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Abstract: Around 30% of the general population experience subjective tinnitus, characterized by
conscious attended awareness perception of sound without an external source. Clinical distress tinni-
tus is more than just experiencing a phantom sound, as it can be highly disruptive and debilitating,
leading those affected to seek clinical help. Effective tinnitus treatments are crucial for psychological
well-being, but our limited understanding of the underlying neural mechanisms and a lack of a
universal cure necessitate further treatment development. In light of the neurofunctional tinnitus
model predictions and transcranial electrical stimulation, we conducted an open-label, single-arm,
pilot study that utilized high-definition transcranial direct current stimulation (HD-tDCS) concurrent
with positive emotion induction (PEI) techniques for ten consecutive sessions to down-regulate tinni-
tus negative valence in patients with clinical distress tinnitus. We acquired resting-state functional
magnetic resonance imaging scans of 12 tinnitus patients (7 females, mean age = 51.25 ± 12.90 years)
before and after the intervention to examine resting-state functional connectivity (rsFC) alterations in
specific seed regions. The results showed reduced rsFC at post-intervention between the attention
and emotion processing regions as follows: (1) bilateral amygdala and left superior parietal lobule
(SPL), (2) left amygdala and right SPL, (3) bilateral dorsolateral prefrontal cortex (dlPFC) and bilateral
pregenual anterior cingulate cortex (pgACC), and (4) left dlPFC and bilateral pgACC (FWE corrected
p < 0.05). Furthermore, the post-intervention tinnitus handicap inventory scores were significantly
lower than the pre-intervention scores (p < 0.05). We concluded that concurrent HD-tDCS and PEI
might be effective in reducing tinnitus negative valence, thus alleviating tinnitus distress.

Keywords: high-definition transcranial direct current stimulation; positive emotion induction; func-
tional magnetic resonance imaging; neurofunctional tinnitus model; dorsolateral prefrontal cortex;
tinnitus handicap inventory

1. Introduction

Tinnitus is conscious attended awareness perception (CAAP) of the sound in the
absence of an external source [1]. About 30% of the global population experience tinnitus
with a subgroup of 3–6% experiencing tinnitus distress [2,3]. To explain why some peo-
ple experience tinnitus as distressing, various theoretical models have been developed,
including cognitive and behavioral models [1,4–6].

Brain Sci. 2023, 13, 826. https://doi.org/10.3390/brainsci13050826 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13050826
https://doi.org/10.3390/brainsci13050826
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-3282-1909
https://orcid.org/0000-0003-1441-1524
https://orcid.org/0000-0002-9098-2663
https://orcid.org/0000-0001-9688-782X
https://orcid.org/0000-0003-1810-1742
https://orcid.org/0000-0003-0558-3519
https://doi.org/10.3390/brainsci13050826
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13050826?type=check_update&version=2


Brain Sci. 2023, 13, 826 2 of 16

Hallam, McKenna [7] suggested that negative appraisal and emotional significance
of the signal cause heightened arousal leading to failure in habituation. Thereafter, the
aversive emotional state of tinnitus was rationalized based on classical conditioning [4].
Subsequently, Zenner, Pfister [5] then highlighted that tinnitus sensitization arises from
the interpretation of the sound as unpleasant, fear-inducing, and unpredictable, leading
to maladaptive coping and helplessness [5,8]. Furthermore, cognitive misunderstanding
of tinnitus has been shown in McKenna, Handscomb [6]‘s study to cause distress and
physiological arousal, which result in a distorted perception of sensory input [6].

More recently, Ghodratitoostani, Zana [1] proposed the neurofunctional tinnitus model
(NfTM), categorizing tinnitus patients into neutral and clinical distress stages. The NfTM
suggests that the evaluative conditional learning (ECL) mechanism plays a role in develop-
ing tinnitus-related valence, where neutral tinnitus paired with negative stimuli obtain a
negative valence, causing distress Ghodratitoostani, Zana [1]. On the other hand, the NfTM
proposes that the CAAP of tinnitus accompanied by positive emotion induction (PEI) might
lower negative valence and resulting distress Ghodratitoostani, Zana [1]. The prefrontal
cortex is responsible for continuously evaluating tinnitus valence, comparing it with other
sensory and auditory inputs, and monitoring persistent perception. The left hemisphere is
believed to prevail over positive emotions, while the right hemisphere dominates negative
ones.

