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Abstract: Purpose of the review: Type 2 diabetes mellitus (T2DM) is a global health burden that
leads to an increased morbidity and mortality rate arising from microvascular and macrovascular
complications. Epilepsy leads to complications that cause psychological and physical distress to
patients and carers. Although these conditions are characterized by inflammation, there seems to
be a lack of studies that have evaluated inflammatory markers in the presence of both conditions
(T2DM and epilepsy), especially in low-middle-income countries where T2DM is epidemic. Summary
findings: In this review, we describe the role of immunity in the seizure generation of T2DM. Current
evidence shows an increase in the levels of biomarkers such as interleukin (IL-1β, IL-6, and IL-8),
tumour necrosis factor-α (TNF-α), high mobility group box-1 (HMGB1), and toll-like receptors (TLRs)
in epileptic seizures and T2DM. However, there is limited evidence to show a correlation between
inflammatory markers in the central and peripheral levels of epilepsy. Conclusions: Understanding
the pathophysiological mechanism behind epileptic seizures in T2DM through an investigation of
immunological imbalances might improve diagnosis and further counter the risks of developing
complications. This might also assist in delivering safe and effective therapies to T2DM patients
affected, thus reducing morbidity and mortality by preventing or reducing associated complications.
Moreover, this review also provides an overview approach on inflammatory cytokines that can be
targeted when developing alternative therapies, in case these conditions coexist.
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1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterised by hypergly-
caemia caused by complete or partial insufficiency of insulin secretion and insulin action [1].
There are two types of diabetes mellitus, namely, type 1 (insulin-dependent) and type 2
(non-insulin-dependent), also known as adult-onset diabetes [2,3]. T2DM is the most com-
mon and accounts for 90–95% of all cases of DM [4,5]. It is predicted that the prevalence of
T2DM will continue to increase in the next twenty years, and more than 70% of patients
will come from developing countries, with the majority being around the ages of 45 and
64 years [6]. A recent report by the International Diabetes Federation has shown an alarm-
ing prevalence of DM, with 537 diabetic patients worldwide [7]. T2DM is multifactorial,
resulting from alterations in genetic, environmental, and behavioural risk factors [8–10].
People with T2DM are more susceptible to various complications, often leading to prema-
ture death. Amongst these complications are different types of seizures that occur in about
25% of patients with DM [11–14]. The precise aetiology of seizures in diabetic patients
remains unclear; however, it is speculated to result from physiological factors, such as
oxidative stress, immune abnormalities, microvascular lesions in the brain, an impaired
brain–blood barrier (BBB), metabolic factors, and genetic mutation [11,15–18] (Figure 1). To
date, there are no international criteria for the diagnosis and treatment of this condition,
thus making it difficult to diagnose and treat this condition in its early stages. Nevertheless,
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anti-seizure medications, such as levetiracetam, carbamazepine, lamotrigine, topiramate,
and zonisamide, are commonly recommended, primarily to manage seizures in diabetic pa-
tients [19]. This can reduce secondary complications that might be associated with seizures,
especially in diabetes. Furthermore, existing evidence shows that anti-diabetic medications
can also be beneficial in DM patients with epileptic seizures, as they can normalise blood
glucose levels and prevent a further epileptic attack when patients are no longer using such
drugs [11]. Despite this evidence, it is still unclear how immunological indices and inflam-
matory pathways contribute to the aetiology of epilepsy in diabetic patients, especially
in middle-low-income countries. Therefore, our current review discusses immunological,
inflammatory imbalances, implications and genetic mutations associated with epileptic
seizures in T2DM.

Brain Sci. 2023, 13, 732 2 of 12 
 

condition, thus making it difficult to diagnose and treat this condition in its early stages. 
Nevertheless, anti-seizure medications, such as levetiracetam, carbamazepine, lamotrig-
ine, topiramate, and zonisamide, are commonly recommended, primarily to manage sei-
zures in diabetic patients [19]. This can reduce secondary complications that might be as-
sociated with seizures, especially in diabetes. Furthermore, existing evidence shows that 
anti-diabetic medications can also be beneficial in DM patients with epileptic seizures, as 
they can normalise blood glucose levels and prevent a further epileptic attack when pa-
tients are no longer using such drugs [11]. Despite this evidence, it is still unclear how 
immunological indices and inflammatory pathways contribute to the aetiology of epi-
lepsy in diabetic patients, especially in middle-low-income countries. Therefore, our cur-
rent review discusses immunological, inflammatory imbalances, implications and genetic 
mutations associated with epileptic seizures in T2DM.  

