Can Virtual Reality Cognitive Rehabilitation Improve Executive Functioning and Coping Strategies in Traumatic Brain Injury? A Pilot Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Procedures
2.3. Outcome Measures
2.4. Conventional Cognitive Training (C-CT)
2.5. VR Cognitive Training (VR-CT)
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bryan-Hancock, C.; Harrison, J. The global burden of traumatic brain injury: Preliminary results from the Global Burden of Disease Project. INJ Prev. 2010, 16, A17. [Google Scholar] [CrossRef][Green Version]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1039–1408. [Google Scholar] [CrossRef][Green Version]
- Ng, S.Y.; Lee, A. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Incell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Sasse, N.; Gibbons, H.; Wilson, L.; Martinez, R.; Sehmisch, S.; von Wild, K.; von Steinbüchel, N. Coping strategies in individuals after traumatic brain injury: Associations with health-related quality of life. Disabil. Rehabil. 2014, 36, 2152–2160. [Google Scholar] [CrossRef]
- Rakers, S.E.; Scheenen, M.E.; Westerhof-Evers, H.J.; de Koning, M.E.; van der Horn, H.J.; van der Naalt, J.; Spikman, J.M. Executive functioning in relation to coping in mild versus moderate-severe traumatic brain injury. Neuropsychiatry 2018, 32, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Baguley, I.J.; Cameron, I.D. Rehabilitation after traumatic brain injury. Med. J. Aust. 2003, 178, 290–295. [Google Scholar] [CrossRef]
- Ozga, J.E.; Povroznik, J.M.; Engler-Chiurazzi, E.B.; Vonder Haar, C. Executive (dys)function after traumatic brain injury: Special considerations for behavioral pharmacology. Behav. Pharmacol. 2018, 29, 617–637. [Google Scholar] [CrossRef]
- McDonald, B.C.; Flashman, L.A.; Saykin, A.J. Executive dysfunction following traumatic brain injury: Neural substrates and treatment strategies. NeuroRehabilitation 2002, 17, 333–344. [Google Scholar] [CrossRef][Green Version]
- Bales, J.W.; Wagner, A.K.; Kline, A.E.; Dixon, C.E. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis. Neurosci. Biobehav. Rev. 2009, 33, 981–1003. [Google Scholar] [CrossRef][Green Version]
- Wood, R.L.; Worthington, A. Neurobehavioral Abnormalities Associated with Executive Dysfunction after Traumatic Brain Injury. Front. Behav. Neurosci. 2017, 11, 195. [Google Scholar] [CrossRef][Green Version]
- Tsai, Y.C.; Liu, C.J.; Huang, H.C.; Lin, J.H.; Chen, P.Y.; Su, Y.K.; Chen, C.T.; Chiu, H.Y. A Meta-analysis of Dynamic Prevalence of Cognitive Deficits in the Acute, Subacute, and Chronic Phases after Traumatic Brain Injury. J. Neurosci. Nurs. 2021, 53, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Salehinejad, M.A.; Ghanavati, E.; Rashid, M.H.A.; Nitsche, M.A. Hot and cold executive functions in the brain: A prefrontal-cingular network. Brain Neurosci. Adv. 2021, 5, 23982128211007769. [Google Scholar] [CrossRef] [PubMed]
- Cicerone, K.D.; Dahlberg, C.; Kalmar, K.; Langenbahn, D.M.; Malec, J.F.; Bergquist, T.F.; Felicetti, T.; Giacino, J.T.; Harley, J.P.; Harrington, D.E. Evidence-based cognitive rehabilitation: Recommendations for clinical practice. Arch. Phys. Med. Rehabil. 2000, 81, 1596–1615. [Google Scholar] [CrossRef]
- Woodrow, P. Interventions for confusion and dementia 2: Reality orientation. Br. J. Nurs. 1998, 7, 1018–1020. [Google Scholar] [CrossRef]
- Barnes, J. Effects of reality orientation classroom on memory loss, confusion and disorientation in geriatric patients. Gerontologist 1974, 14, 138–142. [Google Scholar] [CrossRef]