The neurofunctional tinnitus model (NfTM) suggests that the prefrontal cortex contin-
uously assesses the emotional value of tinnitus and compares it to other sensory inputs
Ghodratitoostani, Zana [1], with the dorsolateral prefrontal cortex (dlPFC) being associated
with cognitive–emotional valuation, particularly during the down-regulation of negative
emotional conditions [9]. Additionally, the brain asymmetry model proposes that the
left hemisphere processes positive emotions and the right hemisphere processes negative
emotions [10,11].

Furthermore, electroencephalography (EEG) and functional magnetic resonance imag-
ing (fMRI) studies have illustrated that high levels of baseline activity in the left prefrontal
cortex (PFC) brightened the prospects of suppressing negative emotions [12–15]. The down-
regulation of negative emotional processing by transcranial direct current stimulation
(tDCS) has been reported following anodal stimulation in some studies [16–18].

tDCS has been proposed as a potential treatment for tinnitus, with multiple studies
investigating its effectiveness. Vanneste, Plazier [19] reported that tDCS led to a significant
reduction in tinnitus severity and improved quality of life. Vanneste and De Ridder [20]
found that patients who responded to bifrontal tDCS had higher baseline functional connec-
tivity strength. Vanneste and De Ridder [20] noticed that bifrontal tDCS was more effective
than EEG-driven tDCS for tinnitus treatment. Teismann, Wollbrink [21] observed that the
combination of tDCS and tailor-made notched music training led to a significant reduction
in tinnitus-related distress. Yadollahpour, Mayo [22] showed that a chronic protocol of
bilateral tDCS over the auditory cortex led to a significant reduction in tinnitus severity. A
systematic review and meta-analysis conducted by Martins, da Silva Souza [23] revealed
that tDCS had a moderate effect on reducing tinnitus severity. However, there are also
studies that report inconclusive or negative outcomes for tDCS as a treatment for tinni-
tus. For example, Lefebvre-Demers, Doyon [24] found no significant reduction in tinnitus
symptoms following tDCS treatment. The mixed findings from studies investigating tDCS
and tinnitus indicate that it is important to design studies to assess the effectiveness of
the intervention both at neural and behavioral levels. This will help to provide a more
comprehensive understanding of the underlying mechanisms and potential benefits of
tDCS as a treatment for tinnitus.

The current study aims to investigate the effects of concurrent high-definition tran-
scranial direct current stimulation (HD-tDCS) and PEI on tinnitus-related negative valence
and expand the current knowledge on tinnitus distress treatment. The NfTM proposed
that the modulatory effect of anodal-tDCS over the left dlPFC reinforces positive emotion
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processing, which, in turn, helps with the down-regulation of tinnitus-related negative
valence.

Accordingly, we hypothesized that multiple sessions of anodal HD-tDCS over the left
dlPFC concurrent with PEI results in the down-regulation of tinnitus negative valence at
the neural network level as measured using resting-state functional magnetic resonance
imaging (rsfMRI) data.

Secondarily, we hypothesized that induced functional connectivity changes following
anodal HD-tDCS concurrent with PEI reduce tinnitus distress as assessed using the Tinnitus
Handicap Inventory (THI) [25].

2. Methods
2.1. Subjects

Patients with constant bilateral subjective chronic tinnitus within the clinical distress
stage with a THI score ≥ 18 [26] and not taking medication during the intervention time
were included. On the other hand, patients who reported pulsatile or unilateral tinnitus,
chronic headaches, Meniere disease, otosclerosis, brain tumors, and current use of medi-
cations for depression or anxiety were excluded. Although fifteen patients were initially
recruited, only the data from twelve individuals were ultimately analyzed. One patient’s
poor image quality and two patients’ incomplete imaging sessions were the reasons for
their excluded data.

A total of 12 tinnitus patients (7 females, mean age = 51.25 ± 12.90 years, range
27–67) who had had tinnitus for an average of 9 years (SD = 5.16 years, range 1–17 years)
participated in our study (Table 1). This open-label, single-arm pilot for a prospective
cohort study was approved by the Ethics Committee for Analysis of Research Projects,
Specialized Center of Otorhinolaryngology and Speech Therapy, Hospital das Clínicas
da Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Brazil (HCRP no:
55716616.1.1001.5440). All patients gave written informed consent.

Table 1. Demographics and clinical and behavioral data of patients before and after the intervention.

