface area (SA). Global cortical thickness and surface area, as well
as their 34 functional regions with global weighting, were included in our comprehensive
MR study. Associations of genetically predicted values of these four indexes with the
brain-imaging measures are displayed as a heat map in Figure 2. In the primary analysis
using IVW, higher BMI was found to be genetically correlated with a thinner global cortical
thickness (β: −0.009, SE = 0.003, p = 0.006). In the region-based analysis, there were
six regions related to BMI, including the fusiform, inferior parietal, pars orbitalis, pars
triangularis, supramarginal, and temporal pole. As for the surface area, BMI was found
to decrease the SA in the inferior temporal region (β: −17.469, SE = 8.565, p = 0.041)
but increase the SA in the precuneus (β: 19.397, SE = 9.337, p = 0.038) and transverse
temporal regions (β: 3.046, SE = 1.540, p = 0.048). Body fat percentage, another common
measure of obesity, was found to be related to the cortical thickness in several regions,
such as the entorhinal, fusiform, inferior parietal, pars orbitalis, and superior parietal, but
only to the surface area in the inferior parietal and precentral. It is noted that body fat
percentage significantly decreased the thickness of the fusiform (β: −0.014, SE = 0.004,
p = 9.35 × 10−4) and inferior parietal areas (β: −0.014, SE = 0.003, p = 9.73 × 10−6) after
correcting for multiple testing. Similar results to body fat percentage, visceral adipose
tissue had a causal relationship with the thickness in the entorhinal, fusiform, and inferior
parietal regions, as well as with global thickness. The causal relationship between VAT
and global thickness was still significant after multiple-comparison corrections (β: −0.013,
SE = 0.004, p = 1.34 × 10−4). Genetic predicted VAT was associated with the surface area in
the isthmus cingulate and precuneus. There was no evidence for a cause–effect of WHR
on cerebral cortical thickness or surface area. Details are presented in File S2, and the
obesity-related regions are presented in Figure 3.

Because there was no positive result in the two-sample MR of WHR and cerebral cortex
phenotype, we only included other obesity indexes (BMI, BFP, and VAT) as the exposures
in our subsequent research. In the MVMR, we mutually estimated the effects of BMI, BFP,
and VAT on cortical thickness and surface area. After adjusting BMI and VAT, a negative
causality of BFP on the thickness of the fusiform gyrus was observed (β: −0.066, SE = 0.030,
p = 0.029). Similar to the results in two-sample MR analyses, genetically predicted BFP was
associated with smaller cortical surface area of the precuneus (β: −226.395, SE = 107.496,
p = 0.035). Although BMI appeared to be related to the thickness of the superior parietal
gyrus in MVMR, the effect of BMI on the global or other six regional cortexes that were
significant in MR analyses attenuated to null. Nothing statistically significant was found in
the MVMR of VAT (Table 2).

Table 2. Causal relationships of obesity indexes and brain-structure phenotypes estimated by multi-
variable MR.

Exposure NSNP Beta SE p Exposure NSNP Beta SE p
CT−global SA_inferior parietal

BMI 20 −0.026 0.052 0.623 BMI 20 268.238 241.654 0.267
BFP 20 0.006 0.033 0.860 BFP 20 13.166 156.641 0.933
VAT 21 0.015 0.055 0.787 VAT 21 −315.274 255.332 0.217

CT_entorhinal SA_inferior temporal
BMI 20 0.084 0.163 0.607 BMI 20 −167.396 139.979 0.232
BFP 20 −0.032 0.106 0.762 BFP 20 −148.798 90.549 0.100
VAT 21 −0.023 0.173 0.894 VAT 21 214.826 147.914 0.146

CT_fusiform SA_isthmus cingulate
BMI 20 −0.007 0.046 0.875 BMI 20 −25.197 62.640 0.688
BFP 20 −0.066 0.030 0.029 * BFP 20 −43.801 40.681 0.282
VAT 21 0.031 0.048 0.519 VAT 21 73.874 66.186 0.264
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Table 2. Cont.

Exposure NSNP Beta SE p Exposure NSNP Beta SE p
CT_inferior parietal SA_precentral

BMI 20 −0.016 0.038 0.676 BMI 20 23.006 152.876 0.880
BFP 20 0.020 0.024 0.399 BFP 20 −71.641 98.818 0.468
VAT 21 0.007 0.040 0.852 VAT 21 −10.743 161.507 0.947

CT_inferior temporal SA_precuneus
BMI 20 0.058 0.047 0.215 BMI 20 −92.171 166.077 0.579
BFP 20 0.036 0.030 0.238 BFP 20 −226.395 107.496 0.035*
VAT 21 −0.083 0.049 0.091 VAT 21 240.129 175.493 0.171

