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Abstract: Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures
that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy
do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could
be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy.
Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of
epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability
and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxida-
tive damage, mitochondrial dysfunction, NAPDH oxidase, the blood–brain barrier, excitotoxicity, and
neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy
and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory
therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery
in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the
management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and
flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy,
this review points to areas of further development for therapies that can manage epilepsy.

Keywords: epilepsy; oxidative stress; mitochondrial dysfunction; inflammation; antioxidants; antiepileptic
drugs; antiseizure medications; neuromodulation; keto diet; nutrients

1. Introduction

Epilepsy is a chronic neurological disorder characterized by unprovoked and repeated
seizures that occurs in millions of people globally [1–9]. Epilepsy has serious cognitive,
social, psychological, and economic consequences [10,11]. Epileptic seizures can seriously
lower the quality of life when uncontrolled. Epilepsy arises from an increased frequency
and synchrony of neuronal firing and an imbalance of excitatory neurotransmitters over
inhibitory neurotransmitters [12]. Focal-onset seizures most frequently occur in the tempo-
ral lobe, making temporal lobe epilepsy (TLE) the most common form of epilepsy, which
is also marked by impaired learning and memory [13–15]. Recurring and unpredictable
partial complex seizures occur in TLE, which comprises 60% of all cases of epilepsy [16].
Status epilepticus (SE), another form of epileptic seizure defined by convulsive seizure
activity lasting more than 5 min, results in high morbidity and mortality [17,18].

Epileptic seizures can lead to the death of neurons, which in turn promotes epileptoge-
nesis and the occurrence of seizures [19–21]. The proposed mechanisms of epileptogenesis
involve alterations in synapses, neurotransmitters, receptors, oxidative stress, mitochon-
drial dysfunction, cytokine signaling, and apoptosis [22,23]. A growing body of evidence
links the development of epilepsy to the presence of oxidative stress and overproduction
of reactive oxygen species (ROS) [24–26]. Prior to the onset of seizures, oxidative stress
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induces neurological changes, including inflammation, neurodegeneration, and a lowered
seizure threshold, resulting in epileptogenesis [24,27]. By altering Ca2+ homeostasis, ox-
idative stress hastens seizure onset, neurodegeneration, and neuronal excitability [28,29].
Experimental evidence indicates that inflammation in the brain is also associated with
epilepsy [30,31]. Neuroinflammation has been observed in both animal models of epilepsy
and patients with epilepsy [32–34]. Chronic neuroinflammation causes peripheral immune
cells, astrocytes, microglia, and endothelial cells in the blood–brain barrier (BBB) to produce
inflammatory molecules [35].

The discovery of novel anti-epileptic therapies necessitates understanding contrib-
utors to the onset of epilepsy to identify therapeutic targets [36]. This review focuses on
the roles of oxidative stress, mitochondrial dysfunction, inflammation, NADPH oxidase
(NOX), neuronal excitotoxicity, and BBB dysfunction in the pathogenesis of epilepsy. Anti-
inflammatory medications, antioxidants, anti-epileptic drugs (AEDs), and anti-seizure
medications (ASMs) are used to treat epilepsy and manage its progression [37–39]. Cur-
rent knowledge on the treatment of epilepsy with AEDs and ASMs is presented in this
review, along with information on the potential nutritional and pharmacological regu-
lation of antioxidant capacity and inflammation in patients with epilepsy. We discuss
the use of antioxidants, ASMs, and AEDs, including acetyl-L-carnitine (ALC), melatonin,
N-acetylcysteine (NAC), baicalein, coenzyme Q10 (CoQ10), astaxanthin, curcumin, valproic
acid, levetiracetam, cannabidiol (CBD), brivaracetam, and ursolic acid. Although a wide
number of medications against epilepsy are available, approximately one-third of patients
do not respond to currently available pharmaceuticals [40,41]. In addition, we discuss the
use of non-pharmacological interventions such as neuromodulation, including vagus nerve
stimulation (VNS), and surgery to treat epilepsy. We also present the role of diets, includ-
ing the ketogenic diet, and nutrients, including vitamins, polyphenols, and flavonoids,
in epilepsy treatment. A search was conducted in the PubMed/Medline database using
appropriate keywords (epilepsy, oxidative stress, mitochondrial dysfunction, inflammation,
antioxidants, antiepileptic drugs, antiseizure medications, neuromodulation, keto diet, and
nutrients). This search revealed a rapid expansion of the literature on the role of oxidative
stress, mitochondria dysfunction, and inflammation on the pathogenesis of epilepsy, as
well as treatment for epilepsy. Around 1000 articles were finalized for this review, and of
those, 358 articles were used in this manuscript.

2. Epilepsy and Oxidative Stress

Oxidative stress, which can contribute to the onset of diseases such as epilepsy, de-
scribes an imbalance between the generation and removal of ROS/reactive nitrogen species
(RNS) [42–44]. Aerobically active organs are particularly susceptible to the generation
of free radicals and ROS because of the premature leakage of electrons from the electron
transport chain [45–47]. One product of the transfer of electrons to O2 is superoxide anions
(O2

•−). To counteract this, superoxide dismutase (SOD) converts O2
•− to H2O2, which is

converted by glutathione peroxidase (GPX) and catalase (CAT) to water and oxygen [48–53].
At baseline, 1–5% of a cell’s oxygen consumption is used to generate ROS, but this rate
can be elevated by altered mitochondrial homeostasis, such as that in the setting of Ca2+

overload [47]. Oxidative stress ultimately causes cellular damage through lipid, DNA, and
protein oxidation [54–62]. Oxidative damage can occur, especially in the iron–sulfur clusters
in complexes I and III of the electron transport chain [56]. Due to its high metabolic require-
ments, the brain actively conducts aerobic metabolism, which makes it uniquely vulnerable
to oxidative stress [63]. In addition, iron is abundant in the brain because of its necessity for
neurological functioning, although its presence also increases the susceptibility to oxidative
stress [64]. Seizures have been observed to induce ROS/RNS production, resulting in
oxidative stress and subsequent cellular damage [65,66]. Inhibiting ROS production has
been indicated to prevent the neuronal damage that accompanies epileptic seizures [67,68].

Clinical and experimental studies indicate that oxidative stress is both a cause and
consequence of the progression of epilepsy [69,70]. Various models of epilepsy are asso-
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ciated with increases in the levels of oxidative stress biomarkers [71]. For example, in
chemical convulsion models of epilepsy induced by the administration of pentylenetetrazol
(PTZ), kainic acid (KA), or pilocarpine, the levels of F2-isoprostanes, which are markers
of lipid peroxidation, were increased in brain areas, including hippocampal regions [71].
At the same time, the activities of antioxidant enzymes, including SOD, CAT, and GPx,
were reduced [62,71]. Patients with TLE also displayed greater levels of peripheral blood
markers of oxidative damage [72,73]. Patients with SE exhibited decreased plasma activities
of SOD, CAT, and glutathione (GSH) and decreased serum total antioxidant capacity [74].

Epileptic seizures induce oxidative stress, which can cause further neuronal damage
and lead to the development of subsequent seizures in a chain reaction [75]. Acute seizures
result in excess ROS formation through increased mitochondrial dysfunction and increased
NOX activity [76–78]. Additionally, glutamate receptor activation and excitotoxicity, which
are two mechanisms of brain injury in epilepsy, contribute to oxidative stress [79]. The
persistent neuronal firing that accompanies epilepsy can lead to the formation of free
radicals, which can leak from the electron transport chain and react with oxygen to cause
oxidative stress [43]. Consistent with this, persistent epileptic seizures have been found to
result in nucleic acid, lipid, and protein oxidation, leading to cellular damage [70].

