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Abstract: Resting-state functional magnetic resonance imaging (fMRI) with graph theoretical mod-
eling has been increasingly applied for assessing whole brain network topological organization,
yet its reproducibility remains controversial. In this study, we acquired three repeated resting-state
fMRI scans from 16 healthy controls during a strictly controlled in-laboratory study and examined
the test-retest reliability of seven global and three nodal brain network metrics using different data
processing and modeling strategies. Among the global network metrics, the characteristic path length
exhibited the highest reliability, whereas the network small-worldness performed the poorest. Nodal
efficiency was the most reliable nodal metric, whereas betweenness centrality showed the lowest
reliability. Weighted global network metrics provided better reliability than binary metrics, and
reliability from the AAL90 atlas outweighed those from the Power264 parcellation. Although global
signal regression had no consistent effects on the reliability of global network metrics, it slightly
impaired the reliability of nodal metrics. These findings provide important implications for the future
utility of graph theoretical modeling in brain network analyses.

Keywords: resting-state fMRI; test-retest reliability; graph theoretical modeling; small-world network
(SWN); intra-class correlation coefficient (ICC)

1. Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) has proven to be a
powerful tool for examining spontaneous fluctuations in brain activities. The spontaneous
activity of the resting brain, often referred to as the intrinsic baseline brain function,
likely represents a ‘physiologic, functionally significant state of the brain’. In the resting
state, task-evoked energy consumption appears to be less than 5% of that during basal
metabolism [1,2]. Functional connectivity has been widely applied to characterize resting-
state brain activities. It is defined as ‘the temporal correlation between neurophysiological
measurements made in different brain areas’ [3] (p. 6) and reflects the level of information
processing and transportation between anatomically separated brain regions [4].
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With the concept of functional connectivity, the brain can be viewed as a highly
connected network that consistently maintains a balance between the wiring cost and
processing efficiency [5]. Such functional connectivity networks have been further modeled
using graph theory. In graph theory, a graph consists of two fundamental elements: node
and edge. Mapping onto the rs-fMRI data, nodes are typically defined by regions of interest
(ROI) or voxels, and edges are represented by functional connectivity strengths.

Small-world architecture is an important graph-theoretical property of the brain
network [6]. Consider two extreme situations: a regular network and a random network.
The former is highly ordered, in which every node is connected to, and only connected
to, its nearest neighbors (i.e., no probabilistic edge). The latter is entirely random, in
which every pair of nodes can be connected independently with equal probabilities. A
small-world network is in the middle and the connections are probabilistic; however, the
probability follows some rules. For example, two nodes far away from each other are
usually not directly connected by a single edge, whereas one can easily reach the other
through a small number of steps (i.e., intermediate nodes and edges) [7]. Such properties of
a small-world network are quantified by several metrics, such as the clustering coefficient
and characteristic path length [8]. The brain network has been demonstrated to have a high
clustering coefficient and short characteristic path length, which is crucial for maintaining
efficient information segregation and integration [9]. Given such great importance of
the brain’s small-world properties, they have been extensively studied and applied as
biomarkers to identify various psychopathologies [10–15].

Despite the explosive application of the resting-state BOLD fMRI and graph theory,
some of the results may suffer from low test-retest reliability, as measured by intra-class
correlation (ICC). A review of 15 fMRI studies found that the mean voxel- or ROI-based
ICC across all the studies ranged from 0.16 to 0.88, with an average of 0.50 [16]. Similarly, a
recent meta-analysis reported that the overall reliability of functional connectivity is poor
(average ICC = 0.29) [17]. The ICC of small-world metrics was unsatisfying as well (e.g.,
clustering coefficient, characteristic path length, small-worldness, etc.), and many of them
hardly exceeded 0.6 [18–21].

Such poor test-retest reliabilities of the graph-theoretical measures in the rs-fMRI data
hamper their application in clinical settings; therefore, it is essential to explore the optimal
strategy for network analysis. An important source of inconsistency may derive from the
methods of data processing and network construction. When defining the nodes, different
ROI parcellations can lead to different interpretations. For example, some atlases are
generated by structural separations of the brain areas (e.g., Automated-Anatomical Labeling
(AAL), Havard-Oxford atlas (HOA), Brainnetome atlas (BN)), while many others are based
on functional homogeneities (i.e., co-activations) (e.g., Power 264, funROI, DOS) [22–26].
Previous studies comparing ICC across atlases suggested that the HOA is generally more
reliable than the AAL and DOS atlas [20]; and that finer parcellations, with more regions,
could produce more reliable clustering coefficients and local efficiency [27]. It is also
important to consider the trade-off between greater functional homogeneity (more ROIs)
and better anatomical interpretability (fewer ROIs) [28].

