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Abstract: Insomnia disorder (ID) is a prevalent mental illness. Several behavioral and neuroimaging
studies suggested that ID is a heterogenous condition with various subtypes. However, neurobio-
logical alterations in different subtypes of ID are poorly understood. We aimed to assess whether
unimodal and multimodal whole-brain neuroimaging measurements can discriminate two commonly
described ID subtypes (i.e., paradoxical and psychophysiological insomnia) from each other and
healthy subjects. We obtained T1-weighted images and resting-state fMRI from 34 patients with
ID and 48 healthy controls. The outcome measures were grey matter volume, cortical thickness,
amplitude of low-frequency fluctuation, degree centrality, and regional homogeneity. Subsequently,
we applied support vector machines to classify subjects via unimodal and multimodal measures.
The results of the multimodal classification were superior to those of unimodal approaches, i.e., we
achieved 81% accuracy in separating psychophysiological vs. control, 87% for paradoxical vs. control,
and 89% for paradoxical vs. psychophysiological insomnia. This preliminary study provides evidence
that structural and functional brain data can help to distinguish two common subtypes of ID from
each other and healthy subjects. These initial findings may stimulate further research to identify the
underlying mechanism of each subtype and develop personalized treatments for ID in the future.

Keywords: insomnia disorder; paradoxical insomnia; psychophysiological insomnia; classification;
machine learning; multimodal imaging

1. Introduction

Subtyping insomnia disorder (ID) is an ongoing debate in sleep medicine and has
changed over different versions of the International Classification of Sleep Disorders
(ICSD) [1,2]. In ICSD-2, several ID subtypes were introduced, including paradoxical in-
somnia (PDI) and psychophysiological insomnia (PPI). ICSD-2 defines PDI as subjective
complaints of insomnia, while polysomnography (PSG) shows near-normal sleep pat-
terns [3]. Conversely, PPI is characterized by increased arousal before or during sleep in a
routine bedroom setting. Moreover, recent studies have suggested that various ID subtypes
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exist with different etiology and distinct pathophysiology [4–7]. However, although ICSD-3
has emphasized the existence of the ID subtypes, it proposed to consider it as a single
category, entitled chronic ID, as there are no customized therapeutic approaches for each
subtype [1].

After decades of noticeable progress in brain imaging techniques, several studies
aimed to explore the pathophysiology of ID using neuroimaging. Moreover, several stud-
ies have found different structural and functional brain alterations between ID patients
and healthy subjects [2,8,9]. However, in recent neuroimaging meta-analysis studies, we
found a lack of consistent regional abnormality in ID, probably due to various sample
sizes (between 7 and 59 patients with ID across studies), different data acquisition, prepro-
cessing, and analysis pipelines of the included studies, as well as heterogeneous clinical
populations in terms of severity, duration, and subtype of ID [8,10]. Multiple ID subtypes
can contribute to ID heterogeneity and ineffective treatment of ID [7,11], which could be a
reason for observing inconsistent brain abnormalities across ID patients [8,10]. Moreover,
subtyping is essential for parsing heterogeneity and selecting personalized treatments for
each subject [12,13].

Recently, a growing trend in neuroimaging studies has been raised to decode com-
plex and non-linearity relations between brain regions in neuropsychiatric disorders us-
ing machine learning [14] approaches. Analyzing complex and non-linear patterns in
the brain at the subject level instead of the group level is a strong advantage of ML in
addressing future challenges in precision psychiatry [15]. By integrating advanced com-
putational models in psychiatry—such as ML, which is rapidly expanding in the field
of neuroimaging—precision psychiatry seeks to narrow the gap between discovery and
clinical application, gain a better understanding of the brain, and identify dysfunction
hubs more precisely at the individual level [13]. Moreover, recent studies have utilized
different brain measures to study ID and get diverse results [5,10,16,17]. This diversity
might be due to the complex nature of ID that single measures cannot contain whole
neurobiological alterations. Due to the widespread and various effects of ID on the brain’s
structure and function, we combined different imaging modalities to reflect the global and
local alteration in the brain. Moreover, using unimodal and multimodal neuroimaging with
machine learning (ML) models, we aimed to determine whether the two ID subtypes, PDI
and PPI, can be separated from each other and healthy controls (HC). Thus, we obtained
structural features (volumetric data, i.e., grey matter volume (GMV) and cortical thickness)
and functional features (low-frequency fluctuations (ALFF), degree centrality (DC), and
regional homogeneity (ReHo)) for each subject as input features. We applied support vector
machines to the whole-brain structural and functional matrices to classify PDI, PPI, and
HC groups.