Both animal models and genetic studies support that oxidative and nitrosative stress
induced by recurrent seizures leads to neuronal death [18,80]. The development of epilepsy
is associated with neuronal loss through apoptosis [69]. For instance, patients with epilepsy
exhibit a progressive decline in hippocampal size, resulting in additional severe seizures
and cognitive deficits [69]. A single instance of SE in animal models produces long-standing
changes within mitochondria, including mitochondrial DNA (mtDNA) damage and excess
hydrogen peroxide production in the inner mitochondrial membrane [70]. One mechanism
by which oxidative stress has a causative role in epilepsy is by inducing neuronal hyperex-
citability, which is a key feature of epilepsy [70]. Moreover, mtDNA mutations that cause
metabolic dysfunction in neurons can give rise to genetic epilepsy, further indicating that
oxidative stress can contribute to epileptogenesis [68,70]. Intracellular damage induced by
ROS is frequently observed in epileptic brain samples following surgical resection, which
is consistent with the potential causative role of oxidative stress in epileptic processes,
including neurodegeneration and neuronal hyperexcitability [73,79]. Figure 1 illustrates the
potential interactions between seizures, oxidative stress, mitochondrial dysfunction, neuro-
inflammation, antioxidants, antiseizure medications, antiepileptic drugs, anti-inflammatory
agents, nutrients, and the keto diet.Brain Sci. 2023, 13, x FOR PEER REVIEW 4 of 28 
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3. Epilepsy and Mitochondrial Dysfunction

Mitochondria are organelles that function in energy generation, which is crucial for
neuronal activity [81]. The brain’s high energy requirements make it dependent on mi-
tochondria, which are involved in neurotransmitter synthesis, Ca2+ sequestration, redox
signaling, and cell death [81]. Mitochondria are essential in ATP synthesis through ox-
idative phosphorylation, as well as fatty acid oxidation, glutamate and urea metabolism,
and antioxidant activity regulation [19,82,83]. Mitochondrial dysfunction leads to altered
neurotransmission and neuronal excitability [84,85]. Because mtDNA is close to the site of
ATP synthesis, its 37 genes are especially susceptible to oxidative damage [86]. ROS can leak
from the mitochondrial electron transport chain, thereby contributing to oxidative damage
in the mitochondria, mitochondrial dysfunction, and subsequent tissue injury [82,87,88].

Several forms of epilepsy are associated with impaired mitochondrial function and
increased ROS generation [77,89,90]. Moreover, mitochondrial dysfunction has been pro-
posed as one cause of seizure occurrence in epilepsy [79,91]. This is supported by epileptic
seizures being a symptom of genetic mitochondrial diseases involving mtDNA and nuclear
DNA mutations [92]. Specifically, mtDNA damage has been suggested to contribute to
the development of epilepsy [93]. mtDNA oxidative damage and increased mitochondrial
hydrogen peroxide were observed in a KA-induced TLE model [94]. Studies in rats treated
with KA and pilocarpine also indicated that mitochondrial oxidative stress results in ox-
idative damage to DNA during epileptogenesis [95]. Similarly, animal models of epilepsy
induced by homocysteic acid were observed to have mitochondrial dysfunction [91].

One manner in which mtDNA damage from oxidation can cause epileptogenesis is
through inhibiting mitochondrial base excision repair, leading to neuronal apoptosis [94,96].
Additionally, ROS can promote the opening of the mitochondrial permeability transition
pore (MPTP), which leads to an efflux of ions and mitochondrial molecules that ultimately
cause cell death [73]. Decreases in neuronal ATP and increased mitochondrial Ca2+ levels
have been observed during seizures [83]. An excess of mitochondrial Ca2+ can lead to the
generation of ROS through xanthine oxidase activation and through other pathways, as
well as to the production of RNS [97].

4. Lipid Peroxidation

Epileptic seizures can also cause oxidative damage to intracellular lipids [98,99].
Polyunsaturated fatty acids within phospholipid bilayers surrounding cells and organelles
are particularly vulnerable to oxidation [98]. Similar to protein oxidation and mtDNA
damage, the brain is also at risk of lipid peroxidation following seizures [98]. After seizures,
Ca2+ can activate phospholipase A2, which releases arachidonic acid [98]. The metabolism
of arachidonic acid can lead to the further formation of ROS. The peroxidation of arachi-
donic acid leads to the generation of F2-isoprostanes and isofurans through catalysis by free
radicals [100]. After KA administration, seizures were observed to increase F2-isoprostane
and isofuran levels in several hippocampal regions [101]. The appearance of additional
lipid peroxidation markers, including 4-hydroxy-2-(E)-nonenal and malondialdehyde, indi-
cated oxidative damage to lipids occurring within 4 h into an SE episode and up to 24 h
afterward [102]. This suggests that lipid peroxidation is a consequence of seizure activity,
and it may be a component of epileptogenesis.

5. Epilepsy and Inflammation

Inflammatory molecules can bind to surface receptors on neurons and other brain cells
to activate signaling pathways [103]. Accumulating evidence suggests that inflammation
contributes to seizure onset and epileptogenesis [104–106]. Signaling downstream of in-
flammation can lead to neuronal damage, which contributes to the clinical manifestations
of pathology [107,108]. Meanwhile, seizures can induce neuroinflammation, and repetitive
seizures might result in chronic inflammation [109]. This can lead to a disruption of the
brain’s cytokine balance, further contributing to the progression of epilepsy. The production
of inflammatory cytokines induces the generation of free radicals and alters glutamater-
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gic synaptic transmission in a manner that promotes excitotoxicity [110,111]. In chronic
epilepsy, long-term hyperexcitability and impaired synaptic transmission are observed
in central nervous system (CNS) tissue following persistent inflammation [112,113]. In
addition, neuroinflammation attributable to brain injury from repetitive seizures can lead
to glial activation, which contributes to the occurrence of secondary seizures [31].

Several studies indicated that repetitive epileptic seizures are associated with increased
levels of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6; additionally,
they are associated with increases in the protein expression of caspase-3, BAX, and BH3,
which are involved in apoptosis and neurodegeneration [39,64,114,115]. After seizures,
patients with epilepsy were observed to have elevated serum and cerebrospinal fluid TNF-α,
IL-1β, IL-6, and IL-1 receptor antagonist levels [116,117]. The onset and spread of seizures
were also found to induce rapid regional inflammatory responses in animal models of
epilepsy [118]. Chronic neuroinflammation can contribute to epilepsy through mechanisms
such as elevated TNF-α expression, promoting hyperexcitability and the activation of
AP-1, which regulates apoptosis through pathways including JNK signaling [114,115]. This
is consistent with apoptosis being a cause of neuronal death during the progression of
epilepsy [119]. Cytokine production after seizures is observed in various cell types in
areas of seizure onset, including glia, myeloid cells, and neurons [120,121]. The release of
cytokines from microglia is suggested to support epileptogenesis by aggravating oxidative
stress in the mitochondria [114,122].

Anti-inflammatory drugs hold promise for treating epilepsy, with favorable clinical
evidence supporting inflammation suppression as a strategy for ameliorating the pathology
of epilepsy [108,123]. Therefore, anti-inflammatory drugs may be beneficial in managing
epilepsy, preventing seizure progression, and protecting against cognitive deficits [38,39].

6. Epilepsy and NOX

NOX is an enzyme complex that generates cellular ROS and promotes neurodegenera-
tion, neurotoxicity, and memory deficits. Therefore, it has been suspected to be involved
in epileptogenesis [24,124]. The NOX family includes seven isoforms (NOX1–5, DUOX1,
DUOX2) that generate H2O2 by transferring an electron from NADPH to oxygen [125]. A
mouse model of epilepsy induced by PTZ treatment displayed oxidative stress, altered
neurotransmission, memory deficits, and anxiety-like and depression-like behavior, which
were alleviated by NOX inhibition [42].

Accumulating evidence indicates that NOX is a mediator of epilepsy progression [10].
In animal models of epilepsy, NOX has been shown to be a key source of ROS during
seizures and a contributor to neuronal death and neurodegeneration [24,77,126,127]. In
particular, NOX2 is a major source of ROS generated in the presence of seizure activity [83].
NOX activation after PTZ treatment, along with mitochondrial damage, leads to ROS/RNS
formation, decreased antioxidant enzyme levels, lipid peroxidation, elevated nitrite levels,
and ultimately limbic neurodegeneration [128,129]. In addition, NOX2 elevation has been
observed in neurons and glia of surgically resected sites where seizure activity originates
in patients with refractory epilepsy. This further suggests that NOX2 activity is involved
in epileptogenesis [130]. NOX2 activation has been observed in early epileptic seizures
attributable to hyperactivated NMDA receptors [77,131,132].