There is further controversy regarding the definition of edge. The primary issue is
whether to apply the global signal regression (GSR) during fMRI preprocessing. Global
signal regression refers to the process of removing the average time series across voxels (i.e.,
the global signal) from each voxel signal to improve the signal-to-noise ratio [29]. However,
GSR can produce spurious negative correlations, and global signals may correlate with the
experimental manipulation [30]. Therefore, it is not appropriate to interpret them entirely
as nuisance variables [31,32]. It is so far not clear whether GSR has a positive or negative
effect on TRT reliability. Andellini et al., (2015) examined the ICC of five micro-level graph
theoretical metrics (degree, clustering coefficient, local efficiency, global efficiency, and
assortativity) and found that global signal regression would decrease the reliability of all
the metrics [18]. On the contrary, Braun et al. (2012) reported that the effect of global signal
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regression depends on the exact metric and network density; however, in most cases, the
ICC improved after GSR [19].

Another issue regarding the choice of the edge is the use of binary versus weighted
edges. Most studies prefer the binary network because it is straightforward to model and
interpret. Despite the difficulty in modeling and interpretation, the weighted network
contains more information and presents a more detailed picture of the brain [33]. Previous
studies have compared the TRT reliability between these two modeling strategies. For
example, Andellini et al., (2015) reported that the ICC of graph theoretical metrics was not
significantly improved (although slightly improved) in the weighted network modeling
compared to the binary network modeling [18]. However, Xiang et al., (2019) found that
weighted modeling significantly benefits the TRT reliability clustering coefficient, shortest
path length, and local and global efficiency [21].

In addition to the choice of data processing and network construction methods, varia-
tions and confounding factors during subject recruitment and data collection also impair
TRT reliability. For example, subjects with sleep disorders or substance abuse need to
be screened and excluded, since the organization of functional brain networks of those
patients significantly differs from that of healthy controls [34–37]. Moreover, resting-state
data collected with eyes closed were less reliable than those with eyes open [38,39], likely
caused by drowsiness when eyes were closed [17]. In addition, the consistency of scanners
and sites is a relevant factor: inter-site and inter-scanner differences decrease the TRT
reliability of the temporal signal-to-noise ratio (tSNR) and functional connectivity [40,41].
Finally, the brain status may vary if the scans take place at different times of the day or
different days of the week; the volume of the brain, glucose metabolism, regional cerebral
blood flow, and rs-fMRI-based functional connectivity all fluctuate, possibly due to the
effects of circadian rhythm on the brain [42–44].

Previous investigations on resting-state test-retest reliability were primarily based
on fMRI data from existing datasets (e.g., [20,21,27,45,46]). However, the participants’
health conditions were not well monitored, and many data collection details were not
available. Moreover, there is no current consensus regarding data processing and network
construction methods, and few studies have been able to consider multiple aspects of
the analysis simultaneously. To address these important issues, we conducted a very
strictly controlled experiment in which participants remained in the laboratory for five
consecutive days (four nights). They were continuously monitored by research and hospital
staff and were allowed to sleep for 8–9 h. All the scan sessions took place using the
same scanner at the same time of the day. To further rule out potential confounders,
caffeine, alcohol, tobacco, and medications were not permitted. After ruling out potential
confounders in the data collection, we aimed to examine the optimal combination of
strategies that would yield the highest test-retest reliability in the brain network’s small-
world properties. Two nodal (degree and betweenness centrality) and five global metrics
(clustering coefficient, characteristic path length, small-worldness, global efficiency, and
local efficiency) were applied to characterize the overall topology of the network. Brain
networks were constructed using eight different processing strategies, and the ICC was
calculated to reflect the TRT reliability. We sought to answer the following three questions:
(1) Which graph-theoretical measure of the brain network is the most reliable? (2) Is it
necessary to apply global signal regression and use a weighted network during modeling?
(3) Is AAL-90 a reliable parcellation scheme for brain network modeling?

2. Materials and Methods
2.1. Subjects

Sixteen healthy adults (8 females, mean age = 35.4 ± 9.5 yrs) were recruited as the
control subjects in a very strictly controlled in-laboratory sleep study [47,48].

Upon recruitment, participants reported habitual sleep duration between 6.5 h–8.5 h,
bedtime between 22:00–00:00, and awakenings between 06:00–09:00. Prior to the in-
laboratory study, their reports were confirmed using approximately one week of wrist
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actigraphy. Participants assessed by questionnaire who reported habitual napping, sleep
disturbances, and extreme morningness or eveningness chronotypes were excluded from
the study. Screenings for acute or chronic medical and psychological conditions, as well
as drug and alcohol intake, were conducted using questionnaires, physical examinations,
and blood and urine tests. All participants were nonsmokers and did not participate in
shift work, transmeridian travel, or irregular sleep-wake routines 60 days prior to the study.
Starting one week before the end of the laboratory session, participants were not permitted
to use caffeine, alcohol, tobacco, and medications (except oral contraceptives), as verified
by urine screenings.

The study was approved by the Institutional Review Board (IRB) of the University of
Pennsylvania (IRB ID# 811678). Informed consent was obtained before enrollment, and the
subjects were compensated for their participation.

2.2. Experimental Design

To ensure adherence to the protocol, participants remained in the laboratory at the
Clinical Translational Research Center at the Hospital of the University of Pennsylvania for
5 consecutive days (4 consecutive nights). They were behaviorally monitored by trained
staff, allowed to watch television, read, play video or board games, and perform other
sedentary activities, but they were not allowed to exercise or leave the laboratory.