Age
(Years)

Tinnitus
Duration

(Years)

THI
State Anxiety
Scores—STAI

LMT dB HL

PTA
(dB HL)

Loudness
Pre

Loudness
Post

1st Session Last
Session 1st Session Last

Session 1st Session Last
Session

mean 51.2 9 57.7 43.3 46.9 39.5 54 47.7 34.5

SD 12.9 5 20.1 21.0 15.3 9.8 9.5 12.8 12.7

p-value 0.018 0.056 0.049

THI: Tinnitus Handicap Inventory, STAI: State-Trait Anxiety Inventory, LMT: loudness match test, PTA: pure-tone
average, which is an averaged hearing threshold of tested frequencies over both ears.

2.2. Audiological Profile

Before and after each experiment session, a trained audiologist determined the hearing
threshold level using pure-tone audiometry (PTA) examination. (For more details, see
Supplementary Materials in [27].)

2.3. Behavioral Profile

Before each experiment session, patients completed the Portuguese versions of the
THI [25] and the 6-item version of the State-Trait Anxiety Inventory (STAI) [28]. For anxiety
measurement, we only reported state anxiety scores obtained from STAI, which measures
anxiety symptoms in the current moment in contrast to the trait anxiety which measures a
generalized predisposition to be anxious.
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2.4. High-Definition Transcranial Direct Current Stimulation

A battery-driven current source 1 × 1 DC-Stimulator (Soterix Medical, Woodbridge, NJ,
USA) and a 4 × 1 distributor (Soterix Medical, Woodbridge, NJ, USA) were administered
to deliver 2 mA HD-tDCS for 20 min with a 30 s ramp up and 30 s ramp down. F3 as the
recenter electrode was surrounded with four cathode electrodes placed over F1, F5, AF3,
and FC3 (Figure 1).
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2.5. Positive Emotion Induction

We employed a set of validated positive-emotion-eliciting pictures from the Nencki
Affective Picture System (NAPS) dataset to induce positive emotion whilst the participants
were being simultaneously presented with HD-tDCS over the left dlPFC to reduce the
tinnitus negative valence (Figure 1). More details about the HD-tDCS and PEI protocol can
be found in our previously published paper [27].

2.6. MR Acquisition

Magnetic resonance images were collected using a 3T system (Achieva X-series, Philips
Medical Systems, Best, the Netherlands) with a 32-channel head coil. Functional images
were acquired using an EPI sequence with the following parameters: 200 volumes, 29 slices
in ascending order without gaps, 4 mm slice thickness, voxel size = 3 × 3 mm, field of view
= 240 × 240 mm, TR/TE = 2000/30 ms. A silent sequence was used by setting it to the
maximum (level 5) “soft-tone” parameter offered by the MRI equipment, which decreases
the gradient slew rate, leading to lower coil mechanical vibration levels [29]. Structural
images were acquired using a 3D T1-weighted MPRAGE sequence with the following
parameters: 3.2/7.0/8 (TE/TR/Flip angle); isotropic voxel of 1.0 mm; field of view (FOV) =
240 (FH) × 240 (AP) × 170 (RL) mm; SENSE = 2. Subjects were instructed to stay alert and
remain still. We used cushions between the patient and the head coil to minimize the head
movements and earmuffs were also used to attenuate the noise of the scanner. To assure
that the MRI scanner noise had not masked the tinnitus sound, we occasionally asked
patients to raise their thumb if they were still perceiving tinnitus throughout the scanning.
This imaging acquisition was conducted before and after the intervention (Figure 1).

Figure 1: Ten experiment sessions of anodal HD-tDCS over the left dlPFC concurrent
with PEI were delivered. Before starting the first experiment session and after finishing
the tenth session of the experiment, MRI scans of patients were acquired. Before each ex-
periment session, the patients filled in the questionnaires. Before and after the experiment
sessions but not the MR sessions, psychoacoustic parameters of tinnitus were obtained.
During the experiment, eighty neutral pictures and two-hundred positive pictures from
the NAPS dataset were displayed. The positive emotion induction (positive picture presen-
tation) was concurrent with anodal stimulation over the left dlPFC. The total duration of
the experiment was around 45 min.
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2.7. MR Data Preprocessing