Inhibition of NOX2 activity can suppress neuronal death caused by seizures in different
models of epilepsy [77,133–135]. In one study investigating treatment with gp91ds-tat,
a competitive inhibitor of NOX2, gp91ds-tat prevented cellular changes downstream of
in vitro seizure-like activity, including Ca2+ oscillation, ROS formation, mitochondrial
depolarization, and neuronal loss [24]. Additionally, gp91ds-tat treatment in a rat model
1 h after KA-induced SE led to reduced NOX2 expression and decreased cortical and
hippocampal NOX activity [24]. Continuous intracerebroventricular injection of gp91ds-tat
also decreased the occurrence of seizures in a rat model of epilepsy [24]. Overall, the
anti-seizure activity of gp91ds-tat suggests that NOX2 can contribute to epileptogenic
processes, including seizure development, oxidative stress, and ROS formation [24].
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7. Epilepsy and Excitotoxicity

A fundamental feature of the pathogenesis of epilepsy is an imbalance between
excitatory and inhibitory neurotransmission [136]. The levels of glutamate, an excita-
tory neurotransmitter, have been reported to be unusually elevated in both patients with
epilepsy and animal models of epilepsy [10]. One consequence of excessive glutamatergic
neurotransmission and glutamate receptor activation is oxidative stress, which leads to
excitotoxicity, one form of neuronal apoptosis [62]. Glutamate promotes the activation
of NMDA receptor-mediated Ca2+ influx into neurons [10]. Accumulated Ca2+ leads
to neuronal depolarization, ROS formation through the arachidonic acid cascade, and
eventual apoptosis [135,137]. ROS downstream of Ca2+ influx can further alter glutamate
receptors, damage glutamate transporters, and contribute to oxidative stress by reducing
GSH production [138,139]. This leads to a state of hyperexcitability and eventual neuronal
death. Excessive ROS generation is a prerequisite for neuronal excitotoxicity, which is a
well-characterized feature of epilepsy [10].

Meanwhile, GABA is the major inhibitory neurotransmitter of the CNS [136]. GABA
can bind to GABAA receptors, which are heteromeric ligand-gated Cl− channels. Therefore,
GABA stimulates these receptors to permit an influx of Cl− [136]. These ions decrease
depolarization in neurons to dampen the effects of excitatory signals [140]. When the
inhibitory input from GABA binding to GABAA receptors is inhibited, neurons undergo
hyperexcitability and apoptosis [141]. ROS modulates both synaptic and extrasynaptic
inhibition by GABA at hippocampal and cerebellar GABAA receptors [142,143]. Because of
GABA’s role in epilepsy, GABA receptors are targets of several anti-seizure drugs.

8. BBB Dysfunction

The BBB consists of endothelial cells that limit the transfer of molecules and pathogens
between the bloodstream and brain tissue [144]. The BBB’s tight junctions protect the brain
against infection and maintain homeostasis by strictly regulating the influx and efflux of
substances [144]. Leakage of the BBB is proposed to be both a cause and consequence of
epileptic seizures [145]. Glutamate signaling in seizures can increase the expression of
matrix metalloproteinase, a tissue-remodeling enzyme that degrades extracellular matrix
components. It can also cause reduced tight junction protein expression [146]. These two
mechanisms contribute to BBB leakage triggered by seizures. Conversely, BBB leakage can
also aggravate epilepsy [147]. Blood leakage through the BBB can increase the extracellular
levels of glutamate and potassium, which increase neuron excitability and reduce the
seizure threshold, increasing the likelihood of seizures [148]. The entry of albumin and
other serum proteins also induces neuronal hyperexcitability and inflammation through
cytokine production [147]. A disrupted BBB could also permit more leukocytes to enter
the brain, potentially contributing to epileptogenic neuroinflammation [145]. Another way
in which the BBB can affect the course of epilepsy is by blocking the entry of ASMs and
AEDs and increasing their efflux from the brain, which can result in treatment-resistant
epilepsy [145].

9. Epilepsy and Antioxidants (Antioxidant Therapies)

Antioxidants are molecules that counteract ROS, which, if uncontrolled, can lead
to oxidative stress [149–152]. There are many substances with antioxidant properties,
including vitamins A, C, and E; polyphenols; and GSH, the functions of which are aided by
several antioxidant enzymes [40]. Antioxidants can balance ROS by a number of molecular
mechanisms. For instance, they can restrict ROS generation either physically or by binding
metal ions. Once ROS are generated, antioxidants function to neutralize ROS, chemically
quench their activity, or otherwise catalyze their neutralization [153]. They can also disrupt
radical chain reactions, scavenging ROS before they are able to cause cellular damage [153].

Due to their major neuroprotective role, antioxidant therapy has increasingly been consid-
ered a promising approach for treating diseases involving neurodegeneration [149,154]. Re-
search in this area has suggested that antioxidants such as vitamin C, vitamin E, polyphenols,
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melatonin, lipoic acid, and NAC effectively limit oxidative-stress-associated neurodegen-
eration in drug-resistant epilepsy [99]. Therefore, antioxidant therapy aimed at decreas-
ing oxidative stress can be helpful in alleviating seizures in patients with drug-resistant
epilepsy [155]. Specifically, recent studies demonstrated that antioxidants protect cells from
the neurotoxic effects of seizures [156,157]. For instance, vitamin E has been shown to effec-
tively inhibit ferroptosis, one method of neuronal death, following epileptic seizures [10].
In another study, Alzoubi et al. investigated the effect of vitamin E supplementation on
epileptic seizures by feeding rats with control, a high-fat diet (HFD), vitamin E, or vitamin
E combined with an HFD over 6 weeks [149]. They found that although the HFD normally
increased susceptibility to PTZ-induced seizures, this effect could be prevented by vitamin
E supplementation, likely through its strengthening of the hippocampal antioxidant mech-
anism [149]. Although antioxidants have multiple forms and sources, medicinal plants
have been increasingly studied as sources of natural antioxidants, including phenolic acids,
carotenoids, and flavonoids, which exhibit particularly strong antioxidant properties [158].

9.1. Acetyl-l-carnitine

ALC is a modified amino acid that naturally occurs in the body and can cross the BBB,
allowing it to exert neuroprotective effects by inhibiting oxidative stress and apoptosis,
as well as glial activation and neuroinflammation [159,160]. Research has demonstrated
that through these mechanisms, ALC can effectively attenuate SE. In 1 study using a KA
model of TLE, rats treated with 100 mg/kg ALC showed reduced neuronal loss and seizure
intensity and attenuated a higher incidence of SE [29].

9.2. Melatonin

Melatonin has been shown to have neuroprotective effects in human epilepsy and in
various animal models [161–163]. For instance, prior studies demonstrated that melatonin
reduced the incidence of iron-induced seizures and increased the initial seizure latency in
pilocarpine- and penicillin-induced seizure models [164]. Some researchers reported the
therapeutic effects of melatonin in the PTZ model, which potentially involved the regulation
of GABA receptors and the inhibition of neuronal nitric oxide synthase activity to interfere
with glutamatergic pathways. Similarly, studies using the KA model found that melatonin
prevented the neurotoxic effects of seizures, including ROS production, mtDNA damage,
lipid peroxidation, hippocampal cell loss, and decreased GSH and mitochondrial complex
II activity [165–167]. It is worth noting that one study found no significant neuroprotective
effects of melatonin in PKZ and KA models [168]. Overall, research suggests that melatonin
is an effective component of strategies for treating epilepsy.

