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Abstract: The understanding of tinnitus has always been elusive and is largely prevented by its
intrinsic heterogeneity. To address this issue, scientific research has aimed at defining stable and easily
identifiable subphenotypes of tinnitus. This would allow better disentangling the multiple underlying
pathophysiological mechanisms of tinnitus. In this study, three-dimensionality reduction techniques
and two clustering methods were benchmarked on a database of 2772 tinnitus patients in order
to obtain a reliable segmentation of subphenotypes. In this database, tinnitus patients’ endotypes
(i.e., parts of a population with a condition with distinct underlying mechanisms) are reported when
diagnosed by an ENT expert in tinnitus management. This partial labeling of the dataset enabled
the design of an original semi-supervised framework. The objective was to perform a benchmark
of different clustering methods to get as close as possible to the initial ENT expert endotypes. To
do so, two metrics were used: a primary one, the quality of the separation of the endotypes already
identified in the database, as well as a secondary one, the stability of the obtained clusterings.
The relevance of the results was finally reviewed by two ENT experts in tinnitus management. A
20-cluster clustering was selected as the best-performing, the most-clinically relevant, and the most-
stable through bootstrapping. This clustering used a T-SNE method as the dimensionality reduction
technique and a k-means algorithm as the clustering method. The characteristics of this clustering
are presented in this article.

Keywords: tinnitus; semi-supervised clustering; subphenotype; bootstrap; benchmark; expert validation

1. Introduction

Tinnitus can be defined as “the conscious awareness of a tonal or composite noise for
which there is no identifiable corresponding external acoustic source” [1]. It is a debilitating
symptom that affects 14% of the adult population, 2% experiencing a severe form of it [2].
Tinnitus can have disastrous effects on the quality of life of people suffering from it [3]. One
of the main characteristics of this symptom is its intrinsic heterogeneity [4], a challenge
that is currently being tackled by multiple coordinated efforts especially in the European
research community, through the Tinnitus Database initiative [5], the European School on
Interdisciplinary Tinnitus Research (ESIT) [6], and recently, the Unification of Treatments
and Interventions for Tinnitus Patients (UNITI) project [7].

It has been suggested that tinnitus heterogeneity is partially responsible for the lack of
significant treatment outcomes in various clinical trials for tinnitus [5,8–10]. Furthermore,
several sources advocate for stopping seeing tinnitus as a symptom that would admit a
one-size-fits-all solution [11–13]. Moreover, it has been suggested that tinnitus interventions
might prove to be more specifically effective for particular subtypes of tinnitus [14]. A

Brain Sci. 2023, 13, 572. https://doi.org/10.3390/brainsci13040572 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13040572
https://doi.org/10.3390/brainsci13040572
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-7557-5066
https://doi.org/10.3390/brainsci13040572
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13040572?type=check_update&version=2


Brain Sci. 2023, 13, 572 2 of 32

tinnitus subtype refers here to a part of the tinnitus population with a condition that can be
used to guide treatment decisions [15,16].

Likewise, there are convergent opinions on the fact that the observed tinnitus hetero-
geneity derives from the heterogeneity of underlying mechanisms, potentially
cumulative [17–19]. In fact, research to identify the underlying pathophysiological mecha-
nisms has led to the identification of several distinct etiologies accounting only for a part
of the tinnitus population [20]. Such endotypes (parts of a population with a condition
with distinct underlying mechanisms [15,21,22]) are close to having reached consensus.
Those endotypes can be diagnosed through specific medical examinations: otosclerosis [23],
vestibular schwannoma [24], pulsatile tinnitus [25]. As a consequence, the quest to obtain a
tinnitus endotype segmentation appears as a partially solved puzzle [20]. It is interesting to
note that, for some cases, the link between phenotypes and the potential associated patho-
physiological mechanism is a matter of intense debate. For example, although it seems that
Menière’s disease and hydrops (which can now be objectively diagnosed [26]) are linked,
the relation between the two entities is not totally bijective and is still being discussed [27].

Various methods have been attempted to identify a global tinnitus segmentation:
defining tinnitus subgroups on the response to a tinnitus treatment [28,29], exploring in a
data-driven approach the potential inherent structure of tinnitus symptom profiles (i.e., sub-
phenotypes) [30–32], highlighting the existence of a particular subtype in a hypothesis-
driven fashion [33]. Such attempts often use algorithmic methods designated as clustering
to try to infer such segmentations [15,34]. Tinnitus clustering was performed either on
the basis of questionnaire information [30,34], medical imaging [35,36], or audiological
explorations [31,37], and more rarely, tinnitus clustering has been performed on the basis of
free text contents on social networks through a natural language processing method [38,39].