We utilized the MATLAB toolbox CONN v.20.b [30,31] for preprocessing, denoising,
and analyzing the fMRI data. The CONN’s default pipeline for preprocessing was used
as follows: The functional images were realigned and unwarped, translated by centering
to (0,0,0) coordinates, slice time corrected, scrubbed with ART-based identification for
outlier scans (intermediate scrubbing settings, with a global-signal Z-value difference
threshold of 5 and a subject differential motion threshold of 0.9 mm), coregistered with
structural images, and spatially smoothed using a 6 mm Gaussian kernel. Structural images
were translated by centering them to (0,0,0) coordinates, segmenting them into GM, WM,
and CSF, and normalizing them to the Montreal Neurological Institute (MNI) template.
Subsequently, CONN’s default denoising pipeline was performed to remove nuisance
variables, including signal within WM and CSF masks, head motion parameters with
first-order temporal derivatives, outliers detected during ART, and linear trends. Finally, a
temporal band-pass filter (0.008–0.09 Hz) was applied.

2.8. Processing/Functional Data Analysis

To examine whether repeated sessions of HD-tDCS over the left dlPFC concurrent with
PEI could down-regulate tinnitus negative valence at the neural network level, we selected
the dlPFC and amygdala as seeds of interest considering the clinical distress stage of the
NfTM [1]. The dlPFC as a key hub in the frontoparietal network takes part in allocating
top-down attentional resources [32] toward highly valued stimuli [1]. We further tested
more seeds due to their differential activity and/or functional connectivity resulting from
tinnitus distress [33–36]. These included bilateral primary auditory cortices for the auditory
network (AN), medial PFC and posterior cingulate cortex for the default mode network
(DMN), as well as four seed regions of interest (ROIs) belonging to the dorsal attention
network (DAN). The latter seeds were grouped into bilateral posterior intraparietal sulci
for DAN1, and bilateral frontal eye fields for DAN2, similar to the study conducted by [36].
Coordinates for the seeds mentioned above were the same as those used in Shahsavarani,
Schmidt [35] study. Seeds were generated using the MarsBar toolbox [37] with 6 mm radius
spheres centered at the MNI coordinates listed in Table 2.

Table 2. MNI coordinates of the seeds used to generate resting-state networks.

Network Seeds MNI Coordinates

x y z

EmotionProcessing Right amygdala
Left amygdala

18
−17

−7
−2

−17
−24

Fronto-Parietal Network (FPN) Right dorsolateral prefrontal cortex
Left dorsolateral prefrontal cortex

41
−43

38
33

30
28

Cingulo-opercular network
(CON)

Right anterior insula
Left anterior insula

47
−44

14
13

0
1

Auditory Network (AN) Right primary auditory cortex
Left primary auditory cortex

41
−55

−27
−22

6
9

Dorsal Attention Network 1
(DAN−1)

Right posterior intraparietal sulcus
Left posterior intraparietal sulcus

26
−23

−62
−70

53
46

Dorsal Attention Network 2
(DAN-2)

Right frontal eye field
Left frontal eye field

27
−25

−11
−11

54
54

Default Mode Network (DMN) Medial prefrontal cortex
Posterior cingulate cortex

8
−2

59
−50

19
25

We performed CONN’s default seed-to-voxel functional connectivity analysis using
a weighted general linear model to estimate the bivariate correlation. For each subject,
the average time course of the blood-oxygenation-level-dependent (BOLD) signal was
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extracted from the seed and used as the regressor of interest in the functional connectivity
(FC) analysis.

The correlation coefficients between the time series of the seed region and every
other voxel across the brain were computed by generating a subject-specific FC map and
transformed into a z-score using Fisher’s r-to-z transformation to improve the normality
of the correlation coefficients. These Fisher-transformed subject-specific FC maps were
then entered into the second-level group analysis using paired sample t-tests to explore
rsFC alterations at specific seeds between pre- and post-conditions (specifying post > pre
as between-condition contrast). Seeds were tested both unilaterally and bilaterally. For
the latter analysis, the connectivity of the two seed regions in each network was averaged
together to produce a single representation of the network, similar to the method employed
by [36]. The results were significant if they survived at p < 0.001 uncorrected thresholds
together with a family-wise error (FWE) corrected threshold of p < 0.05 at the cluster level,
with a cluster extent of 27 voxels. Single-subject Fisher-transformed correlation coefficient
values (connectivity values) were extracted from Conn and imported into R-Studio [38] for
creating boxplots and scatterplots. Pearson’s correlation analysis was further conducted to
test the possible relationship between changes in FC values and THI.