Participants received 9 h time in bed (21:30–06:20) on day 1 to adjust to the laboratory
environment and 8 h of sleep (22:30–06:30) on days 2–5. MRI scan sessions were on the
morning of days 2, 3 and 5, from 7.00 a.m. to 10.00 a.m.

2.3. Imaging Data Acquisition and Preprocessing

Magnetic resonance imaging was conducted using a Siemens 3.0 Tesla Trio whole-
body scanner (Siemens AG, Erlangen, Germany) and a standard array coil. Resting-state
BOLD fMRI data were collected using the standard EPI sequence: TR = 2 s, TE = 24 ms,
FOV = 220 × 220 mm2, matrix = 64 × 64 × 36, slice thickness = 4 mm, and inter-slice
gap = 4 mm. A total of 210 images were acquired for each subject. Subjects were instructed
to keep their eyes open and look at a cross fixation in the scanner. T1-weighted structural
images were obtained using a standard 3D MPRAGE sequence: TR = 1.62 s, TE = 3.09 ms,
FOV = 187 × 250 mm2, matrix size = 192 × 256, slice thickness = 5 mm, and inter-slice
gap = 1 mm.

Rs-fMRI data were pre-processed and analyzed using the Data Processing Assistant
for Resting-State fMRI (DPARSF V2.3_20130615; http://rfmri.org/DPARSF, accessed on 3
March 2023), which is based on Statistical Parametric Mapping software (SPM8, Wellcome
Department of Cognitive Neurology, London, UK) and the REST_V1.8_130615 toolbox
http://www.restfmri.net/forum/REST_V1.8, accessed on 3 March 2023) implemented in
Matlab14 (MathWorks, Natick, MA, USA). The pipeline consisted of head motion correction,
co-registration, smoothing with an 8 mm full-width at half-maximum (FWHM) isotropic
Gaussian kernel, normalization to the standard Montreal Neurological Institute (MNI)
space, and the removal of linear trends. All functional volumes were band-pass filtered
(0.01 Hz < f < 0.08 Hz) in order to reduce low-frequency drift and physiological high-
frequency respiratory and cardiac noise. Nuisance covariates including six head motion
parameters, white matter signal, and CSF signal were regressed out.

2.4. Brain Network Construction

A summary of all eight methods is in Table 1. Four of the methods were developed
using a combination of two network types (binary/weighted), and with/without global
signal regression, primarily using the AAL-90 atlas because AAL-90 was used in most
of the previous studies [11,19,49]. Next, a comparison with the Power264 atlas, another
widely used parcellation, was added in the binary/weighted networks with/without GSR.
Seven global measurements were analyzed using thresholds from 0.15 to 0.35 (i.e., the
proportion of strongest functional connectivity to preserve) with a 0.05 step, while three
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nodal measurements were analyzed based on the area under the curve (AUC) value from
0.05 to 0.50 densities.

Table 1. Summary of eight data processing methods.

BG90 BNG90 WG90 WNG90 BG264 BNG264 WG264 WNG264

Network
type Binary Binary Weighted Weighted Binary Binary Weighted Weighted

Global
signal

regression
Yes No Yes No Yes No Yes No

Parcellation AAL90 AAL90 AAL90 AAL90 Power264 Power264 Power264 Power264

Note: BG90: binary + global signal regression + AAL90, BNG90: binary + no global signal regression + AAL90,
WG90: weighted + global signal regression + AAL90, BG264: binary + global signal regression + Power264,
BNG264: binary + no global signal regression + Power264, WNG90: weighted + no global signal regres-
sion + AAL90, WG264: weighted + global signal regression + Power264, WNG264: weighted + no global
signal regression + Power264.

2.5. Graph Theoretical Metrics

Global network metrics included mean clustering coefficient (Cp) and its normalized
version, gamma (γ), characteristic path length (Lp) and its normalized version, lambda
(λ), small-worldness (σ), global efficiency (Eg), and local efficiency (Eloc). Nodal metrics
included degree centrality (Dc), betweenness centrality (Bc), and nodal efficiency (Ne). All
the network metrics were calculated using the GRETNA toolbox [50].

Clustering coefficient (Cp): The clustering coefficient describes the level of closeness to
form a completely connected subgraph [51]. In this study, we used the global clustering
coefficient, which is equal to the average clustering coefficient of all the nodes. Gamma is
the normalized Cp by random networks.

Cp =
1
n ∑

i∈N
Ci =

1
n ∑

i∈N

2ti

ki(ki − 1)′

γ = Cp/Crand
p

Characteristic path length (Lp): The characteristic path length is the mean shortest
path length over all possible pairs of nodes. It helps to quantify the functional integration
level [33]. Lambda is the normalized Lp by random networks.

Nodal efficiency (Ne): Nodal efficiency is defined as the average inverse shortest path
length between a given node and every other node in the network [33].

Global efficiency (Eg): Global efficiency is the average nodal efficiency across all the
nodes in the network. Compared to the shortest path length, it is more immediately related
to parallel information transmission [8].

Local efficiency (Eloc): The local efficiency is proportional to the clustering coefficient
and is seen as the global efficiency computed on the neighborhood of the node, also called
fault tolerance [8].