 
Figure 1. Brief mechanism of the pathophysiology of epilepsy. Different pathways can induce this; 
for example, oxidative stress due to an increased circulating reactive oxygen species (ROS), which 
results in imbalanced inflammatory cytokines. The latter stimulates inflammation and subsequently 
leads to neuroinflammation. Similarly, ROS can impair calcium ion metabolism, resulting in neural 
hyperexcitability. The loss of mitochondrial adenosine-triphosphate (ATP) has also been implicated 
in the pathogenesis of epilepsy. This seems to occur in three different pathways; for instance, the 
alteration of neurotransmitters due to the lack of ATP can induce neural hyperexcitability by in-
creasing glutamate and the reduction of gamma-aminobutyric acid (GABA) in a mitochondrion. 
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Figure 1. Brief mechanism of the pathophysiology of epilepsy. Different pathways can induce this;
for example, oxidative stress due to an increased circulating reactive oxygen species (ROS), which
results in imbalanced inflammatory cytokines. The latter stimulates inflammation and subsequently
leads to neuroinflammation. Similarly, ROS can impair calcium ion metabolism, resulting in neural
hyperexcitability. The loss of mitochondrial adenosine-triphosphate (ATP) has also been implicated
in the pathogenesis of epilepsy. This seems to occur in three different pathways; for instance,
the alteration of neurotransmitters due to the lack of ATP can induce neural hyperexcitability by
increasing glutamate and the reduction of gamma-aminobutyric acid (GABA) in a mitochondrion.
Secondly, less ATP impairs the sodium and potassium ion channels, resulting in nerve depolarisation.
On the other hand, the impaired brain–blood barrier (BBB) also triggers neuroinflammation, causing
neural degeneration. Altogether, these mechanisms cause neuronal degeneration, which facilitates
the pathogenicity of epilepsy [20].

2. Pathophysiology of Epileptic Seizures

The pathophysiology of epilepsy involves the series of events that contributes to
neural hyperexcitability. Some implicated mechanisms impair ion homeostasis, neuro-
transmitter uptake, and blood BBB [21–23]. The neurons in the brain interact with each
other by releasing neurotransmitters through axons, thus sending neural messages. The
neurotransmitters have excitatory or inhibitory effects. The action potential of a neuron
depends solely on the balance between the neurotransmitters’ excitatory and inhibitory ef-
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fects [24]. The increased release of excitatory glutamate upregulates N-methyl-D-aspartate
(NMDA) receptors, resulting in the accumulation of calcium ions [25]. An excess of calcium
ions activates neuronal nitric oxide synthase (nNOS), which increases the production of
nitric oxide (NO) and neurological apoptosis due to deoxyribonucleic acid (DNA) damage
associated with excessive free radicals, all of which contributes to the development and
progression of epilepsy [26] (Figure 1).

3. Immunological Expression in Epilepsy

According to Vezzani et al. (2016), animal models of epilepsy are characterised by
the presence of peripheral immune cells [27]. Lymphocytes, in particular, have been
observed in the hippocampus following status epilepticus induced by systemic pilocarpine
injection [28] or intrahippocampal administration of kainic acid in mice [29]. Active brain
extravasation of these cells may alter BBB permeability [28,30]. The critical question is
whether this phenomenon relates to tissue hyperexcitability or neuropathology. A study
by Fabene and colleagues in 2008 revealed that epileptic seizures in an epileptic mouse
model induced by pilocarpine injection upregulate the expression of vascular cell adhesion
molecules (VCAM-1), concomitant to an increased leukocyte arrest in the brain [28]. This
mechanism is mediated by the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1)
and leukocyte integrins alpha-4-beta-1 [28]. This team further revealed that inhibition
of contact between leukocytes and vasculature by blocking antibodies or by genetically
manipulating PSGL-1 genes significantly reduces seizure attacks, with the potential of
alleviating the onset of epilepsy [28].