3. Results
3.1. Effects on Neural Correlates: Resting-State Functional Connectivity

In order to examine rsFC alterations following ten consecutive sessions of HD-tDCS
over the left dlPFC concurrent with PEI, we compared the functional connectivity obtained
from rsfMRI data acquired before (pre) and after (post) the intervention. We used pre-
determined seeds, meant to reflect the connectivity with the bilateral amygdala, FPN, CON,
AN, DAN1, DAN2, and DMN. It was revealed that the intervention significantly reduced
rsFC between the attention and emotion processing regions at post-intervention when
compared to pre-intervention (Table 3).

Table 3. Regions of significance for post > pre contrast.

Network Seeds Region BA
Cluster

Size
Peak MNI Coordinates Peak

Intensity
Cluster-Level

p FWE-Corrected CoG * Regions
x y z

Emotion
Processing

Bilateral
Amygdala L SPL 113 −32 −76 36 −6.80 0.004 * L Parietal Lobe

Left Amygdala R SPL 79 38 −68 28 −6.58 0.038 R Posterior MTG

Fronto-
Parietal

Network

Bilateral dlPFC
L pgACC 10/32 206 −14 36 16 −7.03 0.00008 ** L MFG-BA 10

R pgACC 32 107 16 38 12 −5.80 0.0086 * R MFG-ACC

Left dlPFC

R Sup.
pgACC 32 145 6 36 12 −7.41 0.00084 ** R PreACC-BA32

L pgACC 10 113 −16 50 4 −6.87 0.0045 * L Superior MFG

The statistical threshold was set at p < 0.05 FWE corrected for multiple comparisons. Anatomical locations were
determined using automated anatomical labeling atlas v.3 embedded in xjview (http://www.alivelearn.net/
xjview, accessed on 6 April 2021). ** represents a higher significance level. SPL: superior parietal lobule, pgACC:
pregenual anterior cingulate cortex, MTG: middle temporal gyrus, MFG: medial frontal gyrus, Sup: superior,
* CoG: center of gravity corresponding to each region of significance for post > pre contrast. BA: Brodmann area.
L: left, R: right.

Resting-state FC with bilateral amygdala from pre-intervention to post-intervention
decreased in a cluster overlapping the posterior part of the left SPL. Unilaterally, the
left amygdala showed decreased rsFC with the posterior part of the right SPL at post-
intervention when compared with pre-intervention (Table 3 and Figure 2a–d).

http://www.alivelearn.net/xjview
http://www.alivelearn.net/xjview
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Moreover, the between-condition comparison revealed a pattern of reduced rsFC
between bilateral dlPFC and bilateral pgACC from the pre- to post-intervention (Table 3
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and Figure 2e–h). Unilaterally, the left dlPFC showed decreased rsFC with right superior
pgACC and left pgACC at post-intervention when compared with pre-intervention (Table 3
and Figure 2i–l).

There were no changes in the connectivity of other seeds at the established threshold
for significance. Although setting the voxel-level significance at uncorrected p < 0.01 while
maintaining FWE corrected p < 0.05 at the cluster level, we observed decreased rsFC
between DAN1 and one cluster centered at (MNI coordinate: 26, 6, −14) overlapping with
the right-sided putamen, subcallosal area, and fronto-orbital cortex at post-intervention
when compared with pre-intervention. The same observation was found using the right
posterior intraparietal sulcus as the seed of interest; this time, the suprathreshold voxel was
located at (MNI coordinate: 12, 22, −12).

On the other hand, the right primary auditory cortex showed increased rsFC with the
post-central gyrus and supplementary motor cortex at post-intervention after reducing the
voxel height threshold. With the same liberal voxel height threshold, no clusters emerged
for the rest of the seeds.

SPL: superior parietal lobule, pgACC: pregenual anterior cingulate cortex, dlPFC:
the dorsolateral prefrontal cortex; statistical threshold was set at p < 0.05; FWE corrected
for multiple comparisons. The background anatomical image is the single-subject T1
image available at SPM canonical. Anatomical locations were determined using automated
anatomical labeling atlas version.3 embedded in xjview toolbox. Blue color represents
negative correlations and the center of crosshairs shows the voxel with the peak intensity.

