
Citation: Grindrod, P.; Brennan, M.

Cognition and Consciousness

Entwined. Brain Sci. 2023, 13, 872.

https://doi.org/10.3390/

brainsci13060872

Academic Editors: Pierluigi

Zoccolotti, Danilo Menicucci and

Sergio Frumento

Received: 29 March 2023

Revised: 22 May 2023

Accepted: 26 May 2023

Published: 28 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Cognition and Consciousness Entwined
Peter Grindrod * and Martin Brennan

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
* Correspondence: grindrod@maths.ox.ac.uk

Abstract: We argue that cognition (information processing) and internal phenomenological sensations,
including emotions, are intimately related and are not separable. We aver that phenomenological
sensations are dynamical “modes” of firing behaviour that (i) exist over time and over large parts
of the cortex’s neuron-to-neuron network and (ii) are consequences of the network-of-networks
architecture, coupling the individual neuronal dynamics and the necessary time delay incurred
by neuron-to-neuron transmission: if you possess those system properties, then you will have the
dynamical modes and, thus, the phenomenological sensations. These modes are consequences of
incoming external stimuli and are competitive within the system, suppressing and locking-out one
another. On the other hand, the presence of any such mode acts as a preconditioner for the imme-
diate (dynamic) cognitive processing of information. Thus, internal phenomenological sensations,
including emotions, reduce the immediate decision set (of feasible interpretations) and hence the
cognitive load. For organisms with such a mental inner life, there would clearly be a large cognitive
evolutionary advantage, resulting in the well-known “thinking fast, thinking slow” phenomena. We
call this the entwinement hypothesis: how latent conscious phenomena arise from the dynamics of the
cognitive processing load, and how these precondition the cognitive tasks immediately following.
We discuss how internal dynamical modes, which are candidates for emotions down to single qualia,
can be observed by reverse engineering large sets of simulations of system’s stimulated responses,
either using vast supercomputers (with full 10B neuronal network analyses) or else using laptops to
do the same for appropriately generalised Kuramoto models (networks of k-dimensional clocks, each
representing the 10,000 neurons within a single neural column). We explain why such simplifications
are appropriate. We also discuss the consequent cognitive advantages for information-processing
systems exhibiting internal sensations and the exciting implications for next-generation (non-binary)
computation and for AI.

Keywords: phenomenological sensations; architecture; delay dynamics; modes; preconditioning;
simulations; AI; non-binary chips

1. Introduction

In direct response to external events, which stimulate the brain with an incoming
collage of stimuli via our sensory organs, or to our present train of thought, or to both at the
same time, we experience a wide range of internal phenomenological sensations repeatedly
and consistently.

In a complementary narrative to that set out in [1], we argue that these inner sensa-
tions have a hugely practicable role: they are not an independent or a marginal “extra”.
Instead they precondition our immediate subconscious and conscious thinking; they reduce
(constrain) the range of the immediate possibilities that need to be considered or managed
without us knowing; thus they allow our minds to zoom-in and focus on the most essential
matters at hand. We will discuss how, under those stimuli, the brain responds with one
of a number of internal dynamical modes, which, in turn, affect its information processing
operations (cognition) and which reduce the cognitive load for our decision-making. Thus,
each of us makes just the sort of decisions that we always make in various circumstances
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consistently though not necessarily rationally [2]. We do so regardless of any predefined or
objective optimality: that is the just sort of person that we are. It would take some hard,
conscious effort to recognise ourselves doing so and to pause, back-up, and break our usual
chain of response and consequent action [3].

Inner phenomenological sensations obviously differ in their scale: they can be large or
small. They can be almost overwhelming emotions such as love, lust, fear, grief, anxiety, ecstasy,
pain, or embarrassment; or they can be small experiences, such as the feelings of seeing the
blueness of blue, or of the stroking of skin, or hearing the sound of a trumpet. The latter are often
called “qualia” and are accessible phenomenal components of our mental lives. As discussed
in [4], they can be brought to mind by thinking of a collage of instances, past events, images,
or music: you can make yourself feel happy, sad, or even embarrassed. Hence, they cannot be
reliant on any dynamical instability or emergence phenomena.