An important methodological limitation to such studies is the limited supervision or
the absence of supervision used by those clustering methods to compare their outputs to
one another. This makes it difficult to concretely define what makes a clustering closer to
an ideal segmentation. At best, some studies have used clusters’ silhouette as the clustering
quality criteria [30,40]. In addition, few of those studies have large sample sizes, this being
another limitation [41,42].

More fundamentally, this raises the question of the definition of the ideal segmen-
tation. Such clusterings create subphenotype segmentations that would convey limited
practical clinical value in and of themselves unless they aimed to obtain as similar as
possible either the optimal subtype segmentation or the optimal endotype segmentation.
Here, subphenotype refers to a segmentation based on the distinction between sets of
observable characteristics [15,22]. In fact, Genitsaridi legitimately presented in her thesis
that nothing proves that the three conceptual segmentations (in subphenotypes, subtypes,
and endotypes) are identifiable to one another. To illustrate that, it can be plausible that one
treatment can work for two different endotypes or that two different endotypes express the
same phenotypes or even that, according to individuals, a unique endotype presents itself
with varying phenotypes (as for example the subphenotype of tinnitus with otosclerosis is
probably not the same before and after surgical intervention).

Table 1, quoted as an excerpt of [43], enables anchoring this important
semantic distinction.

In this study, the main objective was to establish a tinnitus subphenotype clustering
that would get as close as possible to the ideal tinnitus endotypes’ segmentation. To achieve
this goal, the fact that the tinnitus endotype segmentation is already a partially resolved
problem, as some etiologies are already known (Menière disease, otosclerosis, etc.), was
exploited. This was performed within an original semi-supervised framework to drive
the evaluation of clusterings’ quality. Thus, setting the resolution of this problem within
this partially labeled framework enabled a quantitative comparison and, thus, a proper
benchmark of different algorithmic methods.
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Table 1. Subgrouping rules’ semantic distinctions; approved excerpt from Genitsaridi, 2021.

Term Definition

Subgroup A part of a population (generic term)

Subphenotype A part of a population with a distinct set of observable characteristics (based on
Lötvall et al., 2011)

Subtype A part of a population with a condition that can be used to guide treatment
decisions (based on Saria and Goldenberg, 2015)

Endotype A part of a population with a condition with distinct underlying mechanisms
(based on Anderson, 2008; Lötvall et al., 2011)

2. Materials and Methods
2.1. Population and Data Acquisition

The investigated database initially comprised 3703 entries of a case history question-
naire recorded by tinnitus patients over the last 20 years of practice by V.L., ENT specialist
at the Lille University Hospital, France. Entries were paper-filled then computer-recorded
and carefully anonymized before being compiled for analysis in a comma separated value
(csv) format file. Patients gave their informed consent that their collective entries could be
aggregated, anonymized, and then, used for clinical research purposes.

Features of the database included demographic variables (age, sex, etc.), characteristics
of the tinnitus (side, frequency, loudness, etc.), subjective visual analog scales measuring the
impact of tinnitus on patients’ quality of life (on anxiety, sleep disturbance, etc.), information
on patients’ lifestyle (sleep duration, practice of sports, etc.), as well as, whenever possible,
the diagnosis of V.L. Tables 2 and 3 summarize the main features characteristics over the
preprocessed database.

Table 2. Sample characteristics’: quantitative features of the preprocessed database.

Sample Characteristics for Quantitative Features (N = 2772)

Mean Std Min Max Missing values (%)