- Taulbee, L.; Folsom, J. Reality orientation for geriatric patients. Hosp. Comm. Psychiatry 1966, 1, 133–135. [Google Scholar] [CrossRef]
- McMahon, R. The ‘24-hour Reality Orientation Type of Approach to the Confused Elderly a Minimum Standard for Care. J. Adv. Nurs. 1988, 13, 693–700. [Google Scholar] [CrossRef]
- McNeny, R.; Dise, J. Reality orientation therapy. In Rehabilitation of the Adult and Child with Traumatic Brain Injury, 2nd ed.; Rosenthal, M., Bond, M., Miller, J., Griffith, D., Eds.; F.A. Davis: Philadelphia, PA, USA, 1990. [Google Scholar]
- Krawczyk, D.C.; Han, K.; Martinez, D.; Rakic, J.; Kmiecik, M.J.; Chang, Z.; Nguyen, L.; Lundie, M.; Cole, R.C.; Nagele, M.; et al. Executive function training in chronic traumatic brain injury patients: Study protocol. Trials 2019, 20, 435. [Google Scholar] [CrossRef][Green Version]
- Cicerone, K.; Levin, H.; Malec, J.; Stuss, D.; Whyte, J. Cognitive rehabilitation interventions for executive function: Moving from bench to bedside in patients with traumatic brain injury. J. Cogn. Neurosci. 2006, 18, 1212–1222. [Google Scholar] [CrossRef] [PubMed]
- De Luca, R.; Maggio, M.G.; Maresca, G.; Latella, D.; Cannavò, A.; Sciarrone, F.; Lo Voi, E.; Accorinti, M.; Bramanti, P.; Calabrò, R.S. Improving Cognitive Function after Traumatic Brain Injury: A Clinical Trial on the Potential Use of the Semi-Immersive Virtual Reality. Behav. Neurol. 2019, 2019, 9268179. [Google Scholar] [CrossRef][Green Version]
- Pennington, D.L.; Reavis, J.V.; Cano, M.T.; Walker, E.; Batki, S.L. The Impact of Exercise and Virtual Reality Executive Function Training on Cognition among Heavy Drinking Veterans with Traumatic Brain Injury: A Pilot Feasibility Study. Front. Behav. Neurosci. 2022, 16, 802711. [Google Scholar] [CrossRef] [PubMed]
- De Luca, R.; Bonanno, M.; Rifici, C.; Pollicino, P.; Caminiti, A.; Morone, G.; Calabrò, R.S. Does Non-Immersive Virtual Reality Improve Attention Processes in Severe Traumatic Brain Injury? Encouraging Data from a Pilot Study. Brain Sci. 2022, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Ger. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Kortte, K.B.; Horner, M.D.; Windham, W.K. The trail making test, part B: Cognitive flexibility or ability to maintain set? Appl. Neuropsychol. 2002, 9, 106–109. [Google Scholar] [CrossRef]
- Appollonio, I.; Leone, M.; Isella, V.; Piamarta, F.; Consoli, T.; Villa, M.L.; Forapani, E.; Russo, A.; Nichelli, P. The Frontal Assessment Battery (FAB): Normative values in an Italian population sample. Neurol. Sci. 2005, 26, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef][Green Version]
- Sica, C.; Magni, C.; Ghisi, M.; Altoè, G.; Sighinolfi, C.; Chiri, L.R.; Franceschini, S. Coping Orientation to Problems Experienced-Nuova Versione Italiana (COPE-NVI): Uno strumento per la misura degli stili di coping. Psicoter. Cogn. E Comport. 2008, 14, 27. [Google Scholar]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef][Green Version]
- Alashram, A.R.; Annino, G.; Padua, E.; Romagnoli, C.; Mercuri, N.B. Cognitive rehabilitation post traumatic brain injury: A systematic review for emerging use of virtual reality technology. J. Clin. Neurosci. 2019, 66, 209–219. [Google Scholar] [CrossRef]
- Yip, B.C.; Man, D.W. Virtual reality (VR)-based community living skills training for people with acquired brain injury: A pilot study. Brain Inj. 2009, 23, 1017–1026. [Google Scholar] [CrossRef]