3.2. Effects on Behavioral Correlates: Tinnitus Handicap Inventory

Paired t-test analysis showed that THI scores were significantly lower at post-intervention
compared to pre-intervention [t (11) = 2.77, p = 0.0182]. The boxplots in Figure 3 illustrate the
distribution of THI scores for the pre- and post-conditions. As Figure 3 shows, a reduction
in THI scores at post-intervention is observed when compared with pre-intervention.
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3.3. Effects on FC-THI Relationship

Pearson’s correlation analysis was conducted to examine whether there was any
relationship between changes in FC values and changes in THI scores. The results showed
no significant correlation (p < 0.05) in the values of both variables neither for pre- nor
post-conditions, suggesting that the mechanism behind the FC-THI relationship was not
affected by the intervention.

To visualize the treatment effect, we plotted the variations in FC values against the
variations in THI scores between the pre- and post-conditions. As shown in Figure 4. and
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as previously reported, an apparent reduction in specific FC values and THI scores was
observed at post-intervention (blue lines) relative to pre-intervention (red lines) Upon
visual inspection, one might notice that there is no relationship between the changes in FC
values and THI scores neither for pre- nor post-conditions, as was observed after correlation
analysis. All in all, the intervention affected the variables independently with no apparent
common underlying mechanism (Figure 4).
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Figure 4: Points in the plots refer to subject-specific observations for FC values and
THI scores before (red) and after (blue) the intervention. Observations belonging to the
same condition (pre- or post-) were connected, creating a line to facilitate the comparison.
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In all of the plots, the placement of the blue points below the red points and roughly
under the score of 50, respectively, indicate lower FC values and THI scores obtained
post-intervention. Note: for bilateral seeds representing a network, we separately plotted
the FC values belonging to the left and the right hemisphere.

4. Discussion

When tinnitus is perceived, patients in the clinical stage experience distress because of
the corresponding negative valence [1,39]. In light of the NfTM predictions and transcranial
electrical stimulation application, we paired the CAAP of tinnitus with the presentation of
positively valenced pictures concurrent with anodal HD-tDCS over the left dlPFC aiming
at reducing tinnitus negative valence. We delivered the intervention for ten consecutive
sessions while the rsfMRI scans and THI were considered as outcome measures at the
neural and behavioral levels, respectively.

4.1. Neural Correlate

A general picture of the results is a reduction in rsFC between the attention and
emotion processing regions, suggesting that the brain is calming down following the
intervention.

4.2. Amygdala–SPL

The SPL is part of the DAN, which is involved in external attention and goal-directed
top-down processing [40–42]. The posterior part of the SPL specifically is engaged in
selective attention; accordingly, a subset of information is selected for preferential pro-
cessing [43]. In our study, the decrease in rsFC between the amygdala and SPL after the
intervention might suggest that the amygdala assigns less emotional value to the sound
accompanied by lowered biased attention.

Taking into account the findings from previous studies, such as increased connectivity
between the frontal eye field and parahippocampus [36] suggesting an interaction between
the attention and emotion network, enhanced activity [44] in the superior parietal gyrus
during resting state, and increased connectivity of the left superior parietal gyrus with
various brain regions [45] in tinnitus patients compared with healthy or hearing-loss
controls, the observed reduction in rsFC of the SPL and amygdala in our current study may
reflect a beneficial effect of the intervention.

Additionally, several studies have shown that anodal tDCS over the left dlPFC can
have a beneficial effect on reducing attentional bias. Specifically, studies have reported that
a single session of tDCS over the left dlPFC reduced attentional interference in depressed
individuals [46] and decreased attention bias to negative content in a stress test [47].
Additionally, tDCS over the left dlPFC diminished amygdala threat reactivity and down-
regulated the amygdala in reacting to a threat [48]. However, some studies have not found
an effect on attention bias following dlPFC stimulation, which may be due to differences in
methodology and study design.

4.3. dlPFC-pgACC

The rostral or pregenual area of the ACC (pgACC-BA 24/32), known as the “affec-
tive division”, plays a crucial role in the neural circuitry of valuation, and is involved in
emotional processing and the assessment of emotional significance in conjunction with the
amygdala and other limbic regions [49,50], which are a core part of the neural circuitry of
valuation [51–53]. Emotional arousal serves as a standard for significance, dictating how
brain resources are allocated and boosting sensitivity to environmental cues. Top-down
influences, mediated by the frontoparietal and thalamic systems, may lead to increased
allocation of cognitive resources and more selective attention when stimuli are seen as
emotionally relevant or causing arousal. Frontoparietal attentional systems might receive
direct input from regions that specify the motivational importance of stimuli, such as
through reciprocal connections with anterior and posterior cingulate cortices, basal fore-
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brain nuclei [54–56], or orbitofrontal areas [57,58]. Inputs from these regions might, in turn,
affect the response to emotional stimuli [59].