9.3. NAC

NAC is a precursor to GSH that is used clinically to prevent the oxidative stress-
induced depletion of GSH [169,170]. NAC also counters oxidative stress through its own
antioxidant properties, including donating sulfhydryl groups to directly scavenge free radi-
cals [171]. A study in which NAC was administered at 500 mg/kg twice daily along with
5 mg/kg sulforaphane daily in a rat model of SE observed a substantial neuroprotective
effect [171]. NAC and sulforaphane treatment led to a 70% decrease in seizure frequency, a
30% increase in the time to the onset of epileptic seizures, and the amelioration of cognitive
impairments accompanying epileptogenesis [172]. In another study of a fluid percussion
injury model of epilepsy in rats, chronic NAC treatment reduced the seizure threshold to a
level comparable to that of PTZ-induced seizures as opposed to what would be expected
following brain injury [173]. Additionally, patients with Unverricht–Lundborg disease, a
form of genetic epilepsy, tolerated NAC well, and they had a reduced seizure burden after
several months of treatment [174].
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9.4. Baicalein

Baicalein is another compound with bioactive properties relevant to protection against
neurodegeneration in various brain disorders [175,176]. One study examined the effects
of baicalein injections in rats with spontaneous recurrent seizures. Although there was
no apparent reduction in the frequency of these spontaneous recurrent seizures, rats
treated with baicalein showed better cognition and reduced mossy fiber sprouting and
hippocampal cell loss [1]. These results were attributed to baicalein’s antioxidant and anti-
inflammatory properties, the regulation of synapse-associated proteins, and the recovery
of glucocorticoid pathway function, all of which were observed in this study [1]. These
findings indicate that baicalein is a beneficial adjuvant therapy in epilepsy.

9.5. CoQ10

CoQ10 is a potent endogenous antioxidant that protects against ROS generation and
oxidative damage [177,178]. CoQ10 both directly scavenges free radicals and indirectly
regenerates other antioxidant compounds, including vitamin E, to exert antioxidant ef-
fects [179]. CoQ10 deficiency can contribute to the clinical manifestations of epilepsy [177].
Supporting this, one study found that patients with epilepsy had significantly lower CoQ10
levels than healthy controls [177]. In this study, decreased serum CoQ10 levels were cor-
related with more frequent seizures and a longer duration of epilepsy. CoQ10 has also
shown promising effects when used in combination with traditional anti-epileptic drugs.
In one study, CoQ10 and valproic acid reduced oxidative stress and prevented histopatho-
logical damage to the brain and liver more effectively than valproic acid alone [26]. This
suggests that the administration of CoQ10 and valproic acid in combination can prevent
the hepatotoxicity of valproic acid while potentiating its anti-epileptic activity [26]. An-
other study examined the efficacy of CoQ10 along with the ASM phenytoin in rats with
pilocarpine-induced seizures. In this study, CoQ10 reduced the severity of seizures and
alleviated oxidative stress [180]. Together, these studies suggest that CoQ10 can also be an
effective and well-tolerated adjuvant therapy for epilepsy.

9.6. Astaxanthin

Astaxanthin is a carotenoid found in microalgae, yeast, and marine organisms, includ-
ing salmon, shrimp, krill, and crayfish [181]. Astaxanthin can easily cross the BBB without
causing toxicity [182]. This strong antioxidant decreases ROS generation and prevents
oxidative damage [183–185]. Moreover, astaxanthin has anti-apoptotic, anti-inflammatory,
and immune-enhancing activity [186–188]. In various neurological disorders, astaxanthin
was found to mitigate brain damage and cognitive deficits [189]. A study of rats treated
with astaxanthin starting shortly after SE onset found that treatment improved cognitive
performance in a test of spatial memory [181]. Astaxanthin treatment reduced the inflam-
mation observed in the brains of these rats, and this anti-inflammatory mechanism might
be responsible for its neuroprotective effects [181].

10. Epilepsy and AEDs

More than two dozen AEDs are currently available for the treatment of epilepsy [190,191].
Pharmacologic strategies achieve seizure remission in an estimated 65–80% of patients
with epilepsy [192,193]. AEDs can be used alone or in combination, although they are
often used as monotherapy to prevent toxicity [194]. Classical AEDs such as valproic acid,
levetiracetam, and benzodiazepines are frequently used as a first-line treatment against
myoclonic seizures [195].

10.1. Valproic Acid

Valproic acid is widely used with considerable efficacy in treating simple and complex
seizures during epilepsy. [196–199] It can be used as either monotherapy or polytherapy.
In one study, valproic acid treatment in PTZ-treated mice exhibited neuroprotection, in-
cluding reduced histopathological alterations, improved behavioral symptoms, increased
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antioxidant levels, and decreased inflammation, as evidenced by reduced TNF-α expres-
sion [183]. Furthermore, co-administration with astaxanthin offered greater benefits against
epilepsy [183]. It is important to note that chronic valproic acid administration can increase
ROS levels within cells, inducing the occurrence of seizures. Another risk of valproic acid
is its reported hepatotoxicity, as evidenced by marked increases in serum levels of the
aminotransferases AST, ALT, and ALP in rats treated with valproic acid [200]. Interestingly,
co-administration of ellagic acid reduced valproic acid-induced hepatic injury in these
rats [200].

10.2. Levetiracetam

Levetiracetam is a more recent AED that is effective in the control of partial-onset
seizures [201–205]. Levetiracetam’s proposed mechanism of action is its ability to bind
to synaptic vesicle protein 2A (SV2A), which prevents Ca2+ release from presynaptic
neurons [206,207]. In this manner, levetiracetam can act as a neuromodulator. Compared to
the characteristics of older AEDs, levetiracetam is thought to be more efficacious with lower
toxicity [208,209]. In 1 study involving 145 people in a group receiving levetiracetam, it was
found that SE resolved and functioning was enhanced in 47% of patients [210]. There was
1 meta-analysis on levetiracetam in children with focal seizures that found a 55% median
reduction in seizure occurrence [194]. There was 1 group that conducted a randomized,
double-blind study of 114 children and adults who had at least 12 seizures in the previous
year despite pharmacological treatment [194]. The group that was provided levetiracetam
as an adjunctive therapy had a 38.7% reduction in seizure frequency, compared to 14.3%
in the group provided a placebo [194]. Notably, levetiracetam was effective in alleviating
refractory epilepsy in both adults and children [194]. Similarly to other AEDs, levetiracetam
might also be effective as one element of polytherapy. In PTZ-injected rats, the combination
of levetiracetam and sodium selenite was more protective than levetiracetam monotherapy
in delaying epilepsy progression and improving performance on behavioral tests [211].

11. Epilepsy and ASMs

The majority of currently available ASMs reduce neuronal excitability and seizure
occurrence, although they might not treat the underlying etiology of epilepsy [212–215].
Many ASMs exert an anti-convulsive effect by repressing excitatory neurotransmission
through their targeting of ion channels [216–218].

11.1. CBD

CBD is a cannabinoid without psychoactivity that has been investigated as an adju-
vant for AEDs [219–221]. This is due to CBD’s anti-inflammatory properties, including
its ability to prevent microglia activation and the release of inflammatory factors from
astrocytes [222,223]. The efficacy of CBD in reducing seizure frequency has been demon-
strated in both humans and animal models [224,225]. For instance, CBD has proven
beneficial in clinical trials for medically refractory epilepsy syndromes [226]. A survey of
117 parents of children with epileptic spasms or Lennox–Gastaut syndrome found that
85% of participants felt CBD improved seizures, and 14% observed a complete absence
of seizures when CBD was used [223]. Furthermore, a study analyzing 580 children and
adults with drug-resistant epilepsy found that 12 weeks of CBD treatment reduced the
median convulsive seizure frequency per month by 51% and total seizure frequency by
48% [223]. Additional evidence supporting the use of CBD in epilepsy comes from an
open-label study of 162 patients with epilepsy originating in childhood. CBD treatment for
12 weeks reduced the monthly seizure frequency by an average of 36.5% [227].