Age (in years) 51.3 14.74 18 95 1.41

Tinnitus Handicap Inventory (THI) 50.98 23.83 0 100 4.4

Tinnitus duration (in months) 67.79 93.12 0 852 9.92

What percentage of time is tinnitus present (in %)? 66.34 28.19 0 100 16.31

VAS scale Tinnitus annoyance (0 to 10) 6.89 2.17 0 10 4.98

VAS scale Anxiety (0 to 10) 4.89 3.25 0 10 5.81

VAS scale Sleep quality (0 to 10) 5.25 3.35 0 10 6.28

VAS scale Hyperacusis (0 to 10) 5.05 3.41 0 10 5.77

VAS scale Vertigo (0 to 10) 2.36 2.94 0 10 5.77

VAS scale Headache (0 to 10) 2.16 3.23 0 10 0,29

VAS scale Jaw pain (0 to 10) 1.9 2.79 0 10 6.78

VAS scale Cervical pain (0 to 10) 2.63 3.39 0 10 0.4

Khalfa questionnaire score (hyperacusis) 19.72 9.73 0 42 11

HAD questionnaire on anxiety 9.18 4.24 0 21 12.59

HAD questionnaire on depression 6.47 4.6 0 21 12.73

Insomnia Sleep Index (ISI) score 12.39 6.62 0 28 8.44

Epworth scale score 7.62 4.7 0 24 7.65

Sleep onset latency (in min) 35.72 27.23 0 121 11.62

Abbreviations : HAD : Hospital Anxiety and Depression scale, VAS : Visual Analog Scale
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Table 3. Sample characteristics: categorical features of the preprocessed database.

Sample Characteristics for Categorical Features (N =2772)

Occurrences count Yes / Choice 1 Sometimes /
Choice 2 No / Choice 3 Missing values

(%)

Gender (Choice 1 : Female ; Choice 2 : Male ) 1491 1226 1.95

Tinnitus apparition ( Choice 1 : brutal, Choice 2 : progressive) 1665 1099 0.3

Tinnitus side (Choice 1 : left, Choice 2 : bilateral, Choice 3 : right) 1015 910 760 3.14

Tinnitus lateralisation (1 : bilateral, 2 : partially lateral, 3 : lateral) 910 743 1032 3.14

Tinnitus intensity (1 : Low, 2 : Medium; 3 : Elevated) 1282 990 500 0.3

Was tinnitus caused by an acoustic trauma ? (Yes, No) 460 2304 0.3

Is the tinnitus pulsatile ? (Yes, No) 231 2533 0.3

Is the tinnitus a narrow band noise ? (Yes, No) 283 2481 0.3

Do you have somato-sensory modulations ? (Yes, No) 446 2318 0.3

Do you have jaw somato-sensory modulations ? (Yes, No) 317 2447 0.3

Do you have neck somato-sensory modulations ? (Yes, No) 256 2508 0.3

Do you have often headaches (Yes, No) 826 1938 0.3

Do you have often cervical pain/rigidity? (Yes, No) 1198 1566 0.3

Do you have trouble falling asleep ? (Yes, Sometimes, No) 972 505 1134 5.81

Do you have nocturnal awakenings ? (Yes, Sometimes, No) 425 530 1644 6.24

Are you feeling tired when awake ? (Yes, Sometimes, No) 653 574 1360 6.67

Do you often snore ? (Yes, No) 1152 1438 6.57

Do you have sleep apnea syndrome ? (Yes, Probably, No) 217 238 2102 7.76

Normal hearing ? (Yes, No) 337 2427 0.3

Sensorineural hearing loss (Yes, No) 1563 656 19.95

Transmissionnal hearing loss (Yes, No) 197 2022 19.95

Notch Hearing Loss (Yes, No) 251 1968 19.95

High Frequencies hearing loss (Yes, No) 146 2073 19.95

Cophosis (Yes, No) 38 2181 19.95

This database offers the advantage of gathering a variety of tinnitus-related descrip-
tors, as well as, when possible, the medical diagnosis given by an expert medical doctor.
The latter offers the opportunity to test diagnostic-driven semi-supervised approaches
of clustering.

Only a minority subset of the dataset was labeled with a diagnosis by the expert doctor.
Some endotypes were less represented than others, reflecting their unequal prevalence in
clinical practice. The different endotypes considered in this study and their prevalence in
the dataset are presented in Table 4.

Table 4. Endotypes’ prevalence in the database.

Endotypes Prevalence in the Dataset (N=2772)

Endotype Occurrences Percentage of the sample

Pulsatile tinnitus 231 8.33%

Otosclerosis 38 1.37%

Menière’s disease 35 1.26%

Neurinoma 24 0.87%

Petrous bone fracture 14 0.51%

Eustachian tube dysfunction 7 0.25%

Total 349 12.59%
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2.2. Preprocessing

Several preprocessing steps were needed to make the raw data exploitable. Such steps
are described hereafter. Pre-processing steps were conducted with the objective to limit the
introduction of additional bias in the dataset.

