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Abstract: Objective: The purpose of this study was to investigate the cortical activity and digit
classification performance during tactile imagery (TI) of a vibratory stimulus at the index, middle,
and thumb digits within the left hand in healthy individuals. Furthermore, the cortical activities
and classification performance of the compound TI were compared with similar compound motor
imagery (MI) with the same digits as TI in the same subjects. Methods: Twelve healthy right-handed
adults with no history of upper limb injury, musculoskeletal condition, or neurological disorder
participated in the study. The study evaluated the event-related desynchronization (ERD) response
and brain–computer interface (BCI) classification performance on discriminating between the digits
in the left-hand during the imagery of vibrotactile stimuli to either the index, middle, or thumb
finger pads for TI and while performing a motor activity with the same digits for MI. A supervised
machine learning technique was applied to discriminate between the digits within the same given
limb for both imagery conditions. Results: Both TI and MI exhibited similar patterns of ERD in the
alpha and beta bands at the index, middle, and thumb digits within the left hand. While TI had
significantly lower ERD for all three digits in both bands, the classification performance of TI-based
BCI (77.74 ± 6.98%) was found to be similar to the MI-based BCI (78.36 ± 5.38%). Conclusions: The
results of this study suggest that compound tactile imagery can be a viable alternative to MI for BCI
classification. The study contributes to the growing body of evidence supporting the use of TI in BCI
applications, and future research can build on this work to explore the potential of TI-based BCI for
motor rehabilitation and the control of external devices.

Keywords: motor imagery; tactile imagery; brain–computer interface; event-related desynchronization

1. Introduction

Motor imagery (MI) is the mental practice of a specific motor activity without the
concomitant physical movement [1]. MI activates the same areas of the brain as actually
performing the action such as primary motor cortex, premotor cortex, and sensorimo-
tor cortex [2–4]. Furthermore, MI has been shown to induce neuroplasticity, resulting in
improvements in motor learning in athletes [5], musicians [6], healthy individuals [7–9],
and patients [10]. One mechanism through which MI affects motor performance is by
eliciting an alpha band (8–12 Hz) and beta band (13–30 Hz) event-related desynchroniza-
tion/synchronization (ERD/ERS) during imagination of the movement [11–13]. The alpha
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ERD is thought to reflect the inhibition of task-irrelevant sensory input and the enhance-
ment of attentional focus, while the beta ERD is thought to reflect the activation of the
motor cortex and the planning and execution of movement. The ERD/ERS enables the use
of MI in brain–computer interface (BCI) applications such as robotic prostheses control [14],
wheelchair navigation [15] as well as a training regime to improve the motor performance
in any individual. MI-based BCI offers a better mapping between the control command
and the interface being controlled compared to other existing BCI modalities such as steady
state visually evoked potential [16] and event-related potential based BCI systems [17].
Unlike the other BCI systems, MI does not require external stimuli [18,19].

Imagining a tactile sensation has been reported to elicit similar cortical excitations to
MI in the form of ERD/ERS [20]. Unlike MI, which simulates physical movement through
imagery of a body part, tactile imagery (TI) involves focusing on the somatosensory
experience of a particular body part. Such TI has been shown to activate the primary
somatosensory cortex [21], while MI activates the motor cortex. Consequently, TI could
be a unique mental strategy to help rehabilitate people who have limited sensory abilities.
TI-based BCI classification has shown promise in improving BCI performance. A recent
study on 106 healthy subjects investigated the accuracy of TI-based BCI discrimination and
found 70.7% of subjects achieved a performance above 70% [22], suggesting TI as a new
modality for BCI development. However, studies on TI-based BCI are few and have largely
evaluated left- and right-hand discrimination [22].

Although conventional simple imagery involving left and right side discrimination
may exhibit higher BCI accuracy due to the clear neurophysiological differences between
the two sides of the body [23]); this simple discrimination has limited use for individuals
with paralytic stroke on one side of the body, since the neurofeedback from the paralytic side
is more important for rehabilitation [24,25]. Furthermore, due to the restricted number of
available classes, the BCI output commands are also limited in simple imagery. For instance,
the use of both hand movement imagination was implemented to facilitate continuous
three-dimensional control of a virtual helicopter in a three-dimensional space as a means
of compensating for the shortage of instructions in a simple limb motor imagery-based
BCI [26]. To address such asymmetrical cortical activations due to motor deficits and limited
output commands, compound imagery involving several parts of a single given limb has
been proposed to replace simple imagery [27]. Compound imagery has advantages in
BCI applications by expanding the number of output commands available from a single
limb [28]. However, very few studies have reported on the brain oscillatory patterns
during compound movement imagery. Furthermore, no study has reported on compound
tactile imagery to our knowledge. A compound TI involving digits in the same given
limb would increase the number of BCI commands available since compound imagery
can lead to the activation of neuron oscillation in several functional areas of the cerebral
cortex. Additionally, compound TI has the potential to be incorporated with compound
MI, even furthering its benefits, and can play an important role in the rehabilitation of
upper extremity.

Therefore, the purpose of this study was to investigate the effect of a compound TI
on the cortical oscillatory activity during imagery of a vibratory stimulus at the index,
middle, and thumb digits within the left hand in healthy individuals. TI-induced cortical
activities and BCI digit classification performance was compared to a similar compound
MI involving imagining finger movements with the same digits as TI on the left hand
in the same subjects. To achieve this, we examined the brain activities with the help of
an electroencephalogram (EEG) during both TI and MI. A supervised machine learning
technique was applied to discriminate between the digits within the same given limb.
It was hypothesized that the compound TI would show similar oscillatory patterns and
perform similarly to its MI counterpart in the digit discrimination.
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2. Methods
2.1. Subjects

Twelve healthy adults (seven males and five females) with a mean age of 27.18± 5.79 years
volunteered in the study. The number of subjects was chosen based on recent EEG studies
with similar small sample sizes [29–31]. All subjects had no history of upper limb injury,
musculoskeletal condition, or neurological disorder. None of the subjects had any prior
experience with motor or tactile imagery. The institutional review board of the Vellore
Institute of Technology approved the protocol. Subjects read and signed a consent form
before participating in the experiment.

2.2. Procedure

The ERD and BCI classification performance on discriminating between the digits in
the left hand during tactile imagery of a vibratory stimuli to either the index, middle, or
thumb finger pads was evaluated and compared to a MI task involving imagining a button
push using the same digits as TI.

2.3. EEG Recording

EEG signals were recorded using the Allengers’ VIRGO-32 EEG system (Allengers
Medical Systems, Chandigarh, India) in accordance with the international 10–20 system.
The VIRGO-32 system consisted of a 20-electrode EEG cap placed on the subject’s scalp,
with electrodes at FP1, FPz, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1,
and O2. The reference electrode was placed at Fz, and the ground electrode was placed
at FPz. Prior to the electrode placement, the skin was cleaned, and a conductive gel was
applied to ensure that the impedance was below 5 kΩ.

2.4. Equipment

A sensory-motor box (Figure 1a) was constructed to aid the subjects in their TI and
MI training. The box consisted of three push buttons with small flat vibration micro
motors (Sunrobotics, Gujarat, India) attached on top of the buttons. Adjustable sliders
were integrated into the box to align each button with the corresponding digit pads. The
vibration motor produced a 27-Hz sine wave, which fell within the frequency range to
stimulate the Pacinian and Meissner corpuscles [32]. The sensory-motor box was controlled
by an Arduino UNO R3 microcontroller (Arduino, Ivrea, Italy).

2.5. Experimental Design

To provide a visual cue to let the subjects know when to perform the imagery and
offer action observation, a 3D left hand was modeled and animated in Blender software
(Blender Foundation, Amsterdam, The Netherlands) to perform finger movement tasks
using the index, middle, and thumb digits. A 3D virtual environment was built using the
Unity game engine (Unity Technologies, San Francisco, CA, USA) where the hand and its
animation was gamified. A computer monitor was placed in front of the subject in which
the 3D hand animations and cues to perform the imagery were displayed.

The experiment was conducted in a quiet room with minimal distractions. Subjects
were comfortably seated with their arms placed on the armrests and were instructed
to avoid any movement including eye blinking to reduce motion artifacts during EEG
recording. The experiment comprised two imagery conditions, namely, TI and MI, with
each condition consisting of one block per digit (index, middle, and thumb), making a total
of six blocks (2 imagery conditions × 3 digits).
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Figure 1. (a) Experimental setup. (b) Timeline of events for a single trial of TI. The vibratory stimulus
was imagined for 150 ms at the beginning of each trial at either the index, middle, or thumb finger
pad. (c) Timeline of events for a single trial of MI. Subjects imagined a button-pushing task using
either the index, middle, or thumb digits.

Each block of TI consisted of five sessions, with each session beginning with five
training trials followed by 10 imagery trials, making it a total of 15 trials per session. For
the training trials, a brief vibrotactile stimulation lasting 150 ms was provided at the start
of the trial to either the index, middle, or thumb digit pad, depending on the block. The
imagery trials began with a text cue displayed over the 3D hand, instructing the subjects to
imagine the same vibrotactile stimulation on the corresponding digit pad. After the text cue
disappeared, the subject imagined the vibratory stimulation for a brief duration of 150 ms.
Each trial had a 4-s rest period following the vibrotactile stimulation and its imagination
(Figure 1b). A text reminded the subject of the digit being tested for 3 s before the start of
each block.

A single block of MI consisted of five sessions of 10 trials per session, where a text
reminded the subject of the digit being tested for 3 s before the block started. At the start
of the trial, the 3D animation showed the digit pressing down on a button, holding the
position for 2 s, releasing the button, and returning to the initial position followed by a
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4-s rest (Figure 1c). Subjects were asked to observe the task animation and imagine the
same movement kinesthetically by forming an impression of their own left-hand digits
performing the task. Prior to the MI tasks with each digit, the subjects performed a trial
run by physically performing the button-pushing task with the corresponding digit on the
sensory-motor box to familiarize themselves with imagining the task at the pace of the
3D animation.

The order of the imagery conditions and the order of the digits within each imagery
condition was randomized for each subject. EEG signals were continuously recorded at a
sampling rate of 250 Hz throughout the experiment.

2.6. EEG Analysis

MATLAB (R2022a, The MathWorks, Natick, MA, USA) was used for the ERD and
digit-discrimination analysis. The EEGLAB toolbox was utilized for ERD analysis, and
an artificial neural network from the Neural Network toolbox in MATLAB was used for
the discrimination analysis. The EEG signals were filtered using a bandpass filter between
0.5 and 50 Hz to remove the line noise and re-referenced to a common average reference,
where the average of the signal at all the electrodes was computed and subtracted from
the EEG at each electrode at each time point. The ADJUST algorithm [33] is an automatic
algorithm designed to identify and remove artifacts from EEG data. It uses ICA to isolate
components with artifacts in EEG recordings. ADJUST detects ICA components that contain
artifacts by merging features that capture common artifact-specific spatial and temporal
characteristics such as blinks, eye movements, and other discontinuities. After identifying
the independent components with artifacts, this algorithm eliminates them from the data,
leaving the neural source activity almost intact. The cleaned data were segmented into
epochs spanning from −1000 ms to 3000 ms relative to the start of each trial for both the TI
and MI blocks.

2.7. ERD Extraction

To investigate brain activity during the imagery tasks, nine electrodes, namely, F3,
Fz, F4, C3, Cz, C4, P3, Pz, and P4, were chosen since they encompass the frontal, central,
and parietal regions of the scalp, respectively. The electrodes were chosen to encompass
the entire sensory and motor area and to account for any of the expected contralateral
activation as well as any possible ipsilateral activation. The EEG data were analyzed using
time–frequency analysis to generate event-related spectral perturbations (ERSPs). ERSPs
reflect the fluctuations in frequency power over time. This was achieved by dividing the
mean event-related spectrum at each time–frequency point by the mean spectral estimate
obtained during the pre-stimulus baseline period at the same frequency as follows:

ERSPlog(f, t) = 10 log10

[
ERS(f, t)
µB(f)

]
(1)

where ERS is the mean event-related spectrum computed using the formula

ERS(f, t) =
1
n ∑n

k=1|Fk(f, t)|2 (2)

where n is the total number of trials, and Fk(f, t) is the spectral estimate at frequency f and
time point t for trial k.

µB(f) is the mean spectral estimate for all baseline points at frequency f given by
the formula

µB(f) =
1

nm ∑n
k=1 ∑ t′∈B

∣∣Fk
(
f, t′

)∣∣2 (3)

where B is the ensemble of time points in the baseline period and m is the cardinal of B or
the total number of time points in the baseline period.

The epochs were uniformly divided into 200 time points, and the ERSP values for
each epoch were normalized to its baseline spectra. Then, the averaged ERSP values of
all the task epochs were calculated. The average alpha and beta band ERSP were calcu-
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lated by averaging the amplitude values within the alpha (8–12 Hz) and beta (13–30 Hz)
frequency ranges, respectively. ERD was seen as a decrease in ERSP power during the
performance of the imagery task. The time–frequency analysis utilized a decibel (dB)
scale to provide a more comprehensible display of power alterations over time, since it
represents power variations in relation to the baseline. Consequently, the dB scale allows
for an enhanced perception of frequency band fluctuations compared to just examining the
raw power spectrum.

2.8. Discriminant Analysis

To evaluate neural activity discrimination of three digits, an artificial neural network
(ANN) was constructed using the nrptool module in MATLAB. The toolbox employed a
two-layer feedforward network with a learning procedure based on the scaled conjugate
gradient backpropagation algorithm. By integrating a scaling procedure that dynamically
determines the direction of the gradient during optimization, the algorithm unites the
conjugate gradient (CG) approach. This integration can result in quicker convergence and
superior precision when compared to alternative optimization techniques such as gradient
descent or Gauss–Newton.

Feature extraction was performed on the ERD data to extract discriminating features
associated with the three digits during the imagery tasks. For both TI and MI, a 1-s time
period between 0 ms and 1000 ms in the epoch where the ERD occurred was extracted
from the ERSP data in each trial within the alpha-band frequency (8–12 Hz) and beta-band
frequency (13–30 Hz) for each of the nine electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, and
P4). The extracted ERD data for each frequency band (alpha and beta) were concatenated
and fed into the ANN, which had an input layer with 150 neurons (N) corresponding to
the 50 imagery trials per digit after removing the vibratory training trials, an output layer
with three neurons (M) corresponding to the three digit classes, and a hidden layer with
22 neurons calculated using the formula

√
N ×M [34].

To train the ANN, a “training set” of 70% of the data was randomly selected. A total
of 15% of the remaining data was held back and used as “validation data” to validate
the model, and the remaining 15% was held back as “testing data” to evaluate the model.
The neural network training was repeated 100 times to minimize the influence of random
fluctuations from the training set during each iteration. The accuracy rates from the
100 runs were averaged to obtain the final accuracy rate.

2.9. Statistical Analysis

To compare the ERD elicited during TI vs. MI, a two-way repeated measures ANOVA
was performed on the digit task-related average ERD for the alpha and beta band separately.
Specifically, the alpha and beta bands of the ERD were ERSP averaged over the 1-s imagery
period immediately after the rest cue for each of the two frequency bands. The ERD was
calculated from the ERSP at the C4 electrode. C4 was chosen since they are placed over
the contralateral sensorimotor area. The analysis included the imagery condition (TI vs.
MI) and digit (index, middle, and thumb) as independent variables. Pairwise comparisons
were performed using post hoc Bonferroni t-tests. Additionally, a paired t-test was used to
compare the classification accuracy between the two imagery conditions. The statistical
analysis was conducted with SigmaStat 4.0 (Systat Software Inc, San Jose, CA, USA), and
the statistical significance was set at α = 0.05.

3. Results
3.1. Time–Frequency Analysis of EEG

The present study involved conducting trials to investigate tactile and motor imagery
using digits on the left hand. The experiment measured brain activity through EEG in order
to study the activation of the sensorimotor area during these tasks. Figure 2 illustrates the
grand average time–frequency maps of all subjects at C4, for all three hand digits under
both imagery conditions. The time–frequency maps demonstrate ERD as a decrease in
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power in the alpha and beta frequency bands during imagery. For TI, a 150 ms vibratory
stimulus was imagined at 0 s, resulting in a band power decrease that was consistent across
all trials in C4. The maximum cortical activity in the form of ERD was observed at around
500 ms after the vibrotactile sensory imagination for all three digits. Similarly in MI, a
long-lasting ERD was seen at the onset of the digit task and lasted for the 2 s duration the
task was imagined.

Brain Sci. 2023, 13, x FOR PEER REVIEW 7 of 14 
 

comparisons were performed using post hoc Bonferroni t-tests. Additionally, a paired t-
test was used to compare the classification accuracy between the two imagery conditions. 
The statistical analysis was conducted with SigmaStat 4.0 (Systat Software Inc, San Jose, 
CA, USA), and the statistical significance was set at α = 0.05. 

3. Results 
3.1. Time–Frequency Analysis of EEG 

The present study involved conducting trials to investigate tactile and motor imagery 
using digits on the left hand. The experiment measured brain activity through EEG in 
order to study the activation of the sensorimotor area during these tasks. Figure 2 illus-
trates the grand average time–frequency maps of all subjects at C4, for all three hand digits 
under both imagery conditions. The time–frequency maps demonstrate ERD as a decrease 
in power in the alpha and beta frequency bands during imagery. For TI, a 150 ms vibratory 
stimulus was imagined at 0 s, resulting in a band power decrease that was consistent 
across all trials in C4. The maximum cortical activity in the form of ERD was observed at 
around 500 ms after the vibrotactile sensory imagination for all three digits. Similarly in 
MI, a long-lasting ERD was seen at the onset of the digit task and lasted for the 2 s duration 
the task was imagined. 

 
Figure 2. Averaged time–frequency maps of all participants. Blue indicates ERD. 

Moreover, to further understand the activation of the sensorimotor area, the average 
energy distribution of the combined alpha and beta frequency bands (8–30 Hz) of each 

Figure 2. Averaged time–frequency maps of all participants. Blue indicates ERD.

Moreover, to further understand the activation of the sensorimotor area, the average
energy distribution of the combined alpha and beta frequency bands (8–30 Hz) of each
channel was calculated and plotted into a topology map based on the channel positions
(Figure 3). The results showed that the mean EEG potential during both the tactile and
motor imagery of the left-hand digit tasks was topographically focused in the contralateral
right sensorimotor area, consistent with previous studies [35].
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A repeated-measures ANOVA was applied to study the differences between TI vs. MI.
The assumptions of the ANOVA on the ERD outcomes were first verified. No significant
outliers were detected in the data, and the results were normally distributed with no viola-
tions of normality observed in any group with a p > 0.05, as indicated by a Shapiro–Wilk
normality test. Additionally, the Brown–Forsythe test was conducted to assess whether
the variances of the differences between the vibration conditions were equivalent, with the
results indicating equal variances for all groups (p > 0.05).

In the alpha band, a repeated measures ANOVA showed that ERD significantly
differed by the main effect of imagery condition (TI vs. MI) (p = 0.014), but not by digit
(index, middle, and thumb) (p = 0.647), or their interactions (p = 0.771). Post hoc Bonferroni
tests demonstrated that ERD (Figure 4) was significantly higher in MI than TI for the index
(p = 0.023), middle (p = 0.041), or thumb (p = 0.011) digits.

In the beta band, the repeated measures ANOVA showed that ERD significantly
differed between the imagery conditions (p = 0.001), but not by digit (p = 0.613). The
interactions between the imagery conditions and digits were not significant (p = 0.412). As
shown by the post hoc Bonferroni tests, the ERD was significantly higher in MI compared
to TI (Figure 4) for the index (p = 0.001), middle (p = 0.027), and thumb (p = 0.019) digits.
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3.2. BCI Classification Analysis

In addition to the ERD analysis, a digit discrimination analysis was performed us-
ing a neural network for both tactile and motor imagery conditions. The results of the
classification accuracy percentage for both the tactile and motor imagery for each subject
is presented in Figure 5. To evaluate the statistical difference between the classification
accuracies from the two imagery conditions, a paired t-test was conducted. The results
showed that there was no significant difference (p = 0.821) between the digit classifica-
tion accuracy in the tactile imagery (mean ± SD = 77.74 ± 7.89%) and motor imagery
(mean ± SD = 78.36 ± 6.51%). The percentage accuracy and the mean absolute percentage
error are shown in Table 1.
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Table 1. Mean absolute percentage error (MAPE) and prediction accuracy (PA) of the artificial neural
network (ANN) model.

MI TI

Subject PA MAPE PA MAPE

S1 78.00 22.00 77.90 22.10
S2 82.27 17.73 79.13 20.87
S3 81.20 18.80 78.67 21.33
S4 80.60 19.40 56.07 43.93
S5 81.40 18.60 79.27 20.73
S6 61.80 38.20 79.17 20.83
S7 79.70 20.30 80.70 19.30
S8 79.97 20.03 80.10 19.90
S9 78.93 21.07 80.63 19.37
S10 79.67 20.33 83.50 16.50
S11 78.13 21.87 79.73 20.27
S12 78.70 21.30 78.10 21.90

4. Discussion

The current study investigated the effect of tactile imagery on cortical oscillatory
activity during tactile imagery of a vibratory stimulus at the index, middle, and thumb digits
within the left hand in healthy individuals. The cortical activities and BCI performance
from the compound tactile imagery involving digits from the same hand were compared to
compound motor imagery involving imagining finger movements with the same digits as
TI in the same subjects. Both TI and MI induced a clear oscillatory power decrease in the
alpha and beta bands in the sensorimotor areas, as seen from the EEG data. The presence
of an identifiable pattern of ERD, seen as an oscillatory power decrease in the alpha and
beta bands, is an indicator of the performance of imagery [11]. Furthermore, the study also
presented a novel TI-based BCI involving the classification of digits from a single limb using
ERD induced during TI as features and compared it to MI. To the best of our knowledge,
this is the first study to propose and validate such a BCI using compound tactile imagery.
The three-class compound tactile imagery BCI in the current study showed an average
accuracy of 77.74 ± 6.98%, which were comparable to the conventional two-class TI-based
BCI for left vs. right hand discrimination by Yao et al. [22], which demonstrated a mean
classification accuracy of 78.9 ± 13.2%. Such compound TI shows promise in developing a
novel paradigm where TI can be combined with MI-based BCI to expand the number of
BCI inputs.

Tactile imagery of a short vibratory burst in the left-hand digits induced an EEG power
decrease in the form of ERD in both the alpha (8–12 Hz) and beta (13–30 Hz) bands in the
contralateral right hemisphere, focused on the C4 electrode over the sensorimotor cortex.
The ERD induced during TI were in accordance with other studies that have shown similar
ERD with vibratory stimulus applied to the hand [19,36]. The results from the current study
suggest that tactile imagery produces a similar ERD to experiencing an actual vibratory
stimulus. Such TI of a short vibratory stimulus might lead to improvements in performing
motor tasks, as seen by our previous study where subjects showed an improvement in
reaction time following TI training [37]. A possible explanation could be that the tactile
imagery has an effect on the online representation of the hand in space for the subjects, as
previous studies have shown that imperceptible vibration enhances tactile sensation [38–40],
and that tactile stimulation improves proprioception of the hand [41,42]. The ERD effect
observed during TI was spread over the primary motor cortex and the somatosensory area
(Figure 3), which suggests that the sensory stimulation was received at the somatosensory
area and processed further in the primary motor cortex. This is consistent with previous
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research showing that sensory feedback influences the discharge of corticospinal cells in
the motor cortex [43,44].

Although the ERD induced by TI was significantly lower than MI for all three digits,
the TI-induced ERD still showed a high discriminative spatial pattern between the three
digits from the same hand. Previous studies using BCI based on steady-state somatosensory
evoked potentials (SSSEP) to repeated tactile stimuli reported that over 80% of the subjects
showed an accuracy below 70% [45], which may limit the potential of tactile BCIs. Another
similar study using SSSEP-based BCI showed an average performance of 58% over a
group of 16 subjects [46]. In contrast, the current study demonstrated that TI-induced
ERD dynamics can lead to a novel TI-based BCI with a higher performance of around 78%,
with the majority of subjects showing a classification above 70%. The activation of the
sensorimotor cortex ERD by unilateral tactile imagery provides high spatial discrimination.
These findings suggest that the TI-induced ERD approach can be useful in reducing the
calibration effort in multi-class compound BCI systems, and has implications in BCI-based
prosthetics and robots. Future studies could focus on improving the spatial resolution such
as by combining TI and MI.

In the current study’s experimental setup, both action observation (AO) and MI were
used. It has been demonstrated that AO + MI causes a greater desynchronization [47].
Clear instructions were given to the subjects to visualize the observed action kinesthetically
in order to ensure that they completed both the AO and MI simultaneously. It has been
suggested that AO and MI training should be combined and used simultaneously and
should not be perceived as mutually exclusive forms of treatment based on a number of
studies that were examined by Vogt et al. [48].

The current study proposes a methodology that was developed based on previous
work on MI and TI, which introduced subthreshold vibration as a method to improve BCI
performance [36], and used TI training to improve the reaction time [37]. In this study,
the proposed approach of imagining a tactile sensation in the digits of a signal given
limb was shown to induce a cortical response and BCI performance similar to MI. The
potential applications of this methodology include stroke patients with motor impairment
but preserved sensory abilities, who may benefit from the current approach in improving
their rehabilitation regime.

5. Limitations

The major limitation of this study was the presence of event-related potential (ERP)
components from the action observation that may have interacted with the ERD elicited
by the kinesthetic motor imagery. The experimental design in the current study made it
impossible to separate the AO related ERP components from the MI related ERD. Future
studies could run practice sessions with an AO component to train the subjects on the
pacing and timing of the performed kinesthetic MI, and for the actual experiment, the AO
was turned off and the subjects were made to perform MI without a visual cue. While
the oscillatory dynamics induced by TI were comparable to those induced by MI, they
might have different cortical activation sources. Future studies should employ functional
near-infrared spectroscopy (fNIRS) combined with EEG to offer better spatial resolution
and help increase the understanding of TI and MI. The study mainly consisted of young
adult subjects, and future studies should aim to broaden the age range to evaluate the age
effect. Additionally, the current subjects did not undergo extensive BCI training, which
has been demonstrated to enhance BCI performance. A longer duration study involving
multiple sessions of TI would be necessary to evaluate the effect of TI-based BCI training on
improving BCI-illiteracy. Finally, due to the limited sample size and observed variations in
individual subject performances, caution should be exercised when interpreting the results
of this study, as these factors may have impacted the statistical power.
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6. Conclusions

In summary, the current study evaluated the effect of a novel compound tactile imagery
of a vibratory stimulus on the digits from a single given limb on the cortical response
and BCI discrimination performance. The proposed compound tactile imagery showed
a reduced ERD response but a similar BCI performance to a similar compound MI. The
current approach also provides a novel paradigm to increase the number of BCI commands.
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