Relevant to our study, reduced functional connectivity between dlPFC and pgACC
may indicate that tinnitus is less emotionally significant after intervention, resulting in less
attentional resources being allocated to it. The dlPFC may affect distant regions such as
pgACC due to anatomical connections [60–62]. Previous studies have identified pgACC’s
involvement in tinnitus distress via EEG and fMRI studies [20,33,63–65]. In one study, tDCS
over the right dlPFC led to changes in the resting-state activity in the pregenual ACC, the
parahippocampal area, and the right primary auditory cortex, resulting in the transient
suppression of tinnitus distress and loudness [20]. In another study, highly distressed
tinnitus patients showed greater activity in the pregenual ACC, dlPFC, medial PFC, insula,
anterior midcingulate cortex, superior, and middle frontal gyrus, which was positively
correlated with tinnitus-related distress [33].

In our study, the center of gravity of the cluster showing reduced rsFC with dlPFC
was in the bilateral medial frontal gyrus. Support for the contribution of the medial frontal
gyrus in tinnitus distress comes from previous studies [33,34]. In the same study mentioned
above, Golm, Schmidt-Samoa [33] reported higher activation in the right medial frontal
gyrus among highly distressed tinnitus patients compared to low-distressed ones. This
higher activation was positively correlated with tinnitus distress, suggesting that this region
is part of the distress network and can be an ideal stimulation site for mitigating tinnitus
distress [33]. Accordingly, the reduced engagement of the medial frontal gyrus in our study
might indicate a lower level of distress experienced at post-intervention.

The dlPFC has been found to play a role in valence attribution to emotional experiences
in various studies wherein anodal tDCS of the left dlPFC has been shown to reduce negative
emotional processing in different experiments [66,67]. One study found that 1 mA anodal
tDCS over the left dlPFC reduced the perceived intensity of negative emotional valence
for negative stimuli but not for positive or neutral stimuli [66]. Another study reported
that 2 mA anodal tDCS over the left dlPFC reduced the perception of unpleasantness and
personal discomfort in response to images depicting human suffering [67]. More recent
studies have provided evidence that the left dlPFC tDCS decreased negative emotional
reactivity to aversive content [68,69]. However, the favorable effects of tDCS are sometimes
small or difficult to replicate, and this may be due to different stimulation parameters
applied across studies [70].

4.4. Behavioral Correlate

Comparing the THI scores before and after the intervention, we found that the scores
were significantly lowered at post-intervention relative to pre-intervention. This most
probably results from the reduction in the engagement of attention and emotion processing
regions, reflecting the decreased burden of tinnitus.

Favorable results of dlPFC tDCS on the psychological aspect of tinnitus have been
widely reported, although widely varying dose parameters across these studies limit con-
clusions. For instance, using THI as the primary endpoint, Frank, Schecklmann [71] noted
that six thirty-minute sessions of 1.5 mA tDCS (right anode and left cathode) minimally
impacted loudness and annoyance [71]. With a similar electrode arrangement and intensity,
Vanneste, Plazier [72] carried out a clinical study recruiting 478 patients who suffered
from tinnitus and reported that a single twenty-minute tDCS session modulated tinnitus
perception among 29.9% of the patients. A significant decline was found in the intensity
and distress of these patients when assessed using the visual analog scale (VAS) [72]. On
the other hand, in a cross-over sham-controlled study, Faber, Vanneste [73] performed
six sessions of anodal tDCS for the left or right dlPFC with a cathode electrode over the
contralateral dlPFC. The results of VAS found that both active conditions, regardless of the
anodal position, succeeded in decreasing the annoyance associated with tinnitus but not
its intensity [73]. However, the above-mentioned studies lack functional targeting and the
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identification of neural alterations associated with symptom alleviation, which should be
taken into account in future studies.