In contrast, in intracerebral kainic-acid-treated mice, macrophages and T-cells prevent
neutrophil extravasation, delay the onset, and thus reduce the recurrence of spontaneous
seizures [29]. Epilepsy is a health burden without an identifiable cause [31,32]. The patho-
physiological mechanism underlying this disease has been shown to involve both innate
and adaptive immune responses, such as T- and B-cell activation, auto-AB production, and
activation of inflammatory responses in the epileptogenic foci [33,34]. Immune cells activat-
ing inflammatory response have been observed in brain cells, such as microglia, astrocytes,
and neurons, from patients with pharmacoresistant epileptic seizures [35]. In addition to an
inflammatory response in epileptic seizures, cytokines also activate inflammation in epilep-
tic seizures [36]. The inflammatory molecules observed in epileptic brain tissues are not
only responsible for an inflammatory response per se; however, they function as neuromod-
ulators by activating their receptors expressed by neurons, thus affecting neuronal function
and excitability [37]. Therefore, it is speculated that the over-activation of inflammatory
response in brain cells and the neuronal regions might contribute to the pathophysiologi-
cal mechanism of seizure generation [38,39]. It is consequently critical that considerable
research focus be placed on understanding the implication of immunological mechanisms
in the aetiology of epilepsy. A better understanding of these mechanisms in epilepsy might
be explored as a target for developing alternative therapies to epileptic seizures.

4. Inflammation in Epilepsy and Diabetes Mellitus
4.1. Central Inflammation in Epilepsy

The nuclear factor kappa-beta (NF-κβ) signalling system regulates inflammation
and further contributes to inflammation observed in epilepsy [40–42]. NF-κβ initiates
neuroinflammation through a series of mechanisms, including cyclooxygenase (COX-2), the
mammalian target of rapamycin, and mitogen-activated protein kinase. These mechanisms
upregulate the gene expression and activity of NF-κβ [43]. Additionally, HMGB1, NF-
κβ, TNF-α, and IL-1 may, respectively, activate toll-like receptor 4 (TLR-4), TNF-receptor
(TNFR), and IL-1R [44].

Evidence from animal models of epilepsy has shown an upregulated expression of
COX-2 in hippocampus neurons after one hour of seizure; however, treatment with COX-2
inhibitors exhibited beneficial effects [45–47]. Prostaglandin (PGE2), a derivative of an
enzyme, COX-2, contributes to the activation of prostaglandin 1, 2, 3, and 4 receptors
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(EP1, EP2, EP3, and EP4). This further promotes the release of calcium ions and mediates
activities that impair neural function, including plasticity, neurologic deficiency, and hy-
perexcitability [48]. Interestingly, this reduces the threshold of seizure amongst animals
and individuals with epilepsy [49,50]. Although inflammation is crucial to the aetiology of
epilepsy, it is critical that future clinical investigations focus on the fundamental knowledge
of inflammatory pathways that appear to promote and exacerbate epileptic complications.

4.2. Inflammation in T2DM

In hyperglycaemic conditions, insulin resistance results in inflammation. It has been
revealed by several researchers that T2DM is associated with inflammation. Our group has
previously shown an increased level of tumour necrosis factor alpha (TNF-α), interleukin-6
(IL-6) and interleukin-1-beta (IL-1β) in T2DM [51]. This suggests that increased inflamma-
tion is associated with cardiovascular diseases. Notably, the anti-inflammatory cytokine
IL-4 is significantly decreased amongst T2DM patients [52]. T2DM is exacerbated by an
imbalance between pro-inflammatory and anti-inflammatory cytokines.