- Rogers, J.M.; Duckworth, J.; Middleton, S.; Steenbergen, B.; Wilson, P.H. Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: Evidence from a randomized controlled pilot study. J. Neuroeng. Rehabil. 2019, 16, 56. [Google Scholar] [CrossRef][Green Version]
- Tieri, G.; Morone, G.; Paolucci, S.; Iosa, M. Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Rev. Med. Devices 2018, 15, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Martos, R.; Nieto-Escamez, F. A Proposal of Cognitive Intervention in Patients with Alzheimer’s Disease through an Assembling Game: A Pilot Study. J. Clin. Med. 2022, 11, 3907. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.K. Virtual environments for motor rehabilitation: Review. Cyberpsychol. Behav. 2005, 8, 187–211; discussion 212–219. [Google Scholar] [CrossRef] [PubMed]
- Rose, F.D.; Brooks, B.M.; Rizzo, A.A. Virtual reality in brain damage rehabilitation: Review. Cyberpsychol. Behav. 2005, 8, 241–246; discussion 263–271. [Google Scholar] [CrossRef]
- Sharma, D.A.; Chevidikunnan, M.F.; Khan, F.R.; Gaowgzeh, R.A. Effectiveness of knowledge of result and knowledge of performance in the learning of a skilled motor activity by healthy young adults. J. Phys. Ther. Sci. 2016, 28, 1482–1486. [Google Scholar] [CrossRef][Green Version]
- Gregório, G.W.; Ponds, R.W.; Smeets, S.M.; Jonker, F.; Pouwels, C.G.; Verhey, F.R.; van Heugten, C.M. Associations between executive functioning, coping, and psychosocial functioning after acquired brain injury. Br. J. Clin. Psychol. 2015, 54, 291–306. [Google Scholar] [CrossRef]
- Calabrò, R.S.; De Cola, M.C.; Leo, A.; Reitano, S.; Balletta, T.; Trombetta, G.; Naro, A.; Russo, M.; Bertè, F.; De Luca, R.; et al. Robotic neurorehabilitation in patients with chronic stroke: Psychological well-being beyond motor improvement. Int. J. Rehabil. Res. 2015, 38, 219–225. [Google Scholar] [CrossRef][Green Version]
- Sánchez-Nieto, D.; Castaño-Castaño, S.; Navarro-Martos, R.; Obrero-Gaitán, E.; Cortés-Pérez, I.; Nieto-Escamez, F. An Intervention on Anxiety Symptoms in Moderate Alzheimer’s Disease through Virtual Reality: A Feasibility Study and Lessons Learned. Int. J. Environ. Res. Public Health 2023, 20, 2727. [Google Scholar] [CrossRef]
- Bonanno, M.; De Luca, R.; De Nunzio, A.M.; Quartarone, A.; Calabrò, R.S. Innovative Technologies in the Neurorehabilitation of Traumatic Brain Injury: A Systematic Review. Brain Sci. 2022, 12, 1678. [Google Scholar] [CrossRef]
- Maggio, M.; De Luca, R.; Molonia, F.; Porcari, B.; Destro, M.; Casella, C.; Salvati, R.; Bramanti, P.; Calabro, R. Cognitive rehabilitation in patients with traumatic brain injury: A narrative review on the emerging use of virtual reality. J. Clin. Neurosci. 2019, 61, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Tefertiller, C.; Ketchum, J.M.; Bartelt, P.; Peckham, M.; Hays, K. Feasibility of virtual reality and treadmill training in traumatic brain injury: A randomized controlled pilot trial. Brain Inj. 2022, 36, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.G.; Torrisi, M.; Buda, A.; De Luca, R.; Piazzitta, D.; Cannavò, A.; Leo, A.; Milardi, D.; Manuli, A.; Calabrò, R.S. Effects of robotic neurorehabilitation through lokomat plus virtual reality on cognitive function in patients with traumatic brain injury: A retrospective case-control study. Int. J. Neurosci. 2020, 130, 117–123. [Google Scholar] [CrossRef]