2.2.1. Missing Value Imputation

Case history questionnaire collection was paper-based before being computer-recorded.
Such a procedure induced, at both steps, missing values in the raw dataset. Missing values’
imputation is a classic problem in data analysis and machine learning [44,45]. Mainly, two
methods have been proposed to remediate this issue: removing or replacing the missing
values. The main objective of missing value management is to limit as much as possible the
introduction of additional bias in the dataset while keeping a maximum of patients and
features available for analysis. To meet these two objectives, the following method was
implemented:

- First, each patient that had more than 40 percent of missing values in the initial 107
features was deleted to ensure overall data consistency. Through this procedure, out of
the 3703 initial patients, 2772 were retained (74.9% of the initial 3703 patients sample).

- Then, for each feature, if the number of patients for which the feature was missing
was higher than 25 percent, the feature was excluded from the analysis. Through this
procedure, out of the 107 features considered, 44 were retained (41% features retained).

- Filling the remaining missing values using the MissForest algorithm, specially de-
signed to fill missing values with an iterative imputation method based on a ran-
dom forest [46].

At the end of this process, the final dataset no longer contained any missing values
and consisted of 2772 patients and 44 features.

2.2.2. Bootstrap Procedure

With the aim to perform an objective comparison of performances between combina-
tions of dimensionality reduction methods and clustering algorithms, stability assessment
of the clusterings was performed. This stability assessment was realized through a boot-
strap procedure. The dataset was split into a training set and a test set three times, with a
resampling with replacement procedure. Such partitionings all contain the entirety of the
dataset, split randomly in different ways according the procedure described hereafter.

In classical cross-validation practice, the design of such partitionings results in a higher
percentage of data attributed to the training set and a lower proportion to the test set. In
the case of the present study, the t-distributed stochastic neighbor embedding (t-SNE)
method was included in the benchmark. This method relies on the high-dimensional
topological structure and local density of the data. Due to this fact, having significantly
different numbers of samples in the training sets and test sets would result in an increased
probability of divergence in the high-dimensional spatial distribution of samples and, as
a consequence, an increased divergence in the projection spaces. It was, hence, necessary
for this method to have a 50-50 split of the dataset. Hence, we could not perform a classic
cross-validation procedure to be able to compare all combinations of methods tested in the
benchmark in the same conditions. This is why it was decided instead to bootstrap three
50-50 partitionings between the training and test sets for all combinations of methods.

As the evaluation of clustering performances is based on the diagnoses of an ENT
tinnitus expert, it was important that each endotype was equally represented in each
partitioning of the data between the training and test subdatasets. Hence, a random assign-
ment procedure was applied to each endotype and the unlabeled data group to equally
divide them between the three bootstrapped training and test subdatasets. Following the
presented results are the average of the performances between the three partitionings of
the dataset.
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2.3. Dimensionality Reduction Methods

Even after excluding features with missing values, the remaining number of variables
is important and justifies the use of dimensionality reduction methods to achieve the best
performances of the clustering algorithms.

There are methods that try to reduce the number of features ahead of the clustering
method while trying to preserve as much information as possible from the initial dataset.
In this study, three different dimensionality reduction methods were used and compared:
PCA [47], factor analysis of mixed data (FAMD) [48], and finally, t-distributed stochastic
neighbor embedding (t-SNE) [49].

The number of dimensions was tested repeatedly for a defined range of values and
treated as a hyperparameter, thus validating a posteriori the quality of the dimensionality
reduction method.

Each of the three methods is hereafter described in further detail.

2.3.1. Principal Components Analysis

PCA is a classical dimensionality reduction technique that is typically used to summa-
rize large datasets with a small number of descriptors while retaining the maximum amount
of information. PCA does not aim at selecting the best characteristics while dropping others;
instead, it constructs some new characteristics named principal components, based on the
original features of the dataset. More formally, PCA is a linear dimensionality reduction
technique that creates a set of pairwise orthogonal axes that maximize the variance in the
data. Thus, this method helps remove redundancy in the new reduced feature space.

2.3.2. Factor Analysis of Mixed Data

PCA was designed for quantitative and non-categorical data analysis. However,
our dataset is composed of a mix of categorical and non-categorical variables. FAMD
was chosen for our benchmark of dimensionality techniques as it is similar to PCA, but
takes into account the mixed aspect of the data. The implementation used is reachable
in the Python library Prince (https://github.com/MaxHalford/prince, accessed on 23
November 2022).