Small-worldness (Sigma): Compared with random networks, small-world networks
can be quantified with a larger clustering coefficient and a comparable characteristic path
length, leading to a sigma σ (i.e., small-worldness) larger than one.

σ = γ/λ

Degree centrality (Dc): Degree centrality, also called degree, is the simplest measure
of centrality. For binary networks, degree is the number of edges incident to the node; for
weighted networks, it is the sum of weights of all the edges of the node.

Betweenness centrality (Bc): Betweenness centrality measures the importance of a
node in information communication. It is defined as the number of times the shortest path
between any other node passes through a particular node.
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2.6. Test-Retest Reliability

In order to measure the test-retest reliability of each graph-theoretical metric among
three sessions, the intra-class correlation coefficient (ICC) was introduced. Specifically, as
is defined and recommended in previous studies [52–54], we used ICC(A,1), a two-way
random model, which assessed absolute agreement between measurements and considered
session effects.

ICC(A, 1) =
BMS− EMS

BMS + (k− 1)EMS + (JMS− EMS) k
n

In this formula, BMS is the between-subject mean square, JMS is the between-session
mean square, EMS is the mean square error, k is the number of sessions and n is the number
of subjects. In this study, k = 3 and n = 16. According to Winer (1971), ICC < 0.25 is poor,
0.25–0.4 is low, 0.4–0.6 is fair, 0.6–0.75 is good, and 0.75–1.0 is excellent [55], which is what
we assumed. ICCs were calculated based on SPSS (SPSS Inc. Released 2007; SPSS for
Windows, Version 16.0; SPSS Inc., Chicago, IL, USA) and MATLAB 9.2 (MathWorks, Natick,
MA, USA).

In addition, we calculated the within-subject coefficient of variation (CV) to account
for the relative uncertainty. If the standard deviation is denoted by S, and the mean is
denoted by M, then the coefficient of variation is calculated as:

CV =
S
M

(1)

2.7. Statistical Analyses

We performed the following statistical analyses to systematically compare the TRT
reliabilities of several metrics under different data processing and modeling strategies.

For global metrics, we first used a one-way repeated ANOVA to compare the effect
of network thresholding on the ICC for all the metrics under all the methods. Because
there were no significant differences in any metric across the thresholds, in the subsequent
analysis, we focused on the average ICC across different thresholds. Second, we used paired
sample t-tests to compare the ICC (pooled over all metrics) between methods, including
contrasts between weighted and binary networks, the AAL90 atlas and Power264 atlas,
and with and without GSR. Finally, we investigated the effect of the inter-scan interval
on the TRT reliability of the graph-theoretical metrics. Because each subject was scanned
three times within a week, we calculated pair-wise ICC between all pairs of visits: visit
1 and visit 2 (v1v2), visit 1 and visit 3 (v1v3), and visit 2 and visit 3 (v2v3). We then
conducted a two-way repeated ANOVA on all the ICC, including a main effect of inter-scan
intervals (three levels: v1v2, v1v3, v2v3), a main effect of modeling method (four levels:
BG, binary network with global signal regression; BNG, binary network without global
signal regression; WG, weighted network with global signal regression; WNG, weighted
network without global signal regression), and an interaction effect between them. We
also conducted a one-way repeated ANOVA using interval as the within-subject main
effect (including post hoc t-tests) separately for each method. Additionally, we tested how
individual characteristics affect TRT reliability by splitting the subjects based on biological
sex (8 males and 8 females) and age (8 in the younger group and 8 in the older group, split
by a median of 34.5). We calculated the ICC for each of the groups for all global metrics
and across all methods and conducted paired sample t-tests between males and females,
and younger and older subjects, respectively (each pair of samples had the same metric
and method).

For nodal metrics, we performed a one-way ANOVA (plus post hoc pair-wise compar-
isons) on each metric (betweenness centrality, degree centrality, and nodal efficiency) with
the main effect of the modeling method. We included all eight methods in the analysis. We
also performed a paired t-test between all ICCs (pooled over all metrics) calculated with
and without GSR.
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3. Results
3.1. Test-Retest Reliability of Seven Global Metrics

Figure 1 displays the ICC values for all seven-network metrics across different data
processing and modeling strategies. In general, most global network metrics exhibited
poor to fair TRT reliability (ICC: 0.32 ± 0.15, CV: 8.1% ± 6.0%). The least stable metric was
small-worldness (sigma, ICC: 0.19 ± 0.07, CV: 9.9% ± 4.8%), and the most reliable metric
was the normalized characteristic path length (Lambda, ICC: 0.39 ± 0.16, CV: 3.0% ± 1.6%).
In addition, the ICC of the normalized characteristic path length reached its highest level
(ICC: 0.71 ± 0.002, CV: 3.5% ± 1.3%) using the AAL90 atlas, weighted network modeling,
and GSR.

Because the main effect of the threshold (one-way repeated ANOVA) within the
range of 0.15–0.35 was not significant (F(1.70, 69.5) = 1.66, p = 0.20), in the following
statistical analysis we adopted average ICC over thresholds as independent samples within
the groups.