- Jacoby, M.; Averbuch, S.; Sacher, Y.; Katz, N.; Weiss, P.L.; Kizony, R. Effectiveness of executive functions training within a virtual supermarket for adults with traumatic brain injury: A pilot study. IEEE Trans. Neural. Syst. Rehabil. Eng. 2013, 21, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Nousia, A.; Martzoukou, M.; Liampas, I.; Siokas, V.; Bakirtzis, C.; Nasios, G.; Dardiotis, E. The Effectiveness of Non-Invasive Brain Stimulation Alone or Combined with Cognitive Training on the Cognitive Performance of Patients with Traumatic Brain Injury: A Systematic Review. Arch. Clin. Neuropsychol. 2022, 37, 497–512. [Google Scholar] [CrossRef]
All Participants | VR-CT | C-CT | p-Values | |
---|---|---|---|---|
Age | 44.6 ± 16.13 | 46.2 ± 14.9 | 43.1 ± 17.9 | 0.88 |
Gender | 0.65 | |||
Male | 11 (55.00) | 5 (50.00) | 6 (55.00) | |
Female | 9 (45.00) | 5 (50.00) | 4 (45.00) | |
Education | 0.70 | |||
Elementary | 3 (15.00) | 1 (10.00) | 2 (20.00) | |
Middle | 3 (15.00) | 1 (10.00) | 2 (20.00) | |
High school | 9 (45.00) | 6 (60.00) | 3 (30.00) | |
University | 5 (25.00) | 2 (20.00) | 3 (30.00) | |
Hemiparesis | 11 | 6 | 5 | |
Tetraparesis | 9 | 4 | 5 | |
Comorbidities | 0.94 | |||
Diabetes | 5 | 3 | 2 | |
Hypertension | 8 | 4 | 4 | |
Heart diseases | 5 | 2 | 3 | |
Chronic kidney diseases | 2 | 1 | 1 | |
MoCA | 22.4 ± 3.10 | 22.1 ± 2.84 | 22.7 ± 3.46 | 0.62 |
HRS-D | 9.9 ± 6.34 | 8.5 ± 7.24 | 11.3 ± 5.29 | 0.65 |
TMT-A | 100.05 ± 92.4 | 73.3 ± 57.4 | 124.8 ± 115.6 | 0.30 |
TMT-B | 217.5 ± 98.2 | 207.8 ± 88.7 | 227.2 ± 110.8 | 0.84 |
TMT-BA | 148.3 ± 112.4 | 132.5 ± 81.4 | 164.1 ± 139.5 | 0.88 |
FAB | 14.1 ± 2.2 | 13.9 ± 2.3 | 14.3 ± 2.1 | 0.59 |
PGWBI | ||||
Anxiety | 67.25 ± 17.20 | 66.5 ± 17.43 | 68 ± 17.88 | 0.91 |
Depression | 66.75 ± 19.62 | 65.1 ± 19.66 | 68.4 ± 20.5 | 0.67 |
General Health | 42.4 ± 17.88 | 41.1 ± 18.27 | 43.7 ± 18.37 | 0.81 |
Vitality | 44.5 ± 17.23 | 45 ± 16.15 | 44 ± 19.11 | 0.70 |
Positive well-being | 37.75 ± 16.42 | 36.5 ± 15.1 | 39 ± 18.37 | 1 |
Self-control | 55 ± 13.78 | 55.6 ± 11.59 | 54.4 ± 16.31 | 0.79 |
COPE | ||||
Social support | 21.9 ± 3.69 | 22.1 ± 3.95 | 21.7 ± 3.49 | 0.62 |
Avoidance strategies | 23.2 ± 3.39 | 25.2 ± 2.85 | 21.2 ± 2.69 | 0.30 |
Positive attitude | 25.9 ± 3.59 | 24.8 ± 3.58 | 27 ± 3.43 | 0.17 |
Problem solving | 25.2 ± 2.62 | 24.9 ± 2.93 | 25.5 ± 2.41 | 0.56 |
Turning to religion | 22.8 ± 3.80 | 23.2 ± 3.52 | 22.4 ± 0.70 | 0.67 |
Rehabilitation Program | Intervention | Individual Session Duration | Type of Intervention | Exercise—Time | Cognitive Domains |
---|---|---|---|---|---|
Step 1 3 months Standard Neurorehabilitation (October–December 2021) | Conventional Cognitive Training (C-CT) | 6 weekly sessions of 60 min (72 total treatments) | ROT (Reality Orientation Therapy) 20 min | 10 min | Personal/Autobiographical Orientation |
5 min | Temporal orientation | ||||
5 min | Spatial orientation | ||||
Executive Training 40 min | 10 min | Verbal Fluency (Phonemic and Semantic)/Categorization | |||
5 min | Working Memory | ||||
10 min | Flexible Thinking/Attention Shifting | ||||
15 min | Problem Solving /Reasoning/Coping Strategies | ||||
Step 2 3 months Advanced Rehabilitative Approach (January–March 2022) | Virtual Reality Rehabilitation System (Virtual Reality Rehabilitation System)– VR-CT Software and Tools dedicate for Cognitive Module VRRS—Evo | 3 weekly sessions of 60 min (36 total treatments) | ROT (Reality Orientation Therapy) 20 min Executive Training 40 min (The same program as CCT) |
Domain | Sub Domains | Standard Tasks | Virtual Exercises |
---|---|---|---|
Orientation | Personal Orientation | To see and choose the standard stimuli administered, including