We might also posit that these inner sensations are hierarchical, with some being
components of others. That is not a new idea. Yet, as we shall see, that accords very
well with our attempts to reverse engineer simulations of the human brain and observe
its dynamical response to stimuli (see Section 3.2). By “dynamical response”, we mean
physical modes of neural activity that exist over both time and across the brain. They
are not stationary and they cannot be classified in a single snapshot. In Section 3.2, we
will discuss how we may observe these common response modes of dynamical behaviour
within a cortex-like cortex system via multiple experiments where the system is subject to
all kinds of stimuli. The discovery of these distinct internal dynamical modes, which are
prime candidates for internal sensations, requires a kind of in silico reverse engineering.

The simulations considered in Section 3 are designed with the brain’s specific network
architecture of neural connections in mind: one that is very far from random. Indeed,
we shall see why this is efficient in an evolutionary sense. The architecture is introduced
briefly in Section 2. Network science is an extremely fast moving area of research, yet the
very nature of cognition and consciousness within the brain provide hard challenges to
explain how such models might reflect early development (the dynamical formation of
networks), plasticity (how cognitive usage reinforces the network and yet is constrained by
the network), and possible phase changes when network properties pass hidden thresholds,
possibly resulting in a huge increase in the emotional (sensational) inner life as well as a
plethora of expanded types of thinking.

There is an insightful discussion of some (dynamical) network properties of the brain
presented in [1]. There it is argued, much as here, that emotional processing appears to be
interlocked with cognitive processing, and network science is the key (to both the dynamics
of the developing networks and the activity dynamics supported by the network). More
generally, [1] considers how we should think of causation within complex systems in order
to inform that relationship between emotion and cognition in the brain.

2. The Architecture of the Cortex and Associated Delay-Dynamical Systems

The human cortex contains around 10B neurons. They are arranged into approximately
O(1M) neural columns, with each neural columns containing O(10,000) rather densely
connected neurons. The columns are arranged in a two-dimensional grid over the surface
of the cortex. If the human cortex was stretched out flat, un-corrugated, it would be like
a carpet with the separate columns forming the carpet pile. Some neurons within near-
neighbouring columns are connected (all connections are directional). All neuron-to-neuron
transmission of firing spikes (signals) incurs an individual (real valued) time delay (the
time taken for a signal spike of membrane potential to leave the sender’s soma, travel out
along its axon, cross a synapse, and then travel inwards via a dendrite of the receiving
neuron, reaching its soma). All the connections are directional. The outer column-to-
column networks is range dependent in that columns located at a further and further distance
(range) are less likely to have any direct connections (depicted flattened out in Figure 1).
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Figure 1. The interaction between conscious sensations (extant dynamical modes) and immediate
cognitive processing across the cortex. The stimuli and responses are multiple parallel spike trains.
The modes are common patterns of internal dynamical behaviour.

Hence, the cortex has a network-of-networks architecture, with the inner networks
representing the densely connected neurons within neural columns, and the range-dependent
outer network made form connections between neurons from near-neighbouring columns.
The architecture is really very important for two reasons. First, we can examine how the
dynamics of an individual column behave by direct simulations of its densely coupled
neurons [5]. Second, we may exploit the network-of-networks architecture in both (a) full
very-large-scale (VLS) simulations of all neuron-to-neuron connections [6] modelling an
excitatory–refractory dynamic at every neuron and incorporating random transmission
time delays (requiring supercomputers) and (b) motivating dynamical simplifications of
the whole to generalised Kuramoto networks, where each neural column is represented
by a summary dynamical system equivalent to a high-dimensional generalised clock
(see Section 3.1) coupled within the outer network, whence the simulation of the whole is
thus tractable on a normal laptop [7].

3. What Do We Learn from Very-Large-Scale Simulations?
3.1. Individual Neural Column Simulations

The VLS neuron-to-neuron simulations in [5] for individual neural columns revealed
that each column actually behaves like a k-dimensional clock, and that k is observed to
be proportional to the log of the number of neurons within a single column [5]. A k-
dimensional clock has k independent phases, each of which winds around (mod 2π) at an
individual rate. In analysing simulations, the number of degrees of freedom, k, exhibited in
a neuron-to-neuron simulation of the individual neural column may be directly estimated
via state-space embedding techniques applied to neuronal spike trains (see [5] and the
references therein). Note that k does not simply count the number of cycles within a directed
network since not all of those are viable (given the refractory nature of neuron spiking)
and some cycles would cancel out one another. It might be better to think that k counts
the longish, yet mutually independent, cycles. The oscillations arise from these cycles:
no individual neurons are in an oscillatory regime (instead, they are all both excitable
and refractory).