To investigate the necessity of adopting GSR, weighted network, or Power264 atlas,
we compared the mean ICC resulting from methods containing these elements. Paired
sample t-tests (Figure 2) revealed that the reliability of weighted network metrics was
significantly higher than that of binary network metrics (T(27) = 2.41, p = 0.022), and the
use of the AAL90 atlas for brain parcellation provided higher ICC values than the use of
the Power264 atlas (T(27) = 3.95, p = 0.001). However, GSR did not have a significant effect
on the ICC values (T(27) = 1.15, p = 0.26).

We further assessed whether inherent individual characteristics affect the TRT relia-
bility of the brain network metrics. We split our subjects into two types of groups based
on their biological sex and age. Paired sample t-test (Figure 3) showed that sex did not
have a significant impact on the overall ICC among brain metrics (ICC of male: 0.27 ± 0.21,
ICC of female: 0.30 ± 0.18, T(55) = −0.68, p = 0.50), whereas age did have an impact, in
which the older group had a significantly higher ICC than the younger group (younger
group: age: 27.25 ± 3.95, ICC: 0.19 ± 0.17; older group: age: 43.63 ± 5.13, ICC: 0.40 ± 0.23,
T(55) = −5.18, p < 0.0001).
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Figure 1. The ICC values for all seven-network metrics across different data processing and modeling
strategies. Subfigures show the decomposition of ICC values across network density levels 15–35%
for (A) Cp, (B) Gamma, (C) Lp, (D) Lambda, (E) Sigma, (F) Eg, and (G) Eloc, respectively. BG90:
binary + global signal regression + AAL90, BNG90: binary + no global signal regression + AAL90,
WG90: weighted + global signal regression + AAL90, WNG90: weighted + no global signal regression
+AAL90, WG264: weighted + global signal regression + Power264, WNG264: weighted + no global
signal regression + Power264; Cp: Clustering coefficient; Lp: Characteristic path length; Eg: Global
efficiency; El: Local efficiency.
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3.2. Reliability of Two Visits

Using a two-way repeated ANOVA, we compared the TRT reliability between pairs of
visits (i.e., different inter-scan intervals) across four methods (BG, BNG, WG, and WNG).
Our results showed that there was not a significant main effect of inter-scan interval (F(1.15,
6.88) = 0.354, p = 0.60) or method (F(1.88, 11.29) = 3.32, p = 0.076), but a significant interaction
effect (F(6, 36) = 4.66, p = 0.001) was observed between them. Figure 4 shows the relationship
between TRT reliability and interval under four methods. WG yielded the highest value
(ICC: 0.413 ± 0.059), while BNG yielded the lowest average ICC (ICC: 0.264 ± 0.032).

To test the effect of interval on each method, we conducted a one-way repeated
ANOVA using interval as the within-subject factor. The main effects of the interval were
not significant for BG (F(1.1, 6.4) = 0.26, p = 0.77), BNG (F(1.1, 6.3) = 2.68, p = 0.15), and
WNG (F(2, 12) = 0.174, p = 0.84), but they were significant for WG (F(2, 12) = 21.5, p < 0.001).
For WG, post hoc t-tests (Bonferroni) revealed significantly lower ICC between visit1 and
visit3 than that between visit1 and visit2 (p = 0.009) or between visit2 and visit3 (p < 0.001).

Table 2 shows the ICC of the seven metrics between three pairs of visits averaged over
the threshold of 0.15–0.35. Given a certain method, the ICC of different metrics changed
along the interval in different patterns. For example, the reliabilities of the normalized
clustering coefficient (gamma) and small-worldness (sigma) decreased with an increase in
the interval, regardless of the network construction methods. In addition, under the WG
method, the ICC of all metrics, except the normalized characteristic path length (Lambda),
decreased with a longer interval.
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Table 2. ICC between pairs of visits.

BG BNG WG WNG

v1v2 v2v3 v1v3 v1v2 v2v3 v1v3 v1v2 v2v3 v1v3 v1v2 v2v3 v1v3

Cp 0.519 0.521 0.427 0.416 0.317 0.557 0.463 0.302 0.176 0.324 0.332 0.543
Gamma 0.477 0.262 0.000 0.209 0.247 0.066 0.516 0.389 0.202 0.217 0.299 0.127
Lambda 0.253 0.317 0.473 0.159 0.120 0.474 0.662 0.788 0.670 0.548 0.449 0.336

Lp 0.250 0.312 0.465 0.213 0.127 0.455 0.480 0.401 0.158 0.476 0.408 0.589
Sigma 0.435 0.198 0.000 0.208 0.226 0.096 0.295 0.308 0.132 0.201 0.220 0.057

Eg 0.258 0.321 0.471 0.231 0.130 0.460 0.487 0.449 0.188 0.492 0.606 0.593
Elocal 0.434 0.485 0.373 0.231 0.274 0.330 0.586 0.589 0.426 0.449 0.584 0.668

Note: v1: The first visit on day 2; v2: the second visit on day 3; v3: the third visit on day 5; BG: binary network
with global signal regression; BNG: binary network without global signal regression; WG: weighted network with
global signal regression; WNG: weighted network without global signal regression.