CT_pars orbitalis SA_transverse temporal
BMI 20 −0.118 0.067 0.079 BMI 20 18.932 27.781 0.496
BFP 20 0.005 0.044 0.913 BFP 20 14.190 18.018 0.431
VAT 21 0.105 0.071 0.141 VAT 21 −11.132 29.354 0.705

CT_pars triangularis
BMI 20 −0.059 0.068 0.383
BFP 20 −0.060 0.043 0.165
VAT 21 0.079 0.071 0.268

CT_superiorparietal
BMI 20 −0.090 0.044 0.038 *
BFP 20 0.026 0.028 0.351
VAT 21 0.077 0.046 0.095

CT_supramarginal
BMI 20 −0.014 0.046 0.764
BFP 20 0.016 0.030 0.590
VAT 21 −0.003 0.048 0.953

CT_temporalpole
BMI 20 0.026 0.147 0.860
BFP 20 −0.063 0.095 0.509
VAT 21 −0.003 0.155 0.983

Abbreviations: BMI: body mass index; BFP: body fat percentage; VAT: visceral adipose tissue; CT: cortical
thickness; SA: surface area; NSNP: number of SNPs used in MR; beta: β, estimate of the effect; SE: standard error;
* p-value < 0.05.

3.2. Differential Gene Expression in Brain Regions

To further integrate obesity, the brain, and genes, we extracted the gene sets from the
Allen Human Brain Atlas (AHBA) in the nine brain regions associated with four obesity
indexes in the thickness MR study (entorhinal, fusiform, inferior parietal, pars orbitalis,
pars triangularis, superior parietal, supramarginal, and temporal pole). Then, all genes
expressed in these gyri were transited in entrezid and were enriched in the disease ontology
(Figure 4A), the BP terms of GO (Figure 4B), and the KEGG pathway (Figure 4C). Biological
processes, such as negative regulation of transport, hormone transport, regulation of
hormone secretion, neuropeptide-signaling pathway, and organic hydroxy-compound
transport, were examples of significantly enriched GO terms. The gene set was enriched in
KEGG pathways such as neuroactive ligand–receptor interaction, cholesterol metabolism,
and serotonergic synapse. In the DO-enrichment analysis, these related regions contained
a highly enriched set of genes involved in some neuropsychiatric disorders, specifically
Alzheimer’s disease, Parkinson’s disease, Lewy-body dementia, tauopathy, migraine, mood
disorder, temporal lobe epilepsy, and focal epilepsy. The protein–protein interaction (PPI)
network was created by using the website STRING (Figure 5). Network nodes represent
proteins, the edges represent functional and physical protein–protein associations, and
the line color represents different types of protein-interaction evidence. The green lines
represent evidence from text mining, the pink lines evidence from experiments, and the
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blue lines evidence from databases. Finally, 105 nodes formed a network with 418 edges,
and the average node degree was 7.96. Hubs were the most connected nodes within the
network and were also responsible for maintaining the connectivity of the network [39].
Some key molecules, such as APOE, IL-1β, HTR2C, PVALB, PDYN, CARTPT, HTR1A,
and NR2F2, served as the hub proteins. They formed an interacting community with
other proteins.
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BMI  20 −0.007  0.046  0.875  BMI  20 −25.197  62.640  0.688  
BFP 20 −0.066  0.030  0.029 *  BFP 20 −43.801  40.681  0.282  
VAT 21 0.031  0.048  0.519  VAT 21 73.874  66.186  0.264  

CT_inferior parietal   SA_precentral    

BMI  20 −0.016  0.038  0.676  BMI  20 23.006  152.876  0.880  
BFP 20 0.020  0.024  0.399  BFP 20 −71.641  98.818  0.468  
VAT 21 0.007  0.040  0.852  VAT 21 −10.743  161.507  0.947  

Figure 3. The obesity-related regions from the perspective of different measurements. The red brain
regions represent the regions where cortical thickness is affected in our MR study, whereas the yellow
represents regions where the cortical surface area is affected.
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We also extracted genes related to the regions associated with obesity indexes in the
surface-area MR, but unfortunately, no result was acquired in the enrichment analysis.

4. Discussion

Our study was divided into two parts. In the first part, the univariable and multi-
variable Mendelian randomization study explored potential causal associations between
obesity and brain structure. In the second part, we conducted a series of bioinformatics
analyses based on the MR results.