CBD has also been shown to be effective as an adjunctive therapy alongside other
ASMs. This is supported by both case studies and clinical trials. In one report, three
pediatric patients with medically refractory epilepsy from Rasmussen encephalitis were
provided adjunctive CBD along with their ASMs [228]. The inclusion of CBD offered
clinical benefits beyond what would be expected from including an additional ASM in the
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treatment regimen [228]. Moreover, in four randomized clinical trials, CBD administered as
an adjunctive therapy more effectively reduced seizure frequency than a placebo in patients
with Lennox–Gastaut syndrome and Dravet syndrome [229].

11.2. Brivaracetam

Brivaracetam is a recently approved ASM that is being used as an adjunctive therapy
for patients with focal seizures [230–234]. Brivaracetam has a similar mechanism of action
as levetiracetam in that it exhibits high-affinity binding to SV2A vesicles. Additionally,
it shows linear pharmacokinetics [235]. Some evidence indicates that brivaracetam is
also effective in pediatric patients with focal seizures [236]. In 1 study analyzing 34 such
patients aged 3–17 years, 16 patients responded significantly after 3 months of brivaracetam
treatment. Ten of these patients had complete resolution of focal seizures [235]. A study of
200 adults with medically refractory epilepsy who were treated with brivaracetam found
that 23% experienced at least a 50% reduction in seizure frequency [231]. Other research
indicated that 50 mg/day of brivaracetam is an effective dose to significantly reduce seizure
frequency [237]. This dose was also well tolerated, with rare adverse effects. Another use
of brivaracetam and levetiracetam is SE treatment, allowing the two drugs to be used
in emergency cases [238]. Although the two drugs have a similar mechanism of action,
brivaracetam is suggested to be less likely than levetiracetam to cause adverse behavioral
effects [239,240]. Therefore, some patients would benefit from switching from levetiracetam
to brivaracetam [239,240].

11.3. Ursolic Acid

Ursolic acid has been demonstrated to prevent oxidative stress by inhibiting ROS
generation [241–244]. It has also been shown to have anti-inflammatory effects, including
inhibiting MAPK signaling to prevent NF-κB translocation and subsequent secretion of
inflammatory compounds [245]. Through its attenuation of oxidation and inflammation,
ursolic acid can exert a substantial neuroprotective effect [216,246]. In one study, these
properties of ursolic acid allowed it to decrease seizure susceptibility and improve cognitive
dysfunction in rats injected with pilocarpine [216]. During SE, GABAergic interneurons
are often damaged or lost, which removes inhibitory signals by GABA from the neural
circuitry [247]. Notably, ursolic acid has been observed to preserve GABA levels by inhibit-
ing GABA transaminase [248]. Moreover, ursolic acid was found to prevent the loss of
GABAergic interneurons in the previously described pilocarpine-induced rat model [216].
This suggests enhanced inhibitory neurotransmission as a possible mechanism by which
UA dampens the cellular effects of SE.

11.4. Curcumin

Curcumin, which is produced by the herb Curcuma longa, possesses a broad range of
activities, and it has been used as a traditional remedy for seizures [249–252]. The antioxi-
dant properties of curcumin have been demonstrated in various epilepsy models, including
KA, amygdala kindling, and post-kindled models [149,253–255]. Moreover, curcumin
was found to prevent the spread of electrical activity to form generalized seizures in an
iron-induced epilepsy model [256]. Similarly, C. zedoaria extracts were used as a treatment
in rats kindled with PTZ injection [257]. C. zedoaria extract, which contains compounds
including curcumin, elevated the tonic seizure threshold and decreased mortality [257].
Moreover, C. zedoaria extract improved performance in learning and memory among these
rats, with one potential mechanism for this benefit being the extract’s enhancement of
GABAergic signaling [257].

12. Epilepsy and Neuromodulation

Neuromodulation is a palliative treatment for patients with chronic drug-resistant
seizures [40,258–261]. It encompasses the application of direct or induced electric currents
to alter neural activity. Neuromodulation has been pursued as a strategy to reduce the
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occurrence and duration of seizures in patients with epilepsy who do not respond well
to medication [262,263]. Neuromodulation consists of both invasive and non-invasive
therapies. Invasive methods include VNS, deep brain stimulation, which uses implanted
electrodes, and responsive neurostimulation, which is activated when a seizure is de-
tected [264–268]. Less-invasive treatment options include transcutaneous VNS, transcranial
direct current stimulation, and trigeminal nerve stimulation [269–275]. As a whole, neuro-
modulation strategies can induce a 30%–40% decrease in seizure occurrence after 3 months
of treatment [258]. Only a small fraction of people maintain a total absence of seizures for
at least 1 year after neuromodulation, but the majority have over a 50% decrease in the
frequency of seizures [258].

12.1. VNS

VNS entails the use of a pulse generator to administer periodic electrical impulses
to the vagus nerve [40,276,277]. This method can be especially beneficial in patients
with medically refractory epilepsy who would also not be indicated for curative surgical
treatment [278,279]. VNS achieved a greater than 50% reduction in seizure frequency in half
of the patients, although fewer than 5% experienced total resolution of seizures [280,281].
VNS is effective even over a long period, and its ability to control seizures can improve over
time [40]. The vagus nerve may inhibit the formation of seizures in more excitable regions
of the brain, including the thalamus, thalamocortical projections, and limbic system [258].
This presents one mechanism of action for VNS in epilepsy. In addition, VNS increases
serotonin and norepinephrine release through its activation of the raphe nuclei and locus
coeruleus. Increased serotonin and norepinephrine transmission can be preventive against
epilepsy [282,283].

12.2. Epilepsy and Surgery

Surgical interventions for epilepsy include curative procedures, palliative procedures
such as corpus callosotomy, and implantation of devices for neuromodulation [284]. In its
curative form, surgery can limit seizure spread and reduce seizure frequency by removing
cortical areas that are necessary for the generation of seizures [41,285]. However, curative
surgery prioritizes the preservation of normal cognitive abilities [40]. The ability of cura-
tive surgery to completely eliminate epilepsy is influenced by many variables, including
epilepsy type, etiology, and the extent of resection [286]. Overall, surgery is a highly safe
and efficacious option for treating epilepsy, although it has been underutilized [287,288].
Some evidence indicates that surgery can be more effective than medication for some
patients with TLE [289]. In one study, patients with medically refractory TLE were ran-
domized to either receive temporal lobe resection or continue drug therapy [290]. In total,
58% of patients who underwent surgery experienced complete elimination of seizures at a
1-year follow-up, compared to 8% of patients on AEDs [290]. Surgical removal of the sites
of seizure origination may be a necessary strategy for patients with multidrug-resistant
epilepsy [18]. For the third of patients with focal epilepsy who cannot find symptom control
with medications, surgery offers an opportunity to alleviate or resolve seizures [284].

13. Epilepsy and Diet Therapy

The ketogenic diet consists of high fat content, sufficient protein levels, and extremely
low carbohydrate intake [291–294]. It has classically been used as a dietary treatment for
epilepsy [295–298]. Several trials described the efficacy of ketogenic diets in patients with
pediatric epilepsy. A randomized controlled trial found that 38% of pediatric patients on a
ketogenic diet had at least a 50% reduction in seizure frequency after 3 months, compared
to only 6% of controls [299]. Furthermore, 7% of the ketogenic diet group had a near-total
seizure reduction of at least 90%, which was not observed in any controls [193]. In another
study evaluating 6 months of ketogenic diet consumption, the overall seizure frequency
in pediatric patients was reduced by 70.79%, and the seizure severity was decreased by
35% [300]. The ketogenic diet is especially beneficial as a treatment option for medically
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refractory epilepsy when pharmacological strategies do not provide sufficient seizure con-
trol [301]. In trials of pediatric patients with drug-resistant epilepsy, the ketogenic diet can
decrease the seizure frequency by more than 50% in up to half of the participants [302,303].
For instance, 1 study of 90 children <6 years old included controls, patients with refrac-
tory epilepsy treated with AEDs, and patients with refractory epilepsy on a ketogenic
diet [301]. Compared to the group on AEDs, the group on a ketogenic diet had a lower
seizure frequency and severity, as well as higher total antioxidant capacity [301].