Brain Sci. 2023, 13, x FOR PEER REVIEW 9 of 17 
 

Table 2 shows the ICC of the seven metrics between three pairs of visits averaged 

over the threshold of 0.15–0.35. Given a certain method, the ICC of different metrics 

changed along the interval in different patterns. For example, the reliabilities of the nor-

malized clustering coefficient (gamma) and small-worldness (sigma) decreased with an 

increase in the interval, regardless of the network construction methods. In addition, un-

der the WG method, the ICC of all metrics, except the normalized characteristic path 

length (Lambda), decreased with a longer interval.  

Table 2. ICC between pairs of visits. 

 BG BNG WG WNG 

 v1v2 v2v3 v1v3 v1v2 v2v3 v1v3 v1v2 v2v3 v1v3 v1v2 v2v3 v1v3 

Cp 0.519 0.521 0.427 0.416 0.317 0.557 0.463 0.302 0.176 0.324 0.332 0.543 

Gamma 0.477 0.262 0.000 0.209 0.247 0.066 0.516 0.389 0.202 0.217 0.299 0.127 

Lambda 0.253 0.317 0.473 0.159 0.120 0.474 0.662 0.788 0.670 0.548 0.449 0.336 

Lp 0.250 0.312 0.465 0.213 0.127 0.455 0.480 0.401 0.158 0.476 0.408 0.589 

Sigma 0.435 0.198 0.000 0.208 0.226 0.096 0.295 0.308 0.132 0.201 0.220 0.057 

Eg 0.258 0.321 0.471 0.231 0.130 0.460 0.487 0.449 0.188 0.492 0.606 0.593 

Elocal 0.434 0.485 0.373 0.231 0.274 0.330 0.586 0.589 0.426 0.449 0.584 0.668 

Note: v1: The first visit on day 2; v2: the second visit on day 3; v3: the third visit on day 5; BG: binary 

network with global signal regression; BNG: binary network without global signal regression; WG: 

weighted network with global signal regression; WNG: weighted network without global signal 

regression. 

 

Figure 4. Average of test-retest reliability of global metrics as the function of interval. BG: binary + 

global signal regression, BNG: binary + no global signal regression, WG: weighted + global signal 

regression, WNG: weighted + no global signal regression. V1-V2: visit 1 (day 2) and visit 2 (day 3), 

V2-V3: visit 2 and visit 3 (day 5), and V1-V3: visit 1 and visit 3. 

3.3. Reliability of Three Nodal Metrics 

The results of the reliability analysis for nodal metrics are shown in Figure 5. Gener-

ally, nodal efficiency has the highest TRT reliability (ICC: 0.33 ± 0.07, CV: 13.6% ± 5.5%), 

betweenness centrality has the least reliable nodal metric (ICC: 0.18 ± 0.05, CV: 106.5% ± 

31.1%), and the reliability of degree centrality is in the middle (ICC: 0.31 ± 0.06, CV = 36.9% 

± 12.3%). 

Among all the modeling strategies, three of them resulted in higher reliabilities for 

each nodal metric compared with the rest of the strategies: BNG264, WNG90, and 
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nary + global signal regression, BNG: binary + no global signal regression, WG: weighted + global
signal regression, WNG: weighted + no global signal regression. V1-V2: visit 1 (day 2) and visit 2
(day 3), V2-V3: visit 2 and visit 3 (day 5), and V1-V3: visit 1 and visit 3.

3.3. Reliability of Three Nodal Metrics

The results of the reliability analysis for nodal metrics are shown in Figure 5. Generally,
nodal efficiency has the highest TRT reliability (ICC: 0.33 ± 0.07, CV: 13.6% ± 5.5%), between-
ness centrality has the least reliable nodal metric (ICC: 0.18 ± 0.05, CV: 106.5% ± 31.1%), and
the reliability of degree centrality is in the middle (ICC: 0.31 ± 0.06, CV = 36.9% ± 12.3%).

Among all the modeling strategies, three of them resulted in higher reliabilities for
each nodal metric compared with the rest of the strategies: BNG264, WNG90, and WNG264.
In particular, the ICC of nodal efficiency under the WNG264 method was the highest (ICC:
0.45 ± 0.16, CV: 20.7% ± 5.3%). A one-way ANOVA showed significant differences in
the TRT reliability across the eight modeling strategies for betweenness centrality (F(7,
1408) = 19.92, p < 0.001), degree centrality (F(7, 1408) = 22.98, p < 0.001), and nodal efficiency
(F(7, 1408) = 36.07, p < 0.001). The results of the post hoc analysis (Bonferroni corrected) are
shown in Supplementary Tables S1–S3. WNG264 yielded a significantly higher ICC than
BG90, WG90, and WG264 for all three metrics, and its reliability was even significantly
better than WNG90 for nodal efficiency. Considering that all the top three methods did
not use GSR, we further combined the average nodal ICCs of all the metrics to test the
influence of GSR per sec by a paired t-test, which proved that regressing out the global
signal significantly decreases the nodal TRT reliability (4ICC: 0.11 ± 0.03, p < 0.001).
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strategies. BG90: binary + global signal regression + AAL90, BNG90: binary + no global signal
regression + AAL90, WG90: weighted + global signal regression + AAL90, WNG90: weighted + no
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4. Discussion