2.3.3. t-Distributed Stochastic Neighbor Embedding

The last two methods allow an analysis of the global structure of the data, but do
not provide an insight into the local topological structure of the data points. Given the
objective to create an accurate clustering of endotypes for tinnitus, the local grouping
of data points may be of particular importance. Thus, a third dimensionality reduction
technique was considered.

The dimensionality reduction algorithm called t-distributed stochastic neighbor em-
bedding (t-SNE) is an unsupervised learning algorithm. Developed by Laurens van
der Maaten and Geoffrey Hinton [50], it enables the analysis of data described in high-
dimensional spaces (via a large number of descriptors) to be mapped into a reduced
dimensional space. This algorithm is widely used because it facilitates the visualization
of data with many descriptors. Through this method, data points that are close in the
original high-dimensional space have a higher probability of remaining close to one an-
other in the two- or three-dimensional space of projection. Conversely, data points that are
distant in the original space have a low probability of having close representations in the
space of projection.

There is a hyperparameter that has a strong impact on the output of the t-SNE al-
gorithm: the perplexity. It characterizes the balance of importance between the local
neighborhood structure versus the global neighborhood structure of the data. A large
perplexity will lead the algorithm to put the emphasis on the global neighborhood structure
of the data. Oppositely, a small perplexity will bring out the local structures of the original
data. In this study, the t-SNE method was tested for a wide range of perplexity values
(from 5 to 200).

https://github.com/MaxHalford/prince
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2.4. Clustering the Dataset

In this study, a clustering step was applied after the dimensionality reduction. Thus,
the best clustering will be selected, and the adequate parameters to reduce the dimension-
ality will be inferred from it.

Two different clustering algorithms were compared: the k-means clustering algorithm and
density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm [51].

2.4.1. k-Means Clustering

k-means is a clustering algorithm that aims at partitioning a dataset of observations
into k clusters: each data point is attributed to the cluster with the nearest mean. It is
a classic method of clustering that has already been tried in several former studies for
tinnitus subphenotyping [34,52]. The three main assets of this method are its easiness of
interpretation, simplicity of implementation, and speed of convergence. Due to the nature
of this study, the number of clusters was not predefined. Yet, it is necessary to specify to
the algorithm the number k of clusters to find for it to be able to run; a range from 2 to 20
was hence implemented for the grid search (as shown in Table 5). The distance measure on
numeric attributes was the square Euclidean distance.

Table 5. Range of hyperparameters.

Hyperparameters and Associated Grid Search Ranges

Hyperparameter Associated algorithm (s) Range of exploration Steps of exploration

Number of components PCA, FAMD [ 2, 20 ] 1

Number of components t-SNE [2, 6] 1

Perplexity t-SNE [5, 200] 5 by 5 to 40 then to 25 by 25
from 50 to 200

Number of clusters K-means, DBSCAN * [ 2, 20 ] 1

Epsilon DBSCAN [ 0 , 10 ] 0,1

Minsample DBSCAN [ 2, 15 ] 1

* For DBSCAN, the number of cluster cannot be directly assigned, hence only the solutions in the range from 2 to
20 clusters were selected.

2.4.2. Density-Based Spatial Clustering of Applications with Noise

DBSCAN is a non-parametric clustering algorithm that takes a given set of points
in an initial space, then groups together points that are densely packed together (points
with many nearby neighbors), and marks as outliers points that are isolated in low-density
regions (whose nearest neighbors are too far away).

It was selected for its different characteristics from k-means: it is a density method
and is able to find arbitrarily shaped clusters, while k-means produces Voronoi-cell-shaped
clusters. DBSCAN has been used once to try to perform tinnitus subphenotyping [53].

DBSCAN exploration is driven by two hyperparameters: The first is minsamples,
the minimal number of samples (or total weight) in a neighborhood for a point to be
considered as a core point. This includes the point itself. Second is eps (standing for
epsilon): the maximum distance between two samples for one to be considered as being in
the neighborhood of the other. The ranges of exploration of these hyperparameters for the
grid search are shown in Table 5.

2.5. Quantified Evaluation of the Quality of the Clusterings

The following procedure was applied for the benchmark. For each type of clustering
and dimensionality reduction technique tested, the best hyperparameters for clustering
were identified through grid search exploration, presented in Table 5. Six combinations
of dimensionality reduction techniques and clustering methods were, hence, tested and
compared according to the different mathematical methods presented hereafter.
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Then, a shortlist of the best clusterings was obtained according to these mathemat-
ical criteria and was then presented and analyzed by two tinnitus ENT experts to check
their clinical relevance. Out of this comparison, a single clustering was selected and is
presented hereafter.

To check the quality of the clusterings, three separate quantified evaluation criteria
were used.

2.5.1. Silhouette Score

The “silhouette measure of cohesion and separation” is a measure for the overall
goodness-of-fit of the cluster structure, which is described in [54,55]. More precisely, the
silhouette value is a measure of how similar an object is to its own cluster (cohesion)
compared to other clusters (separation). The silhouette ranges from −1 to +1, with a high
value indicating that the object is well matched to its own cluster and poorly matched to
neighboring clusters. If most objects have a high value, then the clustering configuration is
considered appropriate. If many points have a low or negative value, then the clustering
configuration may have too many or too few clusters. Due to its construction, this score
will advantage the clustering algorithm that will tend to form spherical-like clusters, such
as k-means, over less regularly shaped clustering methods, such as DBSCAN. Moreover,
its interpretation is less obvious in the framework of the dimensionality reduction t-SNE
algorithm used in this study. Hence, this score will only be shown because it is a classical
way to evaluate clustering and was used in a former study on tinnitus clustering [30], but
will not be eventually determinant for the choice of the final clustering.

2.5.2. Stability Assessment

For each combination of the dimensionality reduction techniques and clustering
algorithms, it is necessary to ensure the stability of the clusterings obtained. To achieve
that, a bootstrap procedure was designed.

It is common for artificial structures to emerge that do not correspond to the real
separation of the data. In the case of the present study, an output would be deemed stable
through bootstrapping if the structure of the clusterings obtained through the application
of the same method with the same parameters on the training and test sets of the data
are similar. The similarity between two clusterings, which can be identified for two data
partitions, can be reliably measured by the adjusted mutual information (AMI) [56]. This
measure was, hence, selected for this study.

To measure the agreement of two data partitions (i.e., clusterings) U and V, the AMI
takes a value of 1 when the two partitions are identical and 0 when the AMI between two
partitions equals the value expected due to chance alone. Its calculation is implemented by
the following formula:

AMI(U, V) =
MI(U, V)− E{MI(U, V)}

max {H(U), H(V)} − E{MI(U, V)} (1)

The bootstrap procedure was the following: Given a partitioning i of the data (between
1 and 3), the clustering method is fit on the (already projected in reduced dimension)
training and the test sets. The prediction method of the two obtained models is then
applied to the training and the test set. The output of this procedure is four clusterings:
two clusterings on the training set (the one fit on the training set and the one fit on the test
set) and two clusterings on the test set (the one fit on the training set and the one fit on the
test set).

The AMI was applied between the two pairs of clusterings stemming from the same
data (i.e., respectively between the two clusterings of the training set and between the two
clusterings of the test set). The average of two scores’ AMI was then taken as the final score.

This method was applied for the k-means clustering, yet it was not possible to apply
it for the DBSCAN method, as it is a transductive method; hence, in this procedure,
the fitting method cannot be disentangled from the prediction method. In this case, a
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proxy of cross-validation was performed by calculating the difference of the number of
clusters between the training and test clusterings’ outputs of the DBSCAN applied with
the same hyperparameters.

Here, an eligibility threshold of at least 0.7 for the averaged AMI score and a difference
of 0 between the number of clusters emerging from the training and test sets were applied
to filter out the best solutions of the benchmark.

2.5.3. Clustering Similarity to the Endotype Labeling Clustering Enabled by the Partial
Medical Diagnosis of the Patients

As a key goal of this study was to take advantage of the fact that the endotype
segmentation is a partially resolved problem, the quality of the obtained clusterings was
evaluated through this partial knowledge. The dataset considered contains, whenever
possible, a diagnosis of the endotype of the patient provided by an ENT specialist (V.L.).

The optimal clustering of the whole dataset would be a clustering that would be at
least able to separate each of the known endotypes and assign it to a separate cluster. In
order to be able to quantify how close a clustering is to an optimal clustering of reference, a
metric is needed. Such an evaluation criterion is given by the V-measure, an entropy-based
cluster evaluation measure, presented by Rosenberg and Hirschberg [57].

The V-measure between a clustering considered as the reference and a clustering
obtained as the output of an experimental algorithmic procedure is defined as the weighted
harmonic mean of two other metrics called homogeneity (h) and completeness (c) and is
given by the following formula:

V −measure = (1 + β) ∗ h ∗ c
β ∗ h + c

(2)

where β is a hyperparameter ∈ [0, ∞], quantifying the relative importance of homogeneity
and completeness. The V-measure score is bounded between 0 and 1, where a score of
1 corresponds to a perfectly complete and homogeneous matching between clusterings.
If β ≤ 1, the emphasis is on homogeneity. Otherwise, completeness is highlighted. One
can note the analogy between this metric and the F-score used in classification and being
composed of the precision and recall. A clustering result is homogeneous when all of the
clusters it formed contain only data points that are members of a single class. A clustering
result satisfies completeness if all the data points that are members of a given class are
elements of the same cluster.

In this study, we wanted to isolate to the best of our ability the known endotype
clusters. After careful examination of the results produced by various β values, β = 0.1
was chosen as the better proxy.

The whole process is summarized in Figure 1. The range of exploration for hyperpa-
rameters used for the grid search is presented in Table 5.

Figure 1. Overview of the processing pipeline

2.6. Qualitative Evaluation of the Obtained Clusterings

The grid search exploration of all hyperparameters for all combinations of the method
of the benchmark and their ranking using the evaluation criteria led to a subset of best-
performing clusterings. To be able to present the overall best-achieved clustering obtained
by this study, a last step of qualitative evaluation was achieved by ENT tinnitus experts
A.L. and V.L.
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The subset of the three overall best-performing clusterings obtained at the end of
the quantitative evaluation procedure was selected and presented for the quantitative
evaluation of the appointed experts.

Each clustering was presented with the following information: the combination of
hyperparameters and methods leading to this clustering, an illustration of the clustering in
the reduced dimensionality projection of the dataset when possible (as in Figure 2 of the
article), a table presenting the specific characteristics of each clusters.

The procedure of the qualitative evaluation of the clusterings was performed by each
expert independently. The evaluation consisted of assigning a score between 0 and 5 for
each cluster of each clustering. A score of 0 means that the cluster appears incoherent and
does not relate to anything encountered in their clinical practice, and a of score 5 means that
the cluster fits perfectly a well-known and potentially documented specific subphenotype
of patients often encountered in clinical practice. Then, a general appreciation of each
clustering was freely given to each clustering.

Figure 2. Selected clustering representation of the two-dimensional t-SNE projection. The black
points represent each of the clusters’ centers (i.e., their centroids). The numbers are the labels of each
cluster. Table 6 refers to these cluster numbers to characterize each of the clusters.

The final score for each clustering was obtained by averaging the scores for all clusters
and for the two experts.

The final best clustering obtained by this procedure is presented in the Results Section,
by Figures 2 and 3 and Table 7.

Table 6. Performance benchmark.

Algorithms Best Performances Comparison

Dimensionality reduction method Clustering algorithm V-Measure (Beta = 0.1) Stability assessment
(AMI *) Silhouette score

Principal Component Analysis K-means 0.142 0.716 0.321

Principal Component Analysis DBSCAN 0.035 0 clusters difference −0.17

Factor Analysis of Mixed Data K-means 0.146 0.707 0.324

Factor Analysis of Mixed Data DBSCAN 0.049 0 clusters difference −0.15

t-distributed stochastic neighbor embedding K-means 0.381 0.728 0.351

t-distributed stochastic neighbor embedding DBSCAN 0.346 0 clusters difference 0.008

* AMI: adjusted mutual information, calculated between k-means clustering, not possible for DBSCAN cluster-
ings comparison.
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Figure 3. Endotypes’ repartition. The blue bars represent the number of samples of a specific
endotype present in the cluster of the number it faces. The green bars represent the number of
samples of the same specific endotype that this cluster would contain if the patients of this endotype
were randomly assigned to the clusters. For example, on the top left, Cluster 9 contains 59 patients
presenting a pulsatile tinnitus, although if the assignment of pulsatile tinnitus patients per cluster
was random, we should have expected to have between five and six pulsatile patients in this cluster.
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Table 7. Characteristics of the clusters of the selected clustering. The pooled Cohen’s D was used as the effect size measurement. If a feature is present in the positive
differentiation column, it means that the mean score of this feature for the patients in this cluster is more elevated than the mean of this feature for the rest of the
patients, with the Cohen’s D effect size given in the associated effect size column. Conversely, if a feature is present in the negative differentiation column, it means
that the mean score of this feature for the patients in this cluster is less elevated than the mean of this feature for the rest of the patients. As an illustration, in
Cluster 2, THI is present in the positive differentiation feature. This means that the patients in Cluster 2 have a more elevated THI score than average, whereas if the
feature age is present in the negative differentiation column, it means that the patients of Cluster 2 are younger than the rest of the tinnitus patients’ sample.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

1 Acoustic trauma without annoyance 83

Initial acoustic trauma 0.96 ISI −1.3

Progressive apparition 0.8 VAS Sleep quality −1.2

Tinnitus duration (in months) 0.71 Trouble falling asleep −1.1

Men 0.69 THI −1.1

Tired when awake −1.0

HAD anxiety −0.98

VAS Anxiety −0.96

Nocturnal awakenings −0.86

HAD depression −0.84

Brutal onset −0.71

VAS Tinnitus annoyance −0.7

2 Notch hearing losses 91

Notch Hearing Loss 4.6 Sensorineural hearing loss −1.5

VAS Anxiety 0.56 Age (in years) −0.73

Trouble falling asleep 0.53 Tinnitus pulsatile −0.32

THI 0.49 Neck somato-sensory modulations −0.31

Tired when awake 0.43

HAD anxiety 0.41

ISI 0.35

VAS Sleep quality 0.33

Sleep onset latency 0.33
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Table 7. Cont.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

3 Cophosis group 18

Cophosis >10 Sensorineural hearing loss −1.6

Hyperacusis Khalfa 0.65 Initial acoustic trauma −0.45

VAS Tinnitus annoyance 0.64 Normal hearing −0.38

VAS Vertigo 0.63 Jaw somato-sensory modulations −0.36

Tinnitus lateralised 0.62 VAS Headache −0.33

THI 0.58 Notch Hearing Loss −0.32

Age (in years) 0.39 Tinnitus pulsatile −0.31

VAS Hyperacusis 0.39

Tinnitus duration (in months) 0.34

Nocturnal awakenings 0.33

% time tinnitus present 0.32

4
Loud narrow band tinnitus

in OSA elderly 57

Narrow band noise 2.7 Headaches −0.34

OSA 0.62 Notch Hearing Loss −0.33

High tinnitus intensity 0.54 VAS Headache −0.32

Age (in years) 0.52

VAS Tinnitus annoyance 0.47

Sensorineural hearing loss 0.45

Snoring 0.44

VAS Cervical pain 0.42

Cervical pain/rigidity 0.36

% time tinnitus present 0.33
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Table 7. Cont.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

5 Right pulsatile tinnitus 28

Tinnitus pulsatile 3.8 Sensorineural hearing loss −1.2

Normal hearing 1.4 Snoring −0.62

Tinnitus side right 0.8 Age (in years) −0.62

Tinnitus lateralised 0.56 VAS Cervical pain −0.62

Notch Hearing Loss 0.31 Men −0.54

Cervical pain/rigidity −0.53

HAD depression −0.49

Initial acoustic trauma −0.46

Tinnitus duration (in months) −0.39

VAS Anxiety −0.37

THI −0.34

VAS Tinnitus annoyance −0.33

6 Acoustic trauma with hearing loss 81

Initial acoustic trauma 1.4 Brutal onset −0.59

Sensorineural hearing loss 0.65 VAS Headache −0.58

Men 0.49 VAS Anxiety −0.55

Age (in years) 0.43 Headaches −0.52

Tinnitus duration (in months) 0.41 HAD anxiety −0.5

Progressive apparition 0.35 Tinnitus lateralised −0.42

VAS Sleep quality −0.42

Sleep onset latency −0.42

Somato-sensory modulations −0.42

Normal hearing −0.4

VAS Jaw pain −0.4
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Table 7. Cont.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

7 Tinnitus and insomnia 90

Sensorineural hearing loss 0.63 VAS Headache −0.58

ISI 0.51 Headaches −0.54

VAS Sleep quality 0.51 Somato-sensory modulations −0.46

Tired when awake 0.42 Normal hearing −0.4

Nocturnal awakenings 0.38 Jaw somato-sensory modulations −0.38

Trouble falling asleep 0.37 Snoring −0.38

Neck somato-sensory modulations −0.35

Notch Hearing Loss −0.34

Narrow band noise −0.32

Tinnitus pulsatile −0.32

High Frequencies hearing loss −0.31