| To see and choose the emotional virtual pictures—personal setting—biographic virtual photo (about home, wife, mother…). Using VRRS, integrated to the virtual system, listening to affective audio-video materials such as voice recordings of family…; music tracks—emotionally meaningful songs; main list of favorite movie scenes; videos of personal life scenes (birth of children, significant personal event of life…) |
Topographical Orientation | To promote spatial orientation through memories and recalling of places, cities or streets, using ad hoc paper and pencil material. Administration of visuo-spatial tasks, spatial awareness exercises; realizing some traditional puzzles, 2D element’s position (center, right—left); drawing activity; and recognizing shapes and spatial relations. | To promote spatial orientation in a virtual space, to stimulate topographical sense and perception, using reasoning activities through the recognition of places, cities and different locations. Administration of virtual orientation tasks, spatial awareness activities with the execution of virtual Puzzles or virtual element’s position (center, right—left), virtual drawing activity or paint to explore interactive maps and shapes. | |
Temporal Orientation | To increase temporal orientation ability through the repetition and recalling of specific information, such as personal data, personal events, with face-to-face activities to manage information relating to days, time, month. In this activity, the TBI patient must tell the time, day, month, year and current season, selecting which month they’re currently in at the time of doing the exercise. | To increase temporal orientation ability through the repetition and recalling of specific information, such as personal data, personal events, managing information related to days, time, month, using VVRS and virtual environment. The information is repeatedly transmitted through VR visuo-verbal, written or auditory modality. | |
Attention Processes | Selective Attention | The therapist administered some selective and double tasks such as selecting/associating the color to the dimension, or specific shape and simultaneously with the elimination of the different standard stimuli-target for an increasing time of execution | The therapist administered some selective and double tasks such as selecting/associating the color to the dimension or specific shape and simultaneously with the elimination of the different virtual stimuli-target for an increasing time of execution. |
Sustained attention | |||
Split Attention | |||
Memory Abilities | Verbal | To stimulate verbal memory using mnemonic techniques and strategic skills through paper and pencil materials and a series of traditional tasks such as trying to recall the words of a song or a written text, poetry after reading, or songs and books, according to a classic approach. | To stimulate verbal memory using mnemonic techniques and strategic skills through a pc—based task and virtual exercises such as trying to recall the words of a song or a written text, poetry after reading, using VRRS system and pc-verbal based auditory tasks. |
Non-Verbal/Visuo-spatial | To stimulate visual memory skills, TBI patients must tap on the traditional cards, matching pairs of pictured objects or peoples’ photographs. To support non-verbal auditory memory skills, patients tap on the cards matching commonly heard sounds. | To stimulate visual memory skills, TBI patients must tap on virtual cards, matching pairs of pictured objects or virtual photographs of people. To support non-verbal auditory memory skills, patients tap on virtual cards, matching pairs of common sounds heard in a virtual environment using VRRS system. | |