Importantly, [5] shows that k grows similar to log n, where n is the number of neurons
within a column. This simple fact explains why the brain has evolved to have many columns
across the cortex of a rather uniform size rather than a wide distribution of columns of
different sizes (different n): the latter would waste both energy and volume (two crucial
constraints on the human brain) since, in terms of total degrees of freedom of the dynamics,
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it would be better to have two distinct columns (of a minimum viable size) rather than just
one of double the size.

This fact underpins the evolutionary advantage of the uniform network-of-networks
architecture that we observe. Typically, it is estimated that k ∼ O(10) for n = 10, 000 or so
neurons within a single column.

3.2. Whole Cortex Simulations

In [6], full VLS neuron-to-neuron model simulations of the whole cortex were made
utilising a supercomputer (the 1M-core Spinnaker). Once specified, the whole system
was subject to incoming stimuli (forcing terms) in the form of trains of incoming spikes
applied at various specific neurons. Many independent experiments were carried out
within different forcings. Unlike a real brain, it is possible to reverse engineer the system
to see what occurred within under various different forcing regimes. This was achieved
by having a few “observed” neurons within every column for which the firing sequence
was recorded. Consequently, within each experiment, a dynamical response in time and
across all of the neural columns was observed. Many such experiments were carried out,
applying the forcing at different neurons selected from across all of the columns. These
calculations were a massive undertaking: in essence, analysing the whole-system response
represents a big-data problem itself. What was discovered?

It turned out [6] that by considering more than 1000 separate experiments, the corre-
sponding internal dynamical responses (defined over time and across the large observed
set of neurons) could be clustered. This was shown to be significant (since whenever you
look for clustering, you will find some even where there should be none). The pairwise
comparison between more than 1000 responses needs to allow some absolute time offsets,
since it is the relative firing patterns that are important, not absolute time. The hierarchical
clusters represent distinct classes of similar dynamical internal response (of the system to
the forcing regime). Each cluster corresponds to a dynamic response “mode”. Any similar
stimulus will likely result in one or another mode kicking in. These dynamical modes
are good candidates for internal phenomenological sensations arranged hierarchically
for large-scale emotions down to small-scale qualia. Each sensation corresponds to the
internal mode becoming active. Furthermore, at any level of the hierarchy, the modes are
competitive and do not co-exist.

All of this accords with the view set out in [1] based on findings from pattern analyses
of neuroimaging data that show that affective dimensions and emotion categories can be de-
tected in the activity of distributed neural systems that span cortical and subcortical regions.

So right there inside the dynamical system is a possible material basis for sensations
and emotions. While they are consequences of the incoming forcing (external experience),
they can also precondition the brain’s response to the immediately incoming signals. While
the cognitive challenge is to answer the question “What is happening now?”, the conscious
response (the dynamical modes) can precondition the brain in answering that question.
Thus, love may be blind (at least it is blind to some possibilities). The restriction of the feasible
decision space through such preconditioning would confer massive efficiency advantages
over a non-preconditioned brain, where anything might be possible at any time. Thus,
there would be an evolutionary advantage to the two-way coupling between cognition and
consciousness. We will return to this point in Section 4.

In [7], the authors consider a different type of whole-cortex model and simulations,
one that is much simpler and which is feasible to run on a laptop. It is based on the
network-of-networks architecture and the insights concerning neural columns, as follows.
Each neural column is represented by a k-dimensional clock. These are coupled by directed
connections within a range-dependent network. For each directed connection, whenever
the phases of a sending clock (neural column) reach a certain (edge-dependent) trigger
condition, it sends out a signal to the receiving clock (neural column). The signal incurs
an edge-dependent time delay, and when it arrives at the receiving clock, it applies an
instantaneous (edge-dependent) phase-resetting map (PRM) to the phases of the receiving
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clock. Coupled systems with an array of simple clocks are usually called a Kuramoto system:
this particular system represents a generalisation to consider coupled k-dimensional clocks
set within a range-dependent network and using instantaneous PRMs as the clock-to-clock
coupling mechanism. The generalised Kuramoto system contains about 10M state variables
(say 10 phases for each of the 1M clocks/neural columns), whereas a full neuron-to neuron
simulation would have at least 10B state variables (one phase for each neuron). Hence, it
can be run on a much more modest computing platform.