Consistent with this finding, the ketogenic diet is believed to function in part through
its antioxidant mechanism [304]. It can increase the GSH availability within cells and protect
mtDNA from oxidative damage while reducing ROS formation within mitochondria [3,98,305].
The ketogenic diet can result in the formation of ketone bodies, which can generate acetyl-
CoA for ATP synthesis and reduce ROS generation [306,307]. This also prevents the
opening of the MPTP and subsequent release of excess Ca2+ [308,309]. These activities of
the ketogenic diet contribute to its protective effect against oxidative stress. The ketogenic
diet has additionally been demonstrated to have anti-inflammatory activity in an animal
model of spinal cord injury [310]. The ketogenic diet may modulate neuroinflammatory
pathways that cause seizure-induced neuronal loss [311,312]. The ketogenic diet might
also enhance GABA production and inhibit glutamate synthesis, thereby exerting effects
against epilepsy [313]. This is corroborated by evidence that patients on a ketogenic diet
have higher cerebrospinal fluid levels of GABA [306].

14. Epilepsy and Nutrients

Nutrients with known antioxidant or anti-inflammatory activity include vitamin
A, vitamin C, omega-3 fatty acids, polyphenols, and carotenoids [314–319]. Vitamins
can offer benefits against epilepsy, especially when used as an adjunctive therapy [320].
Multivitamin therapy, including vitamin B6, vitamin B9, vitamin D, vitamin E, and CoQ10,
administered adjunctively, reduced the average monthly seizure frequency from nine to
two [321]. After 6 months of treatment, 63% of individuals had at least a 50% decrease in
seizure occurrence [321]. Although vitamin B6 has specifically been demonstrated to lead
to better outcomes in epilepsy, it is important to note that it does not provide benefits for
all patients [322–325].

Vitamin D supplementation is also promising for epilepsy treatment, particularly
because several investigations have observed vitamin D deficiencies among patients with
epilepsy [326–329]. In 1 clinical trial, a treatment arm investigated 4 weeks of treatment
with 4000 IU/day of vitamin D3, followed by 4 weeks of treatment with 16,000 IU/day of
vitamin D3 [213]. This treatment group had nearly a 70% decrease in the average seizure
frequency [213]. Among individuals with medically refractory epilepsy and vitamin D3
deficiency, administering vitamin D3 was found to reduce seizure frequency by up to
40% [330]. In a pediatric study of 648 children with epilepsy, vitamin D supplementation
also led to more effective seizure control [329]. The findings from clinical trials were
corroborated by animal models of epilepsy, in which vitamin D administration had anti-
seizure activity and vitamin D receptor knockout mice had more frequent seizures [331].

A study in which 400 IU of vitamin E were administered to patients with epilepsy for
3 months recorded a nearly 60% reduction in seizure frequency [323]. Vitamin E has been
especially promising as long-term adjunctive therapy in refractory epilepsy [332,333]. As
an antioxidant, vitamin E promotes the clearance of ROS and prevents oxidative damage to
proteins and lipids [334,335]. In rats with pilocarpine-induced seizure, vitamin E provided
neuroprotection, evidenced by its ability to increase CAT levels and mitigate the increase in
free fatty acid levels in the brain [336].

Another vitamin that could offer benefits for patients with epilepsy is vitamin C, espe-
cially because this group has been observed to have lower serum vitamin C levels [337]. In
several models of epilepsy, including pilocarpine-, PTZ-, and penicillin-induced epilepsy, vi-
tamin C improved seizure control and outcomes, such as mortality and seizure latency [338].
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Studies of animal models of epilepsy revealed that vitamin C could mitigate oxidative
stress, which might explain its ability to control seizures [339,340].

14.1. Fish Oil and Fatty Acids

Another nutrient that has reduced seizure frequency among patients with epilepsy
is fish oil [341–343]. Because fish oil is established to be safe within a dose of 4 g/day,
its administration as an adjunctive supplement could offer benefits in managing epilepsy
with little risk of adverse effects [344]. There was 1 study that found that 0.6–2 g/day of
fish oil decreased seizure frequency and duration. Conversely, some trials did not find an
effect of fish oil and omega-3 polyunsaturated fatty acids on seizure suppression [345–347].
Short-chain fatty acids are also promising as part of an epilepsy treatment regimen because
they have antioxidant and anti-inflammatory effects [348].

14.2. Magnesium and Zinc

Patients with epilepsy display reduced levels of magnesium, which has been proposed
to be a cause of seizures [349–351]. Consistent with this, the severity of epilepsy is correlated
with the degree of magnesium deficiency [352]. Zinc supplementation might also be
beneficial for epilepsy, as evidenced by the administration of zinc in a PTZ-induced rat
model of epilepsy. Zinc was found to mitigate epileptogenesis, prevent oxidative stress,
and reduce neuroinflammation [353].

14.3. Polyphenols and Flavonoids

Polyphenols are compounds that can cross the BBB and serve as neuromodulators. There-
fore, they are being considered for their potential to ameliorate CNS diseases [136,354,355]. In
particular, polyphenols might be able to disrupt the course of epileptogenesis that gives rise
to recurrent seizures [38]. For instance, the polyphenol resveratrol was found to prevent
neurodegeneration in a KA model of SE and reduce oxidative stress and neuroinflamma-
tion [356]. Another study of a KA rat model of epilepsy found that 10-day resveratrol
(15 mg/kg once daily) treatment prevented neuronal loss and decreased the frequency of
seizures [357].

Flavonoids, as a class, are promising nutritional treatments for epilepsy and CNS disor-
ders because of their antioxidant properties [136]. Additionally, flavonoids can increase the
activity of GABA receptors, increasing the strength of inhibitory neurotransmission [136].
Some evidence suggests that the flavonoid quercetin can improve outcomes in epilepsy,
especially because it was found to reduce inflammation in KA-induced epilepsy mod-
els [358]. As part of its anti-inflammatory effect, quercetin blocks microglial activation
and pro-inflammatory cytokine secretion. Quercetin might especially be helpful as an
adjunctive therapy because when administered with levetiracetam, it alleviated depression
that was comorbid with epilepsy [358].

15. Conclusions

Epilepsy is a CNS disorder with a high prevalence that carries a significant burden
through the presence of recurring seizures. Because the brain has the highest demand for
oxygen consumption among all organs, it is especially vulnerable to oxidative stress and
subsequent damage. ROS generation and oxidative stress can contribute to epileptogenesis
and eventual neuronal death. In addition, oxidative stress can increase neuronal hyperex-
citability and increase the likelihood of seizure occurrence. Another process contributing
to epilepsy pathophysiology is mitochondrial dysfunction, which can induce neuronal
death, a feature that has also been observed in epilepsy. Furthermore, neuroinflammation
is proposed to be a key contributor to the onset and progression of epileptic seizures. In
addition, seizures can contribute to processes such as oxidative stress and inflammation,
leading to the progression of epilepsy.