According to previous studies, the major threats to the TRT reliability of rs-fMRI
include scan conditions [56], physiological noise [57,58], data preprocessing, and network
construction strategies [18–20,58]. In this study, we systematically investigated the test-
retest reliability of the brain network topology based on strictly controlled rs-fMRI data
across different preprocessing and modeling strategies. The overall reliability among the
global network metrics was poor to moderate (0.000~0.592), except for the normalized
characteristic path length (Lambda). The ICC of Lambda reached a good level (0.705~0.711)
when we applied weighted connections and global signal removal. Similar results were
reported by Wang et al., (2011), who found moderate reliability in Lambda, despite poor
to low reliabilities in all other global metrics [20]. The TRT reliability of individual nodes
had a large nodal variation (0.000~0.811), and the nodal efficiency (0.456) had the highest
average ICC among the three metrics when we constructed weighted networks using the
Power 264 atlas without global signal removal.

One possible reason for the commonly found low ICC is that the ICC reflects the ratio
of between-subject to within-subject variability. Since the functional connectivity of rs-fMRI
across subjects could be highly homogeneous (i.e., small between-subject variability), the
variation within the subjects was not small enough to yield a high ICC [59]. In support
of this argument, higher reliability was found during the task state than the resting state
due to the higher stability of event-related co-activations [60]. However, the reliability
pattern depends on the content of the task; some tasks could improve the global ICC,
whereas others could impair the global ICC [52]. In addition, despite a low ICC, the
test-retest reliability could still be moderate to high [61]. Thus, it is important to also
examine other criteria for TRT reliability. In this study, we also calculated the coefficient of
variation. In contrast to the conclusion from ICC, the overall CV of global metrics was good
(8.1% ± 6.0%), indicating small within-subject variations. Nevertheless, the CV of some
nodal metrics, especially the betweenness centrality, was high (106.5% ± 31.1%), which
was consistent with its poor ICC.

4.1. Factor Affecting the TRT Reliability of Global Metrics

For global metrics, comparisons between the methods revealed that the weighted
network was generally more reliable than the binary network. One crucial aspect of the
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weighted network is that it preserves more detailed information on connectivity strength.
As a result, the weighted network can detect subtle changes in connectivity, and this
complexity leads to high resistance to external disturbances. Many other studies have also
focused on this issue, and one review [18] reported a slight advantage of weighted methods
by analyzing data from many previous studies [19,20,62–65]. Nevertheless, most studies
today still prefer binary networks, partly due to their simplicity of interpretation.

Removing the global signal showed a slight but non-significant disadvantage on the
global metrics. Similar results have been reported by Andellini et al., (2015). Even though
GSR had a significant negative effect on the reliability of the clustering coefficient, the
overall effect across metrics was not significant [18]. In another study, the reliability of
Lambda even increased after GSR [19]. Future research needs to investigate this issue with
a broader sample size and should potentially address the effect of GSR while varying other
steps during the network construction.

In addition to the major findings regarding data processing and modeling strategies,
we also examined whether individual demographic characteristics (sex and age) affected
the TRT reliability of network global metrics. While we did not find significant differences
in ICC between males and females, we found that subjects in the older group (35~50 years)
had higher ICC than those in the younger group (22~34 years). Previous studies comparing
the ICC of BOLD fMRI across age groups suggested an inverse U-shaped relationship as
follows: the ICC is lower during infancy and childhood, peaks in adulthood with the matu-
ration of the brain, and decreases in older adults [66–68]. However, such evidence is scarce,
and it is not clear which age range has the highest ICC. Our results, although preliminary
and limited in sample size (N = 8 for each group), can provide a finer characterization of
the relationship.

4.2. The Effect of Inter-Scan Interval on TRT Reliability

For TRT reliability between pairs of visits, we only found subtle but not significant
differences. In other words, the overall TRT reliability of global metrics remained stable
during the entire study and was independent of the passage of time. However, such
robustness to inter-scan intervals relied on specific data processing strategies. For instance,
the reliability of metrics under WG decreased when the inter-scan intervals were longer.
The source of variability in longer intervals may be the fact that participants kept adjusting
their lifestyles and biological clocks in the new environment. Among all metrics, longer
intervals mostly affected the reliability of Gamma and Sigma.

4.3. TRT Reliability of Nodal Metrics

All three nodal metrics exhibited poor to low reliabilities on average, yet the degree
centrality and nodal efficiency were more reliable than the betweenness centrality, consistent
with the findings of Du et al., (2015) [45]. These results could be explained by the definitions
of these metrics; the degree centrality and nodal efficiency of a node only depend on direct
connections with it, whereas betweenness centrality is calculated by the connections of
adjacent nodes. As a result, connectivity changes in a remote node will have an impact on
the betweenness centrality of the current node, but not on the degree centrality or nodal
efficiency. Therefore, the reliability of betweenness centrality is in general low.