Even making pragmatic simplifying assumptions, simulations employing this type
of system may be tested in the same way as the full-neuron simulations in [6]. In [7], it is
shown that the whole system of coupled clocks exhibits internal, hierarchically arranged,
responsive dynamical modes, just as the full simulations did. By carrying out a rather large
number of similar experiments, one can reverse engineer the generalised Kuramoto system,
just as was done for the full simulations in [6]. Again, inside the Kuramoto dynamical
system, we observe a possible material basis for sensations and emotions.

Of course, both of these types of dynamical simulation exhibit dynamical modes that
are very good candidates for phenomenological sensations. The sensation is the brain’s
own experiences of the corresponding mode being present (active) in the moment. There is
still an explanatory gap though: we cannot be sure that the dynamical modes cause those
sensations, yet they have not been observed before and hence they are not discussed within
the philosophical or brain-science literature. They are behavioural modes distributed across
the cortex and across time.

Indeed, early philosophical work often argued that cognition and consciousness are
separate, or that cognition begets consciousness as a consequence or by-product (see [8],
for example). However, here we suggest that we should accept the corollary (to the insights
from the simulations) that internal conscious phenomena are crucial to certain efficiencies
within cognition. Cognition and consciousness would be, thus, mutually dependent
and entwined.

The situation is summarised in Figure 1.

4. Implications for Next Generation AI

Present AI and, in particular, deep learning, has reached an inflection point. There
are now many successful applications of automated classifiers (addressing supervised
recognition and discrimination problems) driven by powerful modern computation, ac-
complishing otherwise tedious, repetitive, parallel discrimination tasks at scale. These
algorithms emulate human perception and discrimination performance (they certainly do
not work in the same way as a human brain), yet they can be deployed with a bandwidth
that is far beyond any human capabilities.

So, what can we learn from the concepts and mechanisms that appear to be present
within consciousness that might extend or improve the existing approaches to AI?

Of course, an AI application does not posses a reservoir of common sense: it has only
seen what it has been shown during calibration, and it has no abstracted or generalised
common knowledge. Thus, the AI algorithm does not rule out irrelevant information
within the input. For example, within real-world image analysis, there may be events
or objects in the far background or the near foreground that are irrelevant to the task
at hand, but we simply do not know what the algorithm will focus on, and, indeed, it
has no concepts of background and foreground and so on. So perhaps the analogy of
internal modes (the equivalent of sensations or qualia) as a preconditioner for cognitive
tasks would be very useful (if it ever were implementable). The idea is that outputs should
be conditional not just on the externally presented inputs but also upon the internal (latent)
state of the system. Although making the AI less consistent, with outputs depending on
the (current, real time) state (of its internal sensory experience), the state may bias and
heavily constrain outputs (reducing the decision set), so that the whole becomes more blind
to irrelevancies. This would lead to much more permissive classification and inference
algorithms that need to be in the right mood in certain circumstances (an issue for operators).
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Nevertheless, performance might actually become more robust and unspoofable (due
to small irrelevancies in the inputs) though, admittedly, still lacking of any reservoir of
common sense.

The concept of internal sensations acting as preconditioners for cognitive processing
and response (represented temporal latent modes or other phenomena) may become crucial
in enabling new models of AI. This appears similar in spirit to underpinning transformer
models, which introduced a human cognitive concept: attention [9]. Consciousness is,
arguably, more fundamental and more central to human information processing than
attention, so much may be gained by exploring AI models that encompass these ideas.

5. Implications for Neuromorphic Non-Binary Chips

Ideas to develop brain-inspired computer chips are not new. In industry, IBM’s
TrueNorth chip [10,11], for example, represented a major advance as part of a long-term
DARPA program to develop neuromorphic machine technology and build a new kind
of cognitive computer. This led to a patent application [12] that revealed some of the
inner workings of TrueNorth. Other labs have also designed neuromorphic chips—such as
Intel’s Loihi chip, which is positioned as emulating human brain function and probabilistic
computing [13]—aiming to instantiate a spiking neural network at the individual neuron
level and upwards (130,000 neuron-equivalents to 13 neural columns). There are also
programmes at various universities and national labs, usefully summarised recently in [14].

These developments have been ground-breaking in parts, and their impact on industry
has made a huge difference already. However, it is important to note that they also face
some limitations of both a practical and theoretical nature.