5. Brain Cells as a Primary Site for the Activation of Inflammatory Responses in
Epileptic Seizures
5.1. Glial Cells

Glial cells are reported to be the primary site for inflammatory molecule activa-
tion during epileptic seizures [36,53–56]. Upon their activation, they release several pro-
inflammatory cytokines, such as IL-1β and TNF-α [36,57] (Figure 2). High-mobility group
box-1 (HMGB-1) has been widely recognised as a biomarker of epilepsy [35,58]. It mediates
the immune response by stimulating macrophage and endothelial cell activation, which
triggers the production of TNF-α, IL-1, and IL-6 by binding to the receptor for advanced
glycation end products (RAGE) and Toll-Like-receptors (TLR)-4. This further activates
the nuclear factor kappa-light-chain-enhancer of activated β-cells (NF-κβ), subsequently
increasing pro-inflammatory cytokine levels [59]. Evidence from preclinical studies shows
that animal models exposed to lipopolysaccharide (LPS)-induced inflammatory response
develop seizure due to pronounced levels of pro-inflammatory cytokines, such as IL-1β,
TNF-α, and HMGB1, as seen in epilepsy comorbidities [57,60,61]. The accumulation of
extracellular HMGB1, following apoptosis and highly elevated pro-inflammatory cytokine
levels, promotes inflammation, which exacerbates the condition. Notably, these cytokines
are partly elevated in both T2DM and epilepsy (Figure 2).

5.2. Microglia and Astrocytes

Animal models have shown other types of brain cells (microglia and astrocytes) that
were affected during the pathophysiological mechanism of epileptic seizures [62]. It has
been reported that activated microglia play a principal role in the production of cytokines
that are also involved in the pathophysiology of epileptic seizures [63]. Microglia are
called brain-resident immune cells partly because they can produce and release various
cytokines [64]. A study by Benson et al. (2015) investigated the microglial expression of
inflammatory cytokines using flow cytometry and quantitative real-time polymerase chain
reaction (PCR) in a pilocarpine-induced SE. Their findings indicated that the microglia
increased the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, Arg1, IL-4,
and IL-10) [65]. Cytokine activation in the microglial cells of people with epilepsy has
been shown to occur due to TLR signalling. Microglial cells respond to the TLR3 agonist
polyinosinic and the TLR4 agonist lipopolysaccharide (LPS), thus promoting the production
of inflammatory cytokines [66]. The TLR has also been implicated in the pathophysiology of
diabetes mellitus. Kolek et al. (2004) showed that TRL4 [lipopolysaccharide (LPS) receptor]
affects the innate immune response as well as the prevalence of T2D or metabolic syndrome
and atherosclerosis [67]. TRL4 has also been reported to promote insulin resistance [68].
Insulin resistance contributes to the pathogenesis of DM, more particularly T2DM [69].
Interestingly, the findings by Wang et al. (2015) demonstrated the hyperglycaemia-induced
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overexpression and activation of TLR4 in endothelial cells. They further revealed that TLR4
leads to the activation of inflammatory responses that contribute to the pathogenesis of
diabetic retinopathy [63]. More interestingly, Taha et al. (2018) suggested that high levels of
TLR4 are associated with T2DM [70].
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TLR4 plays a pivotal role in the brain and central nervous system (CNS) by regu-
lating neuroinflammation [71]. The activation of TLR4 has a beneficial scavenging effect
on amyloid beta (Aβ). However, the chronic activation of Aβ leads to Aβ deposition
in the brain and has been widely associated with the pathogenesis of Alzheimer’s dis-
ease [72]. Alzheimer’s disease is a neurodegenerative disease that is associated with
complications of diabetes mellitus [73]. TLR4 has also been reported to link diabetes
mellitus and Alzheimer’s disease [74]. Therefore, we speculate that the TLR4 signalling
pathway may also be a potential link between T2DM and epileptic seizures. TNF-α is
released from activated microglia and astrocytes, and it can induce epilepsy. In a nutshell,
TNF-α controls the synaptic function in astrocytes and regulates brain activity by increasing
glutamate release, decreasing the production of gamma-aminobutyric acid, generating neu-
roinflammation [75]. Therefore, any therapeutic approach that can reduce TNF-α-associated
glutamate may be of relevance in the search for an ideal epileptic treatment.