4.5. Neurofunctional Tinnitus Model

In agreement with the NfTM, our results corroborated the role of the ECL mechanism
in developing tinnitus valence. The NfTM proposed that for tinnitus patients within the
clinical distress stage, the CAAP of tinnitus has been repeatedly paired with negative
unconditioned stimuli resulting in the generation of tinnitus negative valence. Based on
this postulation, in the current study, we used the ECL mechanism to reduce the previously
shaped tinnitus negative valence by pairing the CAAP of tinnitus with PEI and HD-
tDCS over the left dlPFC. The observed reduction in rsFC with the attention and emotion
processing regions and THI scores at post-intervention highlighted the contribution of the
ECL mechanism in changing the valence. Such promising results provoke the development
of treatments based on the ECL mechanism to reduce the negative valence of tinnitus when
paired with positively valenced and high-arousal stimuli such as pictures and films [74].
These stimuli can be presented in a game-like design, app-based format, or via goggles of
virtual reality to provide a cost-effective home-based individualized treatment.

Our results both at the neural and the behavioral levels are in accordance with NfTM
predictions, i.e., the weaker cognitive–emotional value of the sound lowers the chance of
attention allocation and the experienced distress level [1]. Observing the same trend of
reduced rsFC between DAN1 and the right subcallosal/OFC at a more liberal threshold
adds further support to NfTM predictions. This model, however, did not take into account
the involvement of parietal attention-processing regions. Therefore, we propose to explain
the differences in attention–emotion interactions between patients with neutral and clinical
distress tinnitus while incorporating the parietal attention-processing regions in the model.

Given that the general picture of our results is the interaction between the attention
and emotion processing regions, one possible explanation for the respective interaction
could be via the framework of the salience network. The salience network is responsible
for mediating attention to relevant external stimuli and operating in terms of the associated
processing of cognition and emotion [75,76]. However, after the intervention, we did
not observe any changes in the rsFC of the anterior insula as one of the main nodes of
the salience network. It is suggested that future studies examine whether the anterior
insula and dorsal anterior cingulate cortex, representing the salience network, indicate any
differential functional coupling in tinnitus patients within the clinical distress stage. A
further justification for considering the salience network relates to the correlation between
stimulus valence and the salience network [77,78]. If this correlation was verified for
tinnitus, the NfTM would need to be revised accordingly.

The NfTM proposes how different brain regions interact, resulting in tinnitus distress.
Our observation of alterations in the amygdala, ACC, and lateral PFC at post-intervention
confirmed their contribution to tinnitus distress as proposed by the NfTM. More specifically,
the finding that the pregenual part of the ACC plays a role in tinnitus distress added further
detail to the anatomical structure of the NfTM. Although our findings provided some
support for the NfTM, further investigations are still required for model validation.

5. Conclusions

The current study aimed to examine whether repeated sessions of HD-tDCS over
the left dlPFC concurrent with PEI can down-regulate tinnitus negative valence both at
the neural network and behavioral levels. The results indicated attenuated rsFC between
the attention and emotion processing regions at post-intervention when compared with
pre-intervention. Generally, the brain calms down after receiving the intervention. To
illustrate this, we observed that reducing the negative valence of tinnitus could lessen the
chance of attention allocation to the sound with a lower level of distress, as was predicted
based on the NfTM. However, we still do not know the exact underlying mechanisms
which led to the lower rsFC between the attention and emotion processing regions; this
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might be derived from an improvement in the function of cognitive control regions [79], for
which we were unable to find a track. Alternatively, the current findings might stem from
the participation of some hub regions mediating cognitive–emotional processes resulting in
emotion regulation and controlling behavior [80]. Collectively, future investigations in light
of the NfTM are required to better understand the root causes of these beneficial effects.

6. Limitations and Future Directions

Varying tinnitus duration and HTL among recruited patients for this exploratory pilot
study could impact rsFC [81]. Although we observed preliminary but promising results in
the small sample size of this exploratory pilot study, a larger sample size is essential for the
confirmatory stage. The absence of a sham-controlled group and the absence of follow-up
assessments are among the other drawbacks of our study.

To address the problem of interpretation caused by the widespread modulation of
brain activity and connectivity resulting from the stimulation of a given area, future studies
should consider using additional active stimulation sites and customized head models for
anatomical targeting. Effective connectivity [82] is also strongly advised to improve our
understanding of the flow of signals through the regions and networks.

In the current study, the effectiveness of combined HD-tDCS and PEI techniques
has been investigated. In future studies, it is recommended to conduct studies on four
subgroups, including an HD-tDCS group, PEI group, combined HD-tDCS and PEI group,
and also a control group.
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