One possible limitation of IBM’s TrueNorth, for example, may be observed via direct
simulations: it updates on the tick of the clock. If we model a (small) cortical column,
then TrueNorth is equivalent to assuming that all neuron-to-neuron connections have time
delays associated with the same value (unity). We carry out that computing experiment,
with any reasonable (excitatory and refractory) spiking dynamics, by first deploying real-
valued time delays, whereby we observe that the whole behaves as a winding map with k
degrees of freedom (k phases), just as in [5] and discussed above. When we force all of the
time delays to equal unity, then the achieved value for k quenches, becoming massively
reduced. This is because alternative directed walks from neuron A to neuron B of the same
length must arrive at the same time (there are many dead heats). This fact appears never to
have been discussed and is a foundational stumbling block: the discreet uniform time-step
updates are fundamental to the chip.

The obvious challenge is to design a mathematical model of the human brain’s own
information-processing mechanism that utilizes not only logic but, specifically, the power
and effectiveness endowed by dynamical, latent, phenomenological preconditioning.

For example, considering the earlier challenge for VLS high-resolution simulation.
One ansatz for this challenge would be to fabricate an array of N individual k-dimensional
clocks (called k-clocks, with k > 1), with directed connections between near-neighbouring
clocks, embedded within a two-dimensional grid (as in [7]).

This is just one of a number of alternative paradigms that are suggested by whole-brain
simulation and its abstraction in the context of consciousness. In all cases, the challenge
would not only be one of mathematical design but also one of instantiating them in an
appropriate physical way: not as code running on binary processing platforms, which VLS
simulations have already shown to be prohibitively expensive and very slow (even on
massive multi-core platforms). Hence, the urgent need for neuromorphic chips. On the
mathematical side of things, this implies not resolving the typical equations used within
simulations; instead, we must aim to use models of appropriate physical (perhaps organic)
materials and architectures that are naturally well-suited to the tasks (just as the neural
columns and the whole cortex are, having been shaped to be so by evolutionary forces).
Additionally, we should deploy mathematics to verify that we have achieved this.
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We should condition (train) these whole system’s details so as to produce distinguished
output inferences and decisions in response to some distinct classes of inputs.

Note that, unlike binary logic-based information processing, it is very likely that
such a system may (similar to the human brain) be rather poor at logical and arithmetic
tasks but good at inferring fast decisions from incomplete data. We should not ask it to
perform intensive signal-processing tasks. Instead, we should challenge it with multi-way
discrimination and decision-making tasks and reward novelty (and discovery) rather than
optimising any objective functions.

6. Discussion

We have highlighted a number of distinct challenges and consequences. First, there
is no real need to make full neuron-to-neuron simulations. What we learn from these is
that individual neural columns (in isolation) behave like k-dimensional clocks, which are
just winding maps over a k-dimensional torus. The k phase coordinates of the torus are
equivalent to the phases of separate independent cycles embedded within the directed
network connections of the columns. This result alone anticipates the relatively uniform
nature of the cortex: brains with a large distribution of column sizes make inefficient use
of both energy and volume in maximising the total number of degrees of freedom across
all of the columns. This observation also suggests that simulations may be carried out
by exploiting the network-of-networks architecture with the generalised Kuramoto system
with an array of coupled k-dimensional clocks set within a range-dependent network
and using instantaneous PRMs as the clock-to-clock coupling mechanism (as in [7]).

Moreover, when we reverse engineer these simulations, we find a hierarchy of dynam-
ical behavioural modes that are candidates for the physical basis of internal sensations:
emotions down to qualia. As a result, when such modes are present, any immediate incom-
ing cognitive task (making use of sensory inputs) is constrained to have a much smaller
decision space, and this endows the brain with a fast-thinking advantage. Thus, emotions
(conscious phenomena) are entwined with information processing (cognition). You cannot
have one without the other.

This fact suggests many questions about the brain’s development from infants to
adolescents. As the connection density increases as a result of experience, the brain not only
develops more-subtle or intricate cognitive abilities, but it necessarily develops a more-
sophisticated palate of internal phenomenological sensations. Without the latter, the former
would cause the brain to be ponderous and ineffective (and only slowly responsive). Thus,
the development of emotional behaviours is necessary for the development of cognitive
abilities and vice versa.

Of course, the narrative set out here poses many new problems for mathematical
analysts in both modelling and signal processing. It also poses some potential solutions
to our understanding of how the brain may develop and decline, with cognition and
consciousness entwined. As a further result, the processes of coupled cognitive and
consciousness instantiation may not only benefit our understanding of the human brain,
but, as we have discussed above, it may contribute to much better exploration of novel
types of neuromorphic information processing (and in criticising existing ones) as well as
novel concepts in next-generation AI.
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