Instead of measuring BMI alone to estimate obesity, we added three other fat measures
into our research, such as waist-to-hip ratio, body fat percentage, and visceral adipose
tissue. Although there were subtle differences in the results of each indicator, there were
some common conclusions overall. First, genetically predicted higher levels of BMI or
visceral adipose tissue were associated with smaller global cortical thickness. Second,
the effects of obesity on the brain were inconsistent across specific brain regions. As for
the thickness, the brain gyri affected by obesity included the entorhinal, fusiform, inferior
temporal, inferior parietal, pars orbitalis, pars triangularis, superior parietal, supramarginal,
and temporal pole. As for the cortical surface area, the affected regions were less than
that in the thickness analysis, including the inferior parietal, inferior temporal, isthmus
cingulate, and transverse temporal. Only two relationships—the one between BFP and
fusiform thickness and the other between BFP and precuneus surface area—survived in
the MVMR. This study provides evidence that obesity is associated with a wide range of
cortical structural changes.

Inconsistency existed in the results of each indicator. One reason is that the judgment
about obesity seems to depend on the anthropometric measure [40]. Not all forms of obesity
are equally dangerous, and different indicators suggest various detailed information [41].
BMI, which is calculated as weight in kilograms divided by height in meters squared, is
widely used in collecting demographic health information to identify overweight or obesity.
However, limitations exist in BMI. Influenced by age, gender, and ethnicity, BMI does
not consider the body composition or fat distribution, failing to distinguish between fat,
muscle, and bone mass [42]. WHR, the waist-to-hip ratio, provides more information about
the abdominal fat distribution, and VAT is associated with fat accumulation in the internal
organs. WHR and VAT are closely linked to higher metabolic risks [43]. BFP, the total mass
of fat divided by total body mass, focuses on the relative amount of adipose tissue in the
whole body instead of the fat distribution [41]. A significant relationship between BFP and
the brain structure was found in our univariable and multivariable MR analyses, implying
that the amount of adipose tissue is far more meaningful than the simple figure of body
weight. In the future, more attention should be paid to the change in BFP in studies about
obesity and the brain.

The association between obesity and the brain remains an ongoing topic. Obese people
face higher risks of cognitive impairment and neuropsychiatric disorders [44,45]. In the
US, obesity has become the most prominent modifiable risk factor for Alzheimer’s disease
and related dementias [46]. Cortical thickness is one of the neuroimaging biomarkers
used to assess cognitive-decline risk or disease progression [47]. This study provides
evidence supporting the negative association of obesity with global cortical thickness.
As for specific brain regions, the effects of obesity are inconsistent. The fusiform gyrus
and inferior parietal gyrus were the two main regions. Other gyri were also associated
with obesity-related variables, such as the entorhinal, inferior temporal, pars orbitalis,
pars triangularis, superior parietal, supramarginal, and temporal pole. Our results are in
keeping with a series of previous studies in the literature. In a large-scale study including 6,
420 participants from the ENIGMA MDD working group, Nils Opel reported associations
between obesity and lower temporal–frontal cortical thickness, especially in the fusiform
gyrus [48]. Among type 2 diabetes patients, global mean cortical thickness was lower in the
overweight/obese group than in the normal-weight group, and so was the regional cortical
thickness in the fusiform and supramarginal cortex [49]. In another study involving healthy
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individuals, obese participants showed lower cortical thickness in the pars triangularis,
superior frontal gyrus, supramarginal gyrus, inferior parietal cortex, and precuneus [50].
Furthermore, evidence has emerged of the neurological consequences of obesity [51],
revealing underlying pathophysiological mechanisms. A study of postmortem brain tissue
reported fewer neurons in the overweight/obese subjects even without a cortical-thickness
change [52]. Obesity could lead to endothelial dysfunction and inflammation, and these
pathological processes accelerate neuronal loss in the brain, which is reflected by decreased
gray matter volume [53].

Obesity-related brain changes can explain worse cognitive function among obese indi-
viduals [3,53]. The fusiform gyrus and inferior parietal lobe, especially influenced by obe-
sity in our study, are important in cognition and other higher-order brain function [54–56].
Obese individuals always show poor performance in cognitive domains, such as memory,
attention, verbal fluency, and executive function [53]. Our results can provide solutions for
the early identification of cognitive impairment and other neuropsychiatric disorders.

The cerebral cortical morphometry changes account for some functional alteration or
pathogenesis of neuropsychiatric disorders to some extent. The observed regional cortical
alterations in obesity showed considerable similarities with corresponding patterns of
surface-based morphometry in previously published studies of neuropsychiatric disor-
ders [48]. Therefore, in the second part, we conducted a series of bioinformatics analysis
using the data from the AHBA to further test our hypothesis. The GO and KEGG analyses
indicated that genes specifically expressed in obesity-related brain regions were involved
in some neurophysiological processes, such as compound transport, hormone secretion,
immune response, neuropeptide-signaling pathway, and neuroactive ligand–receptor in-
teraction. These results imply potential mechanisms of obesity affecting the brain. In
the DO-enrichment analysis, these genes were enriched in cognitive diseases such as
Alzheimer’s disease, tauopathy, and Lewy-body dementia. In addition to cognitive decline,
these genes were also enriched in other neuropsychiatric disorders, such as Parkinson’s
disease, migraines, epilepsy, and mood disorders.