What is evident from the comparison of methods is that applying GSR significantly
lowers the TRT reliability for both binary and weighted networks and with both parcel-
lations. This is inconsistent with Du et al., (2015), who detected slight but not significant
disadvantages of the GSR [45]. Such a difference may be due to the different network sizes
in the two studies; in Du et al., (2015), the networks were based on 25,218 voxels that were
much larger than those in the current study [45]. Therefore, the benefit of GSR in improving
sensitivity offsets the loss of reliability in much denser networks.
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4.4. Opposite Effects of Parcellations on Global and Nodal Metrics

It is worth noting that the effect of parcellations on the global metrics was opposite
to that on the nodal metrics: the AAL-90 atlas generated higher reliabilities for global
metrics than the Power264 atlas, whereas the optimal processing and modeling strategy
for nodal network metrics was the one that applied the Power264 atlas (i.e., WNG264).
There are many differences between these two atlases. The AAL-90 defines 90 brain
regions based on anatomical features, and each ROI encompasses a wide range of brain
tissues, whereas the Power264 atlas defines 264 spherical ROIs based on functional co-
activations, and each ROI is a spherical region containing a fixed and limited number of
voxels. Therefore, on a global scale, ROIs from the AAL-90 atlas always come from the same
inherent anatomical organizations, independent of the functional state of the brain, and
produce a more robust pattern of connectivity in general. On the other hand, on a nodal
scale, the Power264 atlas has higher spatial resolutions, and its use of smaller ROIs reduces
the regional inhomogeneity of the ROI [69]. For a given local property, the reliability of a
node can be less affected by the signals of its surrounding areas.

4.5. TRT Reliability of BOLD fMRI Compared to Other Modalities

In addition, the reliability of BOLD fMRI may become a disadvantage compared with
other modalities. For example, cerebral blood flow (CBF) quantified by arterial spin-labeled
(ASL) perfusion MRI couples with regional brain activity, perfusion, and metabolism [70],
which also serve as biomarkers in clinical settings. While the common ICC of resting-state
BOLD fMRI is poor to moderate (0.2~0.6) [20,27,45,46,71], that of CBF is usually greater
than 0.6, falling in the good to excellent range [72–74]. In our previous work, we evaluated
the TRT of resting-state and task-based absolute CBF, as well as task-induced relative CBF,
and found that ICC values ranged from good to excellent (ICC > 0.6) for absolute CBF and
poor for relative CBF (ICC < 0.4) [75]. On average, absolute CBF, rather than relative CBF,
has a better TRT than the small world network properties based on rs-fMRI.

4.6. Limitations

Our study has several limitations. The first limitation is the choice of parcellation
schemes. In the current comparison, we only included two representative parcellations:
AAL-90 and Power264. To better understand the impact of parcellation, future studies
should include more atlases in the comparison with different numbers of subdivisions and
different parcellation algorithms. A fine-grained strategy, such as the voxel-wise analysis,
should also be considered. For example, previous studies have reported overall good to
high ICCs with voxel-wise network construction [76].

Another limitation is the limited range of the inter-scan interval. An eligible biomarker
should remain stable in the long term in the absence of a disease. In our study, the longest
interval was three days; thus, it was difficult to test such eligibility directly. Instead, we only
examined the performance of graph theoretical metrics after a short-term manipulation
and tried to predict the long-term effects.

Finally, in this initial study, we were only able to test a small sample of 16 control
subjects in a very strictly controlled in-laboratory 5-day and 4-night study. Although the
use of strict controls added to the methodological strength of the study to help rule out
potential confounders during the data collection, a potential drawback is that it is unclear
whether our findings can be generalized to most other studies that do not have such a
stringent design. Future replications with larger sample sizes and different data collection
protocols are needed to test the generalizability of the current findings.

5. Conclusions

In summary, in the existing literature, as of now we are the first to comprehensively
investigate the influence of data processing and modeling strategies on the TRT reliability of
both global- and nodal-level graph-theoretical metrics while strictly controlling the subjects’
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behaviors. By strictly monitoring the daily activities of our subjects in the laboratory for
five days, we attenuated the impact of external factors on brain activities.

Several important suggestions can be derived from our findings for the implications
of the future utility of graph theoretical modeling in brain network analyses. First, when
using a global network metric as a clinical biomarker, the normalized characteristic path
length is highly recommended. Based on our results, it has the highest ICC among all
the global metrics, especially when calculated using weighted networks and global signal
regression. In terms of general methods, researchers should consider using weighted
networks instead of binary networks and using AAL-90 instead of the Power264 atlas, as
they both showed significantly higher ICC than their counterparts. Researchers should be
cautious when applying global signal removal. Similarly to previous studies, we did not
find a clear advantage of including or excluding GSR in the resulting ICC. When using a
nodal network metric, we recommend degree centrality and nodal efficiency, as both have
consistently better TRT reliability than betweenness centrality. Finally, the reliability of
brain network metrics may decline longitudinally, which is a threat to experiments with
long scan intervals.
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centrality ICC among eight strategies. Table S3: Pair-wise differences of the nodal efficiency ICC
among eight strategies.
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