Microglial stimulation has been demonstrated to contribute to epilepsy through the
HMGB1-TLR2/4-NF-kβ-mediated pathway. Of interest is the unique potential of this pro-
tein, HMGB1, as a treatment and non-invasive biomarker for epilepsy and patients at high
risk of developing epilepsy [76]. It has been proven that the HMGB1 level rises after four
hours of drug-resistant epilepsy seizure events, making HMGB1 a promising marker for
epilepsy [77]. On the other hand, children with febrile seizures have increased serum levels
of HMGB1 compared to normal children [78]. An increased level of HMGB1 induces inflam-
mation, which may lead to additional complications associated with epilepsy. It is therefore
critical to reduce inflammation in epileptic patients in order to reduce inflammatory-related
secondary effects. Recently, the therapeutic strategy for reducing HMGB1 has been re-
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investigated, and the use of HMGB1 inhibitors has been well described in mouse models,
with encouraging outcomes [79].

6. Peripheral Inflammatory Cytokines in Epilepsy

Brain inflammation is not the only source of the pathogenesis of epilepsy; peripheral
inflammation also plays a critical role in the development of epilepsy [80]. Several findings
have indicated that central-nervous-system inflammatory cytokines correlate with periph-
eral inflammation. A study by Chmielewska et al. (2021) observed increased plasma IL-1β
and IL-6 in electrically induced hippocampal epilepsy in rats [81]. In agreement with this,
Huang et al. (2018) also reported increased serum IL-2 and IL-6 in a rat model of seizures
induced by intraperitoneal injection with kainic acid [82]. More recently, their findings
were validated by Shin et al. (2022), who also observed increased serum IL-2 and IL-6 in
tonic-clonic seizures [83].

Interestingly in epileptic patients, Basnyat et al. (2023) reported elevated IL-6 levels in
the blood, which were associated with high antibodies against glutamic acid decarboxylase
(GADA) titters [84]. These suggest that IL-6 can be used as a biomarker to understand
the immunological pathways implicated in the pathophysiology of GADA-associated au-
toimmune epilepsy. HMGB1 is an inflammatory marker widely associated with epilepsy;
however, currently, there is a paucity of evidence showing a correlation between central
and peripheral HMGB1 levels. For example, Wang et al. (2021) determined the expression
profiles of HMGB1 in cerebrospinal fluid (CSF) and paired serum [85]. They found that
HMGB1 was only increased in the CSF, without a correlation between CSF and serum
HMGB1 levels [85]. They further concluded that HMGB1 might be the main contribu-
tor to seizure mechanisms and that CSF HMGB1 can be used as a predictive marker in
epilepsy [85]. Moreover, an understanding of the epileptic neurobiology of inflamma-
tion might be crucial to the identification of ideal markers that can be used as alternative
therapeutic targets for the prevention and treatment of epileptic seizures.

7. Immunological Factors Commonly Contribute to the Pathogenesis of Diabetes

Immunological factors that commonly contribute to the pathogenesis of DM have
been associated with two factors: (1) the activation of inflammasomes and (2) the release of
pro-inflammatory cytokines in response to damage-associated molecular patterns (DAMPs).
The inflammasome is a multiprotein complex needed for caspase-1 processing and acti-
vating inflammatory cytokines, such as IL-1β and IL-18 [86]. This activation of inflamma-
tory cytokines occurs when damage-associated DAMPs, pathogen-associated molecular
pattern molecules (PAMs, e.g., lipopolysaccharide), nucleotide-binding oligomerisation
domain-like receptors (NLRs) or absent in melanoma 2 (AIM2) form a protein complex
with pro-caspase-1 and the activation of TLR [86,87].

The aberrant activation of inflammasomes has been associated with the pathogen-
esis of autoimmune, autoinflammatory, chronically inflammatory, and metabolic dis-
eases [88,89]. The NLR family activates abundant inflammasomes [90], which have been
characterised by (1) the NLRP1/NALP1b inflammasome [91], (2) the NLRC4/IPAF inflam-
masome [92], (3) the NLRP3/NALP3 inflammasome [93], and (4) the AIM2-containing
inflammasome [94]. Interestingly, NLRP3 inflammasomes are said to be activated by
both exogenous (including DAMPs and MAPs) [95] and endogenous molecules, such as
crystalline molecules, extracellular ATP, receptor P2X7 receptor (P2X7R) (through its cell
surface), A fibrils, lipopolysaccharide (LPS), hyaluronan, and uric acid crystals [96].

Moreover, ATP receptors, such as P2X4, P2X7, P2Y4, P2Y6, P2Y7, and P2Y12, have
been reported to be expressed by microglial cells [97,98]. Avignone et al. (2018) reported
that P2Y6, P2Y4, P2Y6, P2Y7, and P2Y12 mRNA levels increased in the hippocampus in a
kainic-acid-induced mouse model of mesial temporal lobe epilepsy (MTLE) after status
epilepticus [99]. It is known that P2X7 activation promotes IL-1β processing and TNF-
α expression, which are implicated in the pathophysiology of seizures [100]. However,
regarding whether P2X7 has proconvulsive or anticonvulsive effects that vary according
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to the animal models of status epilepticus, P2X7 plays proconvulsive roles in pilocarpine-
induced status epilepticus and anticonvulsive roles in status epilepticus triggered by
intra-amygdala injection of kainic acid [101,102]. In addition to the role of NLRs, TLRs
are implicated in the pathogenesis of T2DM and related complications [103–106]. Hence,
this suggests that TLRs contribute to the disease’s development and to the pathogenesis
of this condition [87]. It has been documented that TLR increases blood glucose levels,
pro-inflammatory cytokines, and oxidative stress [107,108] (Figure 1).

There is increasing evidence linking HMGB1 with T2DM and obesity. A study con-
ducted in China reported that increased plasma HMGB1 was associated with insulin
resistance, whereas increased serum HMGB1 was linked to pro-inflammatory cytokines in-
duced by T2DM and obesity [109]. Jeong et al. (2022) recently indicated that HMGB1 could
exacerbate brain insulin resistance by reducing insulin receptor expression and deactivating
the insulin signalling pathway. This can negatively impact the brain cells by preventing
glucose transportation to these cells, thus leading to epileptic seizures [110]. In addition,
T2DM can lead to oxidative stress, which causes BBB damage [111–113]. Damaged BBB
can be vulnerable to neurological conditions such as epilepsy [114,115]. Notably, BBB
leakage induces epilepsy [116] by increasing the production of glutamate. An increase in
glutamate promotes excitatory activity in the brain, thus resulting in the development and
exacerbation of epileptic seizure [117]. Recently, Chen and colleagues have reported the
use of glutamate receptor antagonists as an effective treatment against epilepsy [117].

Other cytokines that are reportedly increased in T2DM include IL-6 [118–122], IL-2 [123,124],
and TNF-α, which have been strongly associated with the pathogenesis of T2DM [125,126].
A vast trove of evidence from previous literature indicates similarities in immunological
changes that occur in diabetes and epilepsy, which explains why T2DM patients are at an
increased risk of being predisposed to epileptic seizures or epilepsy in the long run. In
addition, both T2DM and epileptic aetiology seems to emanate from similar inflammatory
pathways, as demonstrated by increased pro-inflammatory cytokines. This suggests an
alternative approach that researchers can focus on when developing therapies against
complications in both T2DM and epilepsy.

8. Conclusions

The aetiology of epilepsy is multifaceted; however, the imbalance in anti- and pro-
inflammatory cytokines seems to implicate pathways in CNS and systemic tissue. The
available evidence from preclinical and clinical studies shows similarities in the expression
of immunological, pro-inflammatory and anti-inflammatory biomarkers, including IL-1β,
IL-6, IL-8, HMGB1, TNF-α, TLRs, and PX27, implicated in the pathogenesis of T2DM
and epileptic seizures. This suggests that there could be a close correlation between these
two conditions. This creates a background that future research can focus on to further
develop therapies against inflammatory conditions in instances where these two conditions
coexist. Some of the approaches may include targeting HMGB1, which seems to exacerbate
inflammation in epilepsy. Monitoring alterations in the BBB structure is also recommended
in T2DM in order to prevent the pathogenesis of epilepsy. Despite this evidence, it is still
crucial to conduct more clinical studies to ascertain these finding.
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