In the PPI analysis, several hub proteins were identified, including APOE, IL-1β,
PVALB and HTR2C. These hubs were related to nervous system or neurological diseases,
forming a highly connected interaction network with other genes. The APOE gene product
is an apolipoprotein that participates in lipoprotein metabolism. APOE promotes lipid
accumulation, and previous studies have demonstrated its association with obesity [57].
APOE4, an isoform of APOE, breaks the balance of deposition and clearance of the amy-
loid β peptide (Aβ), increases proinflammatory-cytokine production in the brain, and
compromises the blood–brain-barrier (BBB) integrity [58]. Thus, APOE4 is considered
the strongest genetic risk factor for late-onset sporadic Alzheimer’s disease [59]. IL-1β is
a kind of potent proinflammatory cytokine. In neurons, IL-1β activates the MAPK-p38
signaling cascade, stimulating the Aβ synthesis and hyperphosphorylation of tau [60]. The
plasma concentration of IL-1β is elevated in obese individuals, and obesity causes cognitive
disorders by promoting the inflammation of the central nervous system [61]. Parvalbumin
(PVALB) is a protein specifically expressed by GABAergic interneurons, protecting neurons
from excess intracellular calcium [62,63]. In line with the ideas of Roberta Magliozzi, the
cerebrospinal fluid (CSF) protein level of PVALB could represent a biomarker for cortical
damage and cognitive decline [62]. PVALB correlates with obesity as well. Serum levels
of PVALB were significantly higher in both obese mice induced by a high-fat diet and
obese human individuals [64]. HTR2C, the serotonin 2C receptor, is another protein that
is linked to both obesity and advanced brain functions. The loss-of-function variants in
the HTR2C gene (encoding the HT2CR protein) could lead to the development of obesity
in humans [65]. Inactivation of HT2CR in the ventral hippocampus impairs behavioral
performance in a visual-detection task that demands attention [66].
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5. Limitations and Future Research

Combing MR analysis and bioinformatics analysis, our study illustrates how obesity
is linked to the human brain from the perspectives of genes, structure, and disease. All
of the above results not only further enrich the conclusions of our study, but also verify
the hypothesis that obesity affects the structure and function of the brain, thus leading
to neuropsychiatric disease. However, this study also has limitations that need to be
acknowledged. First, the available data in our MR analysis were based on individuals of
European ancestry, so the causal relationship in other ethnicities remains unknown. Second,
the cortical effects of obesity may be mediated by age or sex [48], but the role of sex and
age was not considered in our study as a result of the lack of data stratified by age and sex.
Third, our study only estimated the mean of both hemispheres. The hemisphere-specific
(left or right) effect of obesity raises the need for further investigation. Fourth, the genetic
information from the AHBA was limited to a small sample size: six donors of different
ages and sex in the US [37]. Last, the messages about obesity-related brain structures in this
study should be interpreted with caution. Brain-structural and gene-expression changes
related to obesity cannot be concluded from the current study design. Our results provide
only a hypothesis for the relationship between obesity and the brain. Therefore, further
studies are needed in the future.

Finally, some problems deserve to be noted. Biological-sex differences are displayed
in the human brain, involving cognition, behavior, and regional brain anatomy [67]. One
limitation of our implementation is that we did not perform further analyses by age or sex.
It remains unclear to which degree gender or age is attributed to structural changes in the
cerebral cortex. Future research should aim to investigate whether either age or gender
moderates or mediates the connection between obesity and the brain. In addition, obesity
is often accompanied by biochemical-indicator disturbance and metabolic changes. Some
biochemical indicators are strongly associated with obesity, such as serum leptin, glucose,
and insulin, alongside pro-inflammatory cytokines and C-reactive protein [68]. These
biochemical markers have been widely considered in studies aimed at understanding the
complex interplay between obesity and the brain [69]. However, there is still no MR study
confirming the role of these biochemical indicators. Clinical biochemical findings provide
valuable insights into the physiological and metabolic changes, which are fundamental
for exploring potential mechanisms underlying the effects of obesity on brain function
and structure.

6. Conclusions

In the present study, we provide genetic evidence of the causal association between
obesity and cortical morphometry at the global and regional levels. The brain region-specific
alterations affected by obesity are also linked to neurological diseases such as Alzheimer’s
disease and other neurodegenerative diseases. Clarifying the link between obesity, brain
structure, and disease may offer new avenues for the treatment of cognitive degeneration.
These results emphasize the importance of proper body weight for a healthy brain.
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CT cortical thickness
DO Disease Ontology
ENIGMA Enhancing NeuroImaging Genetics through Meta-Analysis
GIANT Genetic Investigation of ANthropometric Traits
GO Gene Ontology
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