2. Materials and Methods
2.1. Subjects

In this study, 98 individuals were recruited. ID patients were recruited from the Sleep
Disorders Research Center, Farabi Hospital, Kermanshah University of Medical Sciences.
HCs were recruited by a local advertisement and included individuals without any history
of neurological and psychiatric disorders with good sleep quality (total Pittsburgh Sleep
Quality Index (PSQI) scores < 5). Exclusion criteria for all participants included current
pregnancy, history of other neurological and psychiatric disorders, current use of psychiatric
medications, contraindications of MRI imaging such as metallic implants or claustrophobia,
substance abuse, as well as traumatic brain injury. These pieces of information were
obtained from participants’ medical history and a psychiatric interview. The study was
approved by the Ethics Committee of Kermanshah University of Medical Science, and
all subjects signed a written informed consent before participating in this study. All MRI
images were visually checked by a radiologist to rule out any gross brain abnormality. After
excluding 1 patient with hydrocephalus, 2 patients with comorbid periodic leg movements
during sleep, 5 patients with mild obstructive sleep apnea, 2 patients with brain tumors,
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2 ID patients and 4 HC individuals due to excessive head motions (translation > 1.5 mm
and rotation > 1.5 degree), the analysis was performed based on 34 ID patients (15 PDI and
19 PPI) and 48 HCs.

2.2. Clinical Examination of ID Subtypes

ID patients were interviewed by a well-trained psychiatrist and sleep specialist (H.K.)
according to the third version of ICSD diagnostic criteria. ID patients who were addicted
to using any hypnotic medication, such as benzodiazepines, were excluded from the study.
To diagnose ID subtypes, overnight polysomnography (PSG) using SOMNOscreenTM plus
model (Somnomedics, Germany) was performed for all patients. The patients arrived at
the Sleep Disorders Research Center at 9 p.m. and completed the demographic and PSQI
questionnaires before polysomnography examination. PSG measurements were performed
at least 7 h based on the routine sleeping habits of patients. Sleeping room conditions
were standardized based on the international protocols of sleep labs [18]. Diagnosis of
the ID subtypes was based on ICSD-2 definitions. Still, they all met criteria for “chronic
ID” criteria based on ICSD-3, which consisted of subjective reports of disability to initiate
and/or to maintain sleep (while there is an adequate opportunity to sleep) at least three
times per week lasting for at least three months with associated daytime impairment. The
insomnia symptoms were not due to substance abuse and other psychiatric comorbidities
or other sleep disorders. PDI diagnosis was made through two criteria: i) discrepancy
between objective and subjective reports, at least 1 h difference for total sleep time (TST) or
15% for sleep efficiency (SE), in a way that was contrary to a subjective report, objective
sleep measures show near-normal sleep pattern; and ii) objective insomnia symptoms
like TST more than 6 h and 30 min plus SE more than 85% [5,19]. Diagnostic criteria for
PPI were based on subjective insomnia symptoms, and objective measures without any
discrepancies between subjective and objective reports (i.e., SE less than 85% as well as TST
less than 6.5 h) [18].

2.3. MRI and Resting-State fMRI Image Acquisition

Neuroimaging scans were conducted on subjects who stopped taking any hypnotic
medication for at least one week to reduce the effects of medications on brain functions.
Images were obtained through a 1.5 T scanner (Siemens Magnetom Avanto scanner) with
an 8-channel head coil. We asked participants to stay still and awake, and additionally, to
move as little as possible during the scan. Foam pads were used to reduce head motion
artefacts. Anatomical T1 images were acquired by an MPRAGE sequence (TR = 1950 ms,
TE = 3.1 ms, flip angle = 15◦, FOV = 256 × 256 mm2, voxel size = 1 × 1 × 1 mm3, 176 sagittal
slices). Functional images were collected from an EPI sequence (TR = 3 s, TE = 49 ms,
flip angle = 15◦, FOV = 64 × 64 mm2, voxel size = 3 × 3.5 × 3.5 mm3, time points = 200,
38 sagittal slices).

2.4. Preprocessing and Feature Extraction

To control any distortion and artefacts in the images, structural MRI images were
carefully checked visually. To calculate structural measures, i.e., GMV and cortical thick-
ness, we ran the FreeSurfer analysis (v.7.1.1 automatic pipeline) on the brainlife server
(https://brainlife.io/). The pipeline automatically applies normalization to MNI space, bias
field correction, brain extraction, segmentation, and surface reconstruction on sMRI. Finally,
to have reasonable dimensions of the structural and functional measures [20,21], we ex-
tracted averaged cortical thickness and GMV features of 100 cortical (based on the Schaefer
parcellation) and 36 subcortical parcels (based on the Brainnetome parcellation) [21–23].

Afterward, we performed preprocessing steps for functional images using the SPM
toolbox DPABI5.2 [24]. The first 10 volumes were discarded to avoid magnetization instabil-
ity. Pre-processing steps included slice timing correction, spatial realignment, segmentation,
normalization to MNI space (2 × 2 × 2 mm3), smoothing with a 4 mm full-width-half-
maximum (FWHM) Gaussian kernel, regressing out nuisance covariates (i.e., Friston-24
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head motion parameters, white matter, and cerebrospinal fluid signal), detrending time
series, and finally band pass filtering (0.01–0.10 Hz). Subsequently, for the 136 cortical and
subcortical parcels, we calculated averaged ALFF, DC, and ReHo. Of note, Filtering was
performed after the ALFF extraction, and additionally, conducted the smoothing after ReHo
and DC calculation to prevent increasing regional similarity [25–27]. Moreover, ALFF was
computed in the range 0.01–0.10 Hz, ReHo was computed based on a cluster of 27 voxels,
and the correlation threshold was set to 0.25 for DC. Finally, to create our multimodal
dataset we juxtaposed the extracted unimodal features (GMV, cortical thickness, ALFF, DC,
ReHo) for each subject.

2.5. Statistical Analyses

We conducted chi-square tests to assess potential gender differences between the three
groups and educational level differences between the two ID subtypes. Several One-Way
Analysis of Variance (ANOVA) tests with Bonferroni correction were performed to test age,
PSQI, intracranial volume, and head motion differences between groups. Moreover, we
performed a t-test to compare SE and TST between PDI and PPI patients.

2.6. Classification

Before performing the principal component analysis (PCA) for dimension reduction,
we performed normalization (L2 norm) since the features differed in variance and PCA
is sensitive to variance [28]. Moreover, to classify our three groups (HC, PDI, PPI), we
used the new support vector machine classification method (NuSVC) to separate groups,
as applied previously due to its ability and precision [21,29]. NuSVC is a class of support
vector algorithms that effectively control the number of support vectors [30]. The training
was carried out in a grid search fashion for optimizing hyperparameters and choosing
the best PCA component/components (Figure S1). Due to the number of subjects, the
validation step was performed by leave-one-out (LOO) cross-validation. Of note, train
and test data were carefully split to prevent data leakage. In the following, we conducted
permutation tests with 2000 iterations to examine the classification reliability level [31].
In each iteration, we randomly assigned class labels to each sample and trained the ML
model on the newly assigned samples to obtain a new accuracy (permutation accuracy). We
calculated the p-value of classification accuracy as the proportion of permutation accuracies
higher than the accuracy obtained using real samples. Finally, important features were
selected by analyzing each feature’s amplitude of the eigenvectors, with features with
higher amplitude indicating more power in classifications.

3. Results

Overall, 48 HC subjects were included (24 male, mean + SD age: 40.4 ± 12.7 years),
as were 34 ID patients, 15 PDI (11 male, age: 42.3 ± 12.2 years) and 19 PPI (11 male,
age: 44.6 ± 11.1 years). The demographic characteristics of all subjects and statistical
comparison results are presented in Table S1. Moreover, classification results are as follows:
(a) classification accuracy and ROC scores based on the first component were 81% and 79%,
respectively, for HC vs. PPI with 89% sensitivity and 64% specificity (8 HCs and 5 PPIs
were misclassified), (b) classification accuracy and ROC scores based on the first component
were 87% and 82%, respectively, with 92% sensitivity and 73% specificity for HC vs. PDI
(4 HCs and 4 PDIs were misclassified), and (c) classification accuracy and ROC scores based
on the second component were 88% and 87%, respectively, with 82% sensitivity and 100%
specificity for PDI vs. PPI (4 PDIs were misclassified). p-value outcomes of permutation
tests for multimodal classifiers were less than 0.001 (Figure S2, Figure 1A–C, Table 1). One
can see unimodal results in Table 1.
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Table 1. Outcomes of unimodal and multimodal classifications. 

Measures Validation HC vs. PPI HC vs. PDI PDI vs. PPI 
Multimodal Accuracy % 81 87 88 

 ROC score % 79 82 87 
 Sensitivity % 89 92 82 
 Specificity % 64 73 100 
 p-value <0.001 <0.001 <0.001 

Cortical Thickness Accuracy % 78 67 79 
 ROC score % 72 74 81 
 Sensitivity % 84 93 93 
 Specificity % 61 59 70 
 p-value <0.001 0.125 0.01 

Figure 1. Multimodal confusion matrix (green color: correctly classified; red color: incorrectly classi-
fied) of HC vs. PPI classification shows 40 HCs and 14 PPIs were correctly classified (A). Confusion
matrix of HC vs. PDI classification shows 44 HCs and 11 PDs were correctly classified (B). The
confusion matrix of PDI vs. PPI classification shows 12 PDIs and 17 PPIs were correctly classified (C).
The most important features (parcels) in each classification were illustrated: (D) HC vs. PPI, (E) HC
vs. PDI, and (F) PDI vs. PPI. Important features were selected by analyzing each feature’s ampli-
tude of the eigenvectors. The color bar indicates percent values of the amplitude of eigenvector
for each feature. Cortical parcels were extracted by the Schaefer brain atlas and subcortical ones
were extracted based on the Brainnetome atlas. HC: healthy control, PDI: paradoxical insomnia, PPI:
psychophysiological insomnia.

Analyzing the amplitude of eigenvector of corresponding PCA components clarified
the features that had the most important roles in the multimodal classifications. The results
are as follows: (a) GMV alterations in both right and left precentral gyrus, left inferior
temporal gyrus, right paracingulate gyrus, left insula, and right amygdala between HC
and PPI groups; (b) GMV abnormalities in the left precentral gyrus, left postcentral gyrus,
left and right lateral occipital cortex, postcentral gyrus, left caudate, left putamen, and right
amygdala for HC vs. PDI; and (c) GMV alterations in the left of the paracingulate gyrus
and superior parietal lobule, and the right precentral gyrus between PDI and PPI groups
(Figure 1E–G, Table S2).
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Table 1. Outcomes of unimodal and multimodal classifications.

Measures Validation HC vs. PPI HC vs. PDI PDI vs. PPI
Multimodal Accuracy % 81 87 88

ROC score % 79 82 87
Sensitivity % 89 92 82
Specificity % 64 73 100

p-value <0.001 <0.001 <0.001
Cortical Thickness Accuracy % 78 67 79

ROC score % 72 74 81
Sensitivity % 84 93 93
Specificity % 61 59 70

p-value <0.001 0.125 0.01
Whole Brain GMV Accuracy % 78 87 85

ROC score % 75 82 85
Sensitivity % 87 92 85
Specificity % 59 73 86

p-value 0.003 <0.001 <0.001
Whole Brain ALFF Accuracy % 85 79 71

ROC score % 82 66 70
Sensitivity % 94 83 74
Specificity % 74 60 67

p-value <0.001 0.004 0.014
Whole Brain DC Accuracy % 72 70 82

ROC score % 67 69 82
Sensitivity % 82 87 84
Specificity % 50 42 80

p-value 0.004 0.012 <0.001
Whole Brain ReHo Accuracy % 70 83 76

ROC score % 78 84 76
Sensitivity % 83 95 79
Specificity % 63 59 73

p-value 0.006 0.016 0.005
HC: healthy control, PPI: psychophysiological insomnia, PDI: paradoxical insomnia, ROC: the area under the
receiver operating characteristic, GMV: grey matter volume, ALFF: amplitude of low-frequency fluctuation, DC:
degree centrality, ReHo: regional homogeneity.

4. Discussion

ID is the most prevalent sleep disorder with a wide range of mental health conse-
quences. Hence, due to the heterogeneity and complex nature of this disorder, classifying
its subtypes requires sophisticated computational methods, such as ML, which is rapidly
expanding in the field of neuroimaging. Furthermore, precision psychiatry aims to bridge
the gap between research discoveries and clinical applications. With this approach, we
can gain a better understanding of brain dysfunction and optimal treatment of ID at the
individual level. Our data-derived classification approach based on whole-brain struc-
tural and functional measures separated two ID subtypes, PPI and PDI, from each other
and the HC group. Interestingly, we found that the classification based on multimodal
neuroimaging data was partially superior to classifications based on unimodal data and
mainly driven by structural data. We observed preliminary evidence that the ID subtypes
could be separated using multimodal brain measures to tackle non-linearity and complex
relations between groups. We believe that our study fulfills the criteria of a preliminary
study, which searches for initial evidence that using multimodal imaging is helpful in
separating individual patients with different subtypes of ID.

ICSD-3 discarded conventional subtypes of insomnia because of uncertainty about
the reliability and validity of diagnostic tools and similar treatments for various subtypes.
However, several studies suggested that ID is a heterogeneous disorder, and each ID
subtype has a distinct clinical presentation and treatment response [7,11]. Moreover, this
study is aligned with recent studies based on neuroimaging, PSG, and behavioral measures,
suggesting that ID is not a unified entity. Moreover, a bottom-up classification of ID
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should be reconsidered in the field [5,7,20,32]. Previously, we assessed subcortical brain
alterations in PDI and PPI and observed abnormality in the shape of the caudate, putamen,
and nucleus accumbens in PDI and shape abnormality in the thalamus, amygdala, and
hippocampus in PPI, suggesting a differential role of subcortical brain structures in the
pathophysiology of two main subtypes of ID [5]. Furthermore, based on fMRI tasks, Lee
and colleagues separated 19 PPI from 21 HCs with 80% accuracy. They applied PCA for
dimension reduction and support vector machines for separation [20]. Moreover, using
Random Forest on PSG data, Andrillon and colleagues separated PDI and non-PDI patients
from each other and HCs. The authors demonstrated that the two ID subtypes could not
be separated accurately (Cohen’s k = 0.004) if hypnogram indexes (e.g., TST, sleep onset
latency, and duration of each sleep stage) were excluded [32].

Our classification based on a multimodal approach showed partially better classifica-
tion accuracy compared with unimodal ones. Unimodal accuracies were different across
HC vs. PPI, HC vs. PDI, and PDI vs. PPI classifications. These variations in classification
results of the unimodal measures are probably due to each measure, representing an aspect
of pathologic changes of the ID subtypes. Unimodal classification results show that for a
specific classification such as PDI vs. PPI, specific unimodal imaging (e.g., GMV and DC)
could get a comparable result to multimodal ones. Thus, the multimodal measure has been
made up of combined unimodal measures and has the ability to boost differences between
unimodal accuracies.

The main aim of this study is to provide preliminary evidence using advanced ML
methods based on multimodal neuroimaging data to differentiate ID subtypes. However,
several limitations should be considered while interpreting our results. First, due to
restrictions during the COVID-19 pandemic, we were unable to recruit a larger sample
size in each subtype group, particularly PDI patients. Of note, a larger sample size is
required to consider variability between subjects. Larger sample sizes contain more data,
which enables ML-based classification to capture more information during the training
phase to make decisions about unseen data. Second, LOO cross-validation introduces high
variance in the reported results of the classification and uses a set of highly similar training
sets, which increases the variability of LOO results. Finally, out-of-sample validation is
necessary to evaluate the generalizability and reproducibility of our classification results in
independent samples.

5. Conclusions

This preliminary study provides evidence that structural and functional brain mea-
sures can help to distinguish two common subtypes of ID from each other and healthy
subjects. Moreover, we observed that the multimodal brain measure is better than the
unimodal brain measure to separate ID subtypes. Future studies using larger sample sizes,
such as the ENIGMA-Sleep consortium [33], should further investigate neurobiological
mechanisms underlining ID subtypes and their comorbid conditions, such as depression
and anxiety, to optimize and develop new personalized therapeutic approaches.
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//www.mdpi.com/article/10.3390/brainsci13040672/s1, Figure S1: Multi-modal PCA eigenvalues;
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S2: The most important brain features in each classification.

Author Contributions: M.A., M.T. and H.K. contributed to the design and conceptualization of the
idea. K.N., M.R. and H.K. collected data. M.A. and A.M.-A. analyzed data. M.A., K.S., M.Z., H.K.
and M.T. drafted the manuscript and revised the manuscript for intellectual content. All authors
have read and agreed to the published version of the manuscript.

Funding: Data collection was supported by Kermanshah University of Medical Sciences.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and was approved by the Institutional Ethics Committee of Kermanshah University of
Medical Sciences (protocol code IR.KUMS.REC.1398.971 on 14 January 2020).

https://www.mdpi.com/article/10.3390/brainsci13040672/s1
https://www.mdpi.com/article/10.3390/brainsci13040672/s1


Brain Sci. 2023, 13, 672 8 of 9

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The dataset presented in the study is available upon request from the
corresponding author upon reasonable request.

Acknowledgments: We thank the study participants, their relatives, and the Sleep Disorders Research
Center staff for their help in data collection.

Conflicts of Interest: The authors declare that the research was conducted without any commercial
or financial relationships that could be construed as a potential conflict of interest.

References
1. Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394.

[CrossRef] [PubMed]
2. Van Someren, E.J.W. Brain mechanisms of insomnia: New perspectives on causes and consequences. Physiol. Rev. 2021, 101,

995–1046. [CrossRef] [PubMed]
3. Rezaie, L.; Fobian, A.D.; McCall, W.V.; Khazaie, H. Paradoxical insomnia and subjective–objective sleep discrepancy: A review.

Sleep Med. Rev. 2018, 40, 196–202. [CrossRef]
4. Gong, L.; Xu, R.; Yang, D.; Wang, J.; Ding, X.; Zhang, B.; Zhang, X.; Hu, Z.; Xi, C. Orbitofrontal Cortex Functional Connectivity-

Based Classification for Chronic Insomnia Disorder Patients with Depression Symptoms. Front. Psychiatry 2022, 13, 907978.
[CrossRef] [PubMed]

5. Emamian, F.; Mahdipour, M.; Noori, K.; Rostampour, M.; Mousavi, S.B.; Khazaie, H.; Khodaie-Ardakani, M.; Tahmasian, M.;
Zarei, M. Alterations of Subcortical Brain Structures in Paradoxical and Psychophysiological Insomnia Disorder. Front. Psychiatry
2021, 12, 661286. [CrossRef] [PubMed]

6. Li, C.; Mai, Y.; Dong, M.; Yin, Y.; Hua, K.; Fu, S.; Wu, Y.; Jiang, G. Multivariate Pattern Classification of Primary Insomnia Using
Three Types of Functional Connectivity Features. Front. Neurol. 2019, 10, 1037. [CrossRef]

7. Blanken, T.F.; Benjamins, J.S.; Borsboom, D.; Vermunt, J.K.; Paquola, C.; Ramautar, J.; Dekker, K.; Stoffers, D.; Wassing, R.; Wei, Y.;
et al. Insomnia disorder subtypes derived from life history and traits of affect and personality. Lancet Psychiatry 2019, 6, 151–163.
[CrossRef]

8. Tahmasian, M.; Noori, K.; Samea, F.; Zarei, M.; Spiegelhalder, K.; Eickhoff, S.B.; Van Someren, E.; Khazaie, H.; Eickhoff, C.R. A
lack of consistent brain alterations in insomnia disorder: An activation likelihood estimation meta-analysis. Sleep Med. Rev. 2018,
42, 111–118. [CrossRef]

9. ScSchiel, J.E.; Holub, F.; Petri, R.; Leerssen, J.; Tamm, S.; Tahmasian, M.; Riemann, D.; Spiegelhalder, K. Affect and Arousal in
Insomnia: Through a Lens of Neuroimaging Studies. Curr. Psychiatry Rep. 2020, 22, 44. [CrossRef]

10. Weihs, A.; Bi, H.; Buelow, R.; Eickhoff, S.B.; Ewert, R.; Frenzel, S.; Grabe, H.J.; Hoffstaedter, F.; Jahanshad, N.; Khazaie, H.; et al.
Lack of structural brain alterations associated with insomnia: Findings from the ENIGMA-Sleep Working Group. J. Sleep Res.
2023, 100, e13884. [CrossRef]

11. BeBenjamins, J.S.; Migliorati, F.; Dekker, K.; Wassing, R.; Moens, S.; Blanken, T.F.; Lindert, B.H.T.; Mook, J.S.; Van Someren, E.J.
Insomnia heterogeneity: Characteristics to consider for data-driven multivariate subtyping. Sleep Med. Rev. 2017, 36, 71–81.
[CrossRef] [PubMed]

12. Williams, L.M. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: A theoretical review of the
evidence and future directions for clinical translation. Depress Anxiety 2017, 34, 9–24. [CrossRef] [PubMed]

13. Goldstein-Piekarski, A.N.; Holt-Gosselin, B.; O’hora, K.; Williams, L.M. Integrating sleep, neuroimaging, and computational
approaches for precision psychiatry. Neuropsychopharmacology 2020, 45, 192–204. [CrossRef] [PubMed]

14. Tahmasian, M.; Knight, D.C.; Manoliu, A.; Schwerthöffer, D.; Scherr, M.; Meng, C.; Shao, J.; Peters, H.; Doll, A.; Khazaie, H.; et al.
Aberrant intrinsic connectivity of hippocampus and amygdala overlap in the fronto-insular and dorsomedial-prefrontal cortex in
major depressive disorder. Front. Hum. Neurosci. 2013, 7, 639. [CrossRef] [PubMed]

15. Rashid, B.; Calhoun, V. Towards a brain-based predictome of mental illness. Hum. Brain Mapp. 2020, 41, 3468–3535. [CrossRef]
16. Zhou, F.; Huang, S.; Zhuang, Y.; Gao, L.; Gong, H. Frequency-dependent changes in local intrinsic oscillations in chronic primary

insomnia: A study of the amplitude of low-frequency fluctuations in the resting state. NeuroImage Clin. 2017, 15, 458–465.
[CrossRef]

17. Wang, T.; Li, S.; Jiang, G.; Lin, C.; Li, M.; Ma, X.; Zhan, W.; Fang, J.; Li, L.; Li, C.; et al. Regional homogeneity changes in patients
with primary insomnia. Eur. Radiol. 2015, 26, 1292–1300. [CrossRef]

18. Keenan, S.A. Chapter 3 An overview of polysomnography. In Handbook of Clinical Neurophysiology; Guilleminault, C., Ed.; Elsevier:
Amsterdam, The Netherlands, 2005; pp. 33–50.

19. Khazaie, H.; Mohammadi, H.; Rezaei, M.; Faghihi, F. Hypothalamic–pituitary–gonadal activity in paradoxical and psychophysio-
logical insomnia. J. Med. Signals Sens. 2019, 9, 59–67. [CrossRef]

20. Lee, M.H.; Kim, N.; Yoo, J.; Kim, H.-K.; Son, Y.-D.; Kim, Y.-B.; Oh, S.M.; Kim, S.; Lee, H.; Jeon, J.E.; et al. Multitask fMRI and
machine learning approach improve prediction of differential brain activity pattern in patients with insomnia disorder. Sci. Rep.
2021, 11, 9402. [CrossRef]

https://doi.org/10.1378/chest.14-0970
https://www.ncbi.nlm.nih.gov/pubmed/25367475
https://doi.org/10.1152/physrev.00046.2019
https://www.ncbi.nlm.nih.gov/pubmed/32790576
https://doi.org/10.1016/j.smrv.2018.01.002
https://doi.org/10.3389/fpsyt.2022.907978
https://www.ncbi.nlm.nih.gov/pubmed/35873230
https://doi.org/10.3389/fpsyt.2021.661286
https://www.ncbi.nlm.nih.gov/pubmed/34025484
https://doi.org/10.3389/fneur.2019.01037
https://doi.org/10.1016/S2215-0366(18)30464-4
https://doi.org/10.1016/j.smrv.2018.07.004
https://doi.org/10.1007/s11920-020-01173-0
https://doi.org/10.1111/jsr.13884
https://doi.org/10.1016/j.smrv.2016.10.005
https://www.ncbi.nlm.nih.gov/pubmed/29066053
https://doi.org/10.1002/da.22556
https://www.ncbi.nlm.nih.gov/pubmed/27653321
https://doi.org/10.1038/s41386-019-0483-8
https://www.ncbi.nlm.nih.gov/pubmed/31426055
https://doi.org/10.3389/fnhum.2013.00639
https://www.ncbi.nlm.nih.gov/pubmed/24101900
https://doi.org/10.1002/hbm.25013
https://doi.org/10.1016/j.nicl.2016.05.011
https://doi.org/10.1007/s00330-015-3960-4
https://doi.org/10.4103/jmss.JMSS_31_18
https://doi.org/10.1038/s41598-021-88845-w


Brain Sci. 2023, 13, 672 9 of 9

21. Tahmasian, M.; Shao, J.; Meng, C.; Grimmer, T.; Diehl-Schmid, J.; Yousefi, B.H.; Förster, S.; Riedl, V.; Drzezga, A.; Sorg, C. Based
on the Network Degeneration Hypothesis: Separating Individual Patients with Different Neurodegenerative Syndromes in a
Preliminary Hybrid PET/MR Study. J. Nucl. Med. 2016, 57, 410–415. [CrossRef]

22. Schaefer, A.; Kong, R.; Gordon, E.M.; Laumann, T.O.; Zuo, X.-N.; Holmes, A.J.; Eickhoff, S.B.; Yeo, B.T.T. Local-Global Parcellation
of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb. Cortex 2018, 28, 3095–3114. [CrossRef] [PubMed]

23. Fan, L.; Li, H.; Zhuo, J.; Zhang, Y.; Wang, J.; Chen, L.; Yang, Z.; Chu, C.; Xie, S.; Laird, A.R.; et al. The Human Brainnetome Atlas:
A New Brain Atlas Based on Connectional Architecture. Cereb. Cortex 2016, 26, 3508–3526. [CrossRef] [PubMed]

24. Yan, C.; Zang, Y. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Front Syst Neurosci 2010, 4, 13.
[CrossRef] [PubMed]

25. Uddin, L.; Menon, V. Introduction to Special Topic—Resting-State Brain Activity: Implications for Systems Neuroscience. Front.
Syst. Neurosci. 2010, 4, 37. [CrossRef]

26. Sun, F.; Liu, Z.; Yang, J.; Fan, Z.; Xi, C.; Cheng, P.; He, Z.; Yang, J. Shared and distinct patterns of dynamical degree centrality in
bipolar disorder across different mood states. Front. Psychiatry 2022, 13, 941073. [CrossRef]

27. Li, J.; Gong, H.; Xu, H.; Ding, Q.; He, N.; Huang, Y.; Jin, Y.; Zhang, C.; Voon, V.; Sun, B.; et al. Abnormal Voxel-Wise Degree
Centrality in Patients With Late-Life Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Front. Psychiatry
2020, 10, 1024. [CrossRef]

28. Gewers, F.L.; Ferreira, G.R.; Arruda, H.F.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.D. Principal Component Analysis: A
Natural Approach to Data Exploration. ACM Comput. Surv. 2021, 54, 70.

29. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine
classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]

30. Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New Support Vector Algorithms. Neural Comput. 2000, 12, 1207–1245.
[CrossRef]

31. Ojala, M.; Garriga, G.C. Permutation Tests for Studying Classifier Performance. In Proceedings of the 2009 Ninth IEEE Interna-
tional Conference on Data Mining, Miami, FL, USA, 6–9 December 2009.

32. Andrillon, T.; Solelhac, G.; Bouchequet, P.; Romano, F.; Le Brun, M.-P.; Brigham, M.; Chennaoui, M.; Léger, D. Revisiting the value
of polysomnographic data in insomnia: More than meets the eye. Sleep Med. 2019, 66, 184–200.

33. Tahmasian, M.; Aleman, A.; Andreassen, O.A.; Arab, Z.; Baillet, M.; Benedetti, F.; Bresser, T.; Bright, J.; Chee, M.W.;
Chylinski, D.; et al. ENIGMA-Sleep: Challenges, opportunities, and the road map. J. Sleep Res. 2021, 30, e13347. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2967/jnumed.115.165464
https://doi.org/10.1093/cercor/bhx179
https://www.ncbi.nlm.nih.gov/pubmed/28981612
https://doi.org/10.1093/cercor/bhw157
https://www.ncbi.nlm.nih.gov/pubmed/27230218
https://doi.org/10.3389/fnsys.2010.00013
https://www.ncbi.nlm.nih.gov/pubmed/20577591
https://doi.org/10.3389/fnsys.2010.00037
https://doi.org/10.3389/fpsyt.2022.941073
https://doi.org/10.3389/fpsyt.2019.01024
https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1111/jsr.13347
https://www.ncbi.nlm.nih.gov/pubmed/33913199

	Introduction 
	Materials and Methods 
	Subjects 
	Clinical Examination of ID Subtypes 
	MRI and Resting-State fMRI Image Acquisition 
	Preprocessing and Feature Extraction 
	Statistical Analyses 
	Classification 

	Results 
	Discussion 
	Conclusions 
	References