Various therapeutic strategies are available to treat epilepsy, including AEDs, ASMs,
and antioxidants. By preventing the accumulation of ROS and free radicals and guarding
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against oxidative stress, antioxidants can address one aspect of epilepsy pathophysiol-
ogy. Most ASMs that are presently available seek to target seizures rather than epilepsy
pathophysiology, and they work by decreasing neuronal excitability. Although many medi-
cations are available to control epilepsy, approximately one-third of patients continue to
have seizures that cannot be resolved with medication. These patients with medically re-
fractory epilepsy can have a lower quality of life, cognitive deficits, and low mood. In these
cases, other treatment options include surgery, neuromodulation, and dietary strategies.
Understanding the consequences of diet therapies such as the ketogenic diet and specific
nutritional supplements such as antioxidant vitamins can support the further development
of nutritional strategies in epilepsy treatment. Targeting processes underlying epilepto-
genesis, such as oxidative stress, inflammation, and mitochondrial dysfunction, may be
a fruitful area of investigation for new antiepileptic therapies. Increasing the range of
available interventions may provide alternative treatment options for medically refractory
epilepsy. This review provides an overview of several causative processes in epilepsy and
how they correspond to specific treatment strategies. Through a discussion of epilepsy
pathogenesis and promising therapeutic strategies, this review can provide insight into
avenues for the future development of clinical interventions for epilepsy.
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316. Winiarska-Mieczan, A.; Kwiecień, M.; Jachimowicz-Rogowska, K.; Donaldson, J.; Tomaszewska, E.; Baranowska-Wójcik, E.
Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in
Depressive Disorders. Int. J. Mol. Sci. 2023, 24, 2258. [CrossRef]

317. Wu, Y.; Zhang, J.; Feng, X.; Jiao, W. Omega-3 polyunsaturated fatty acids alleviate early brain injury after traumatic brain injury
by inhibiting neuroinflammation and necroptosis. Transl. Neurosci. 2023, 14, 20220277. [CrossRef]

318. Yang, M.T.; Chou, I.C.; Wang, H.S. Role of vitamins in epilepsy. Epilepsy Behav. 2023, 139, 109062. [CrossRef]
319. Didier, A.J.; Stiene, J.; Fang, L.; Watkins, D.; Dworkin, L.D.; Creeden, J.F. Antioxidant and Anti-Tumor Effects of Dietary Vitamins,

A, C, and E. Antioxidants 2023, 12, 632. [CrossRef]
320. Madireddy, S.; Madireddy, S. Nutritional interventions for the prevention and treatment of neurological disorders such as anxiety,

bipolar disorder, depression, epilepsy, multiple sclerosis, and schizophrenia. J. Neurosci. Neurol. Disord. 2022, 6, 052–071.
321. Verrotti, A.; Iapadre, G.; Di Francesco, L.; Zagaroli, L.; Farello, G. Diet in the Treatment of Epilepsy: What We Know So Far.

Nutrients 2020, 12, 2645. [CrossRef] [PubMed]
322. Dreischmeier, E.; Zuloaga, A.; Kotloski, R.J.; Karasov, A.O.; Gidal, B.E. Levetiracetam-associated irritability and potential role of

vitamin B6 use in veterans with epilepsy. Epilepsy Behav. Rep. 2021, 16, 100452. [CrossRef] [PubMed]
323. Kim, J.E.; Cho, K.O. Functional Nutrients for Epilepsy. Nutrients 2019, 11, 1309. [CrossRef] [PubMed]
324. Ahmed, S.; DeBerardinis, R.J.; Ni, M.; Afroze, B. Vitamin B6-dependent epilepsy due to pyridoxal phosphate-binding protein

(PLPBP) defect—First case report from Pakistan and review of literature. Ann. Med. Surg. 2020, 60, 721–727. [CrossRef] [PubMed]
325. Mastrangelo, M.; Cesario, S. Update on the treatment of vitamin B6 dependent epilepsies. Expert Rev. Neurother. 2019,

19, 1135–1147. [CrossRef]
326. Alhaidari, H.M.; Babtain, F.; Alqadi, K.; Bouges, A.; Baeesa, S.; Al-Said, Y.A. Association between serum vitamin D levels and age

in patients with epilepsy: A retrospective study from an epilepsy center in Saudi Arabia. Ann. Saudi. Med. 2022, 42, 262–268.
[CrossRef]

327. Chaudhuri, J.R.; Mridula, K.R.; Rathnakishore, C.; Balaraju, B.; Bandaru, V.S. Association of 25-Hydroxyvitamin D Deficiency in
Pediatric Epileptic Patients. Iran. J. Child. Neurol. 2017, 11, 48–56.

328. Dobson, R.; Cock, H.R.; Brex, P.; Giovannoni, G. Vitamin D supplementation. Pract. Neurol. 2018, 18, 35–42. [CrossRef]
329. Dong, N.; Guo, H.L.; Hu, Y.H.; Yang, J.; Xu, M.; Ding, L.; Qiu, J.C.; Jiang, Z.Z.; Chen, F.; Lu, X.P.; et al. Association between serum

vitamin D status and the anti-seizure treatment in Chinese children with epilepsy. Front. Nutr. 2022, 9, 968868. [CrossRef]
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Nurzyńska-Wierdak, R.; et al. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed.
Pharmacother. 2021, 143, 112146. [CrossRef]

334. Zakharova, I.O.; Sokolova, T.V.; Vlasova, Y.A.; Bayunova, L.V.; Rychkova, M.P.; Avrova, N.F. α–Tocopherol at Nanomolar
Concentration Protects Cortical Neurons against Oxidative Stress. Int. J. Mol. Sci. 2017, 18, 216. [CrossRef]

335. Simeone, K.A.; Matthews, S.A.; Samson, K.K.; Simeone, T.A. Targeting deficiencies in mitochondrial respiratory complex I and
functional uncoupling exerts anti-seizure effects in a genetic model of temporal lobe epilepsy and in a model of acute temporal
lobe seizures. Exp. Neurol. 2014, 251, 84–90. [CrossRef]

336. Barros, D.O.; Xavier, S.M.; Barbosa, C.O.; Silva, R.F.; Freitas, R.L.; Maia, F.D.; Oliveira, A.A.; Freitas, R.M.; Takahashi, R.N. Effects
of the vitamin E in catalase activities in hippocampus after status epilepticus induced by pilocarpine in Wistar rats. Neurosci. Lett.
2007, 416, 227–230. [CrossRef]

337. Das, A.; Sarwar, M.S.; Hossain, M.S.; Karmakar, P.; Islam, M.S.; Hussain, M.E.; Banik, S. Elevated Serum Lipid Peroxidation
and Reduced Vitamin C and Trace Element Concentrations Are Correlated With Epilepsy. Clin. EEG Neurosci. 2019, 50, 63–72.
[CrossRef]

338. Ayyildiz, M.; Coskun, S.; Yildirim, M.; Agar, E. The effects of ascorbic acid on penicillin-induced epileptiform activity in rats.
Epilepsia 2007, 48, 1388–1395. [CrossRef]

339. González-Ramírez, M.; Razo-Juárez, L.I.; Sauer-Ramírez, J.L.; González-Trujano, M.E.; Salgado-Ceballos, H.; Orozco-Suarez, S.
Anticonvulsive effect of vitamin C on pentylenetetrazol-induced seizures in immature rats. Pharmacol. Biochem. Behav. 2010,
97, 267–272. [CrossRef] [PubMed]

https://doi.org/10.3390/antiox12030676
https://doi.org/10.29328/journal.jnnd.1001026
https://doi.org/10.3390/ijms24032258
https://doi.org/10.1515/tnsci-2022-0277
https://doi.org/10.1016/j.yebeh.2022.109062
https://doi.org/10.3390/antiox12030632
https://doi.org/10.3390/nu12092645
https://www.ncbi.nlm.nih.gov/pubmed/32872661
https://doi.org/10.1016/j.ebr.2021.100452
https://www.ncbi.nlm.nih.gov/pubmed/34142077
https://doi.org/10.3390/nu11061309
https://www.ncbi.nlm.nih.gov/pubmed/31185666
https://doi.org/10.1016/j.amsu.2020.11.079
https://www.ncbi.nlm.nih.gov/pubmed/33425341
https://doi.org/10.1080/14737175.2019.1648212
https://doi.org/10.5144/0256-4947.2022.262
https://doi.org/10.1136/practneurol-2017-001720
https://doi.org/10.3389/fnut.2022.968868
https://doi.org/10.1016/j.yebeh.2012.03.011
https://doi.org/10.1016/j.brainres.2017.08.011
https://doi.org/10.1016/j.biopha.2021.112146
https://doi.org/10.3390/ijms18010216
https://doi.org/10.1016/j.expneurol.2013.11.005
https://doi.org/10.1016/j.neulet.2007.01.057
https://doi.org/10.1177/1550059418772755
https://doi.org/10.1111/j.1528-1167.2007.01080.x
https://doi.org/10.1016/j.pbb.2010.08.009
https://www.ncbi.nlm.nih.gov/pubmed/20801149


Brain Sci. 2023, 13, 784 27 of 27

340. Santos, I.M.; Tomé Ada, R.; Saldanha, G.B.; Ferreira, P.M.; Militão, G.C.; Freitas, R.M. Oxidative stress in the hippocampus
during experimental seizures can be ameliorated with the antioxidant ascorbic acid. Oxidative Med. Cell. Longev. 2009, 2, 214–221.
[CrossRef] [PubMed]

341. Nejm, M.B.; Haidar, A.A.; Marques, M.J.; Hirata, A.E.; Nogueira, F.N.; Cavalheiro, E.A.; Scorza, F.A.; Cysneiros, R.M. Fish oil
provides protection against the oxidative stress in pilocarpine model of epilepsy. Metab. Brain Dis. 2015, 30, 903–909. [CrossRef]
[PubMed]

342. Tejada, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Omega-3 Fatty Acids in the Management of Epilepsy. Curr. Top.
Med. Chem. 2016, 16, 1897–1905. [CrossRef]

343. Taha, A.Y.; Trepanier, M.O.; Ciobanu, F.A.; Taha, N.M.; Ahmed, M.; Zeng, Q.; Cheuk, W.I.; Ip, B.; Filo, E.; Scott, B.W.; et al. A
minimum of 3 months of dietary fish oil supplementation is required to raise amygdaloid after discharge seizure thresholds in
rats—-implications for treating complex partial seizures. Epilepsy Behav. 2013, 27, 49–58. [CrossRef]

344. Scorza, F.A.; Cysneiros, R.M.; Arida, R.M.; Terra, V.C.; Machado, H.R.; Rabello, G.M.; Albuquerque, M.; Cavalheiro, E.A. Fish
consumption, contaminants and sudden unexpected death in epilepsy: Many more benefits than risks. Braz. J. Biol. 2010,
70, 665–670. [CrossRef]

345. DeGiorgio, C.M.; Miller, P.R.; Harpr, R.; Gornbein, J.; Schrader, L.; Soss, J.; Meymandi, S. Fish oil (n-3 fatty acids) in drug resistant
epilepsy: A randomised placebo-controlled crossover study. J. Neurol. Neurosurg. Psychiatry 2015, 86, 65–70. [CrossRef]

346. Omrani, S.; Taheri, M.; Omrani, M.D.; Arsang-Jang, S.; Ghafouri-Fard, S. The effect of omega-3 fatty acids on clinical and
paraclinical features of intractable epileptic patients: A triple blind randomized clinical trial. Clin. Transl. Med. 2019, 8, 3.
[CrossRef]

347. Reda, D.M.; Abd-El-Fatah, N.K.; Omar, T.S.; Darwish, O.A. Fish Oil Intake and Seizure Control in Children with Medically
Resistant Epilepsy. N. Am. J. Med. Sci. 2015, 7, 317–321. [CrossRef]

348. González-Bosch, C.; Boorman, E.; Zunszain, P.A.; Mann, G.E. Short-chain fatty acids as modulators of redox signaling in health
and disease. Redox. Biol. 2021, 47, 102165. [CrossRef]

349. Abdullahi, I.; Watila, M.M.; Shahi, N.; Nyandaiti, Y.W.; Bwala, S.A. Serum magnesium in adult patients with idiopathic and
symptomatic epilepsy in Maiduguri, Northeast Nigeria. Niger. J. Clin. Pract. 2019, 22, 186–193.

350. Osborn, K.E.; Shytle, R.D.; Frontera, A.T.; Soble, J.R.; Schoenberg, M.R. Addressing potential role of magnesium dyshomeostasis
to improve treatment efficacy for epilepsy: A reexamination of the literature. J. Clin. Pharmacol. 2016, 56, 260–265. [CrossRef]

351. Yuen, A.W.; Sander, J.W. Can magnesium supplementation reduce seizures in people with epilepsy? A hypothesis. Epilepsy Res.
2012, 100, 152–156. [CrossRef] [PubMed]

352. Yary, T.; Kauhanen, J. Dietary intake of magnesium and the risk of epilepsy in middle-aged and older Finnish men: A 22-year
followup study in a general population. Nutrition 2019, 58, 36–39. [CrossRef] [PubMed]

353. Kirazlar, M.; Erdogan, M.A.; Erbas, O. Anti-seizure effect of zinc on PTZ–induced epilepsy in rat model. Bratisl. Lek. Listy. 2022,
123, 648–652. [CrossRef]

354. Szala-Rycaj, J.; Zagaja, M.; Szewczyk, A.; Andres-Mach, M. Selected flavonoids and their role in the treatment of epilepsy—A
review of the latest reports from experimental studies. Acta Neurobiol. Exp. 2021, 81, 151–160. [CrossRef]

355. Madireddy, S.; Madireddy, S. Most Effective Combination of Nutraceuticals for Improved Memory and Cognitive Performance in
the House Cricket, Acheta domesticus. Nutrients 2021, 13, 362. [CrossRef]

356. Mishra, V.; Shuai, B.; Kodali, M.; Shetty, G.A.; Hattiangady, B.; Rao, X.; Shetty, A.K. Resveratrol treatment after status epilepticus
restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci. Rep. 2015,
5, 17807. [CrossRef]

357. Wu, Z.; Xu, Q.; Zhang, L.; Kong, D.; Ma, R.; Wang, L. Protective effect of resveratrol against kainate-induced temporal lobe
epilepsy in rats. Neurochemical. Res. 2009, 34, 1393–1400. [CrossRef]

358. Iftikhar, A.; Nausheen, R.; Muzaffar, H.; Naeem, M.A.; Farooq, M.; Khurshid, M.; Almatroudi, A.; Alrumaihi, F.; Allemailem, K.S.;
Anwar, H. Potential Therapeutic Benefits of Honey in Neurological Disorders: The Role of Polyphenols. Molecules 2022, 27, 3297.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4161/oxim.2.4.8876
https://www.ncbi.nlm.nih.gov/pubmed/20716907
https://doi.org/10.1007/s11011-015-9666-0
https://www.ncbi.nlm.nih.gov/pubmed/25893881
https://doi.org/10.2174/1568026616666160204123107
https://doi.org/10.1016/j.yebeh.2012.12.004
https://doi.org/10.1590/S1519-69842010000300026
https://doi.org/10.1136/jnnp-2014-307749
https://doi.org/10.1186/s40169-019-0220-2
https://doi.org/10.4103/1947-2714.161248
https://doi.org/10.1016/j.redox.2021.102165
https://doi.org/10.1002/jcph.626
https://doi.org/10.1016/j.eplepsyres.2012.02.004
https://www.ncbi.nlm.nih.gov/pubmed/22406257
https://doi.org/10.1016/j.nut.2018.06.019
https://www.ncbi.nlm.nih.gov/pubmed/30273823
https://doi.org/10.4149/BLL_2022_104
https://doi.org/10.21307/ane-2021-014
https://doi.org/10.3390/nu13020362
https://doi.org/10.1038/srep17807
https://doi.org/10.1007/s11064-009-9920-0
https://doi.org/10.3390/molecules27103297

	Introduction 
	Epilepsy and Oxidative Stress 
	Epilepsy and Mitochondrial Dysfunction 
	Lipid Peroxidation 
	Epilepsy and Inflammation 
	Epilepsy and NOX 
	Epilepsy and Excitotoxicity 
	BBB Dysfunction 
	Epilepsy and Antioxidants (Antioxidant Therapies) 
	Acetyl-l-carnitine 
	Melatonin 
	NAC 
	Baicalein 
	CoQ10 
	Astaxanthin 

	Epilepsy and AEDs 
	Valproic Acid 
	Levetiracetam 

	Epilepsy and ASMs 
	CBD 
	Brivaracetam 
	Ursolic Acid 
	Curcumin 

	Epilepsy and Neuromodulation 
	VNS 
	Epilepsy and Surgery 

	Epilepsy and Diet Therapy 
	Epilepsy and Nutrients 
	Fish Oil and Fatty Acids 
	Magnesium and Zinc 
	Polyphenols and Flavonoids 

	Conclusions 
	References