Executive Functions | Verbal Fluency | To promote the recovery of executive functioning, the psychiatric therapist asks to the TBI patient to realize specific activities to stimulate categorization skills, semantic and phonemic categorization; activities planning and logical association; tasks of analogical reasoning, using paper and pencil tools. | To promote the recovery of executive functioning, the psychiatric therapist asks to the TBI patient to realize specific activities to stimulate categorization skills, semantic and phonemic categorization; activities planning and logical association; tasks of analogical reasoning using a pc-based approach and virtual 2D and 3D activities. |
Reasoning | |||
Categorization | |||
Coping Strategies | The therapist invites the patient to build sequential logical sequences using standard cards with colorful images representing animals, money, and objects. Then the patient has to order them according to variable criteria. The therapist asks the patient to find a solution to a problem of daily life through a conventional methods. | The therapist invites the patient to build sequential logical sequences using virtual game cards with colorful images representing animals, money and objects and to order them according to variable criteria. The therapist asks the patient to find a solution to a problem of daily life using a virtual tool. | |
Problem Solving |
Outcome Measure | Intra-Group Analysis | Between Group Analysis (Post-Treatment Comparison) | Effect Size (ES) (Glass Delta) | |
---|---|---|---|---|
VR-CT | C-CT | |||
MoCA | 0.005 | 0.03 | 0.25 | 0.57 |
FAB | 0.005 | 0.02 | 0.24 | 0.84 |
HRS-D | 0.008 | 0.02 | 0.47 | 0.31 |
TMT-A | 0.005 | 0.16 | 0.09 | 0.73 |
TMT-B | 0.005 | 0.9 | 0.30 | 0.55 |
TMT-BA | 0.001 | 0.01 | 0.02 | 1.55 |
PGWBI | ||||
Anxiety | 0.008 | 0.28 | 0.30 | 0.38 |
Depressed mood | 0.07 | 0.57 | 0.32 | 0.41 |
General Health | 0.02 | 0.03 | 0.54 | 0.18 |
Vitality | 0.008 | 0.20 | 0.07 | 0.77 |
Positive well-being | 0.005 | 0.28 | 0.05 | 1.79 |
Self-control | 0.008 | 0.15 | 0.42 | 0.37 |
COPE | ||||
Social support | 0.01 | 0.06 | 0.70 | 0.84 |
Avoidance strategies | 0.005 | 0.01 | 0.05 | 1.14 |
Positive attitude | 0.007 | 0.02 | 0.02 | 1.13 |
Problem solving | 0.01 | 0.008 | 0.001 | 2.09 |
Turning to religion | 1 | 0.88 | 0.67 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, R.; Bonanno, M.; Marra, A.; Rifici, C.; Pollicino, P.; Caminiti, A.; Castorina, M.V.; Santamato, A.; Quartarone, A.; Calabrò, R.S. Can Virtual Reality Cognitive Rehabilitation Improve Executive Functioning and Coping Strategies in Traumatic Brain Injury? A Pilot Study. Brain Sci. 2023, 13, 578. https://doi.org/10.3390/brainsci13040578
De Luca R, Bonanno M, Marra A, Rifici C, Pollicino P, Caminiti A, Castorina MV, Santamato A, Quartarone A, Calabrò RS. Can Virtual Reality Cognitive Rehabilitation Improve Executive Functioning and Coping Strategies in Traumatic Brain Injury? A Pilot Study. Brain Sciences. 2023; 13(4):578. https://doi.org/10.3390/brainsci13040578
Chicago/Turabian StyleDe Luca, Rosaria, Mirjam Bonanno, Angela Marra, Carmela Rifici, Patrizia Pollicino, Angelo Caminiti, Milva Veronica Castorina, Andrea Santamato, Angelo Quartarone, and Rocco Salvatore Calabrò. 2023. "Can Virtual Reality Cognitive Rehabilitation Improve Executive Functioning and Coping Strategies in Traumatic Brain Injury? A Pilot Study" Brain Sciences 13, no. 4: 578. https://doi.org/10.3390/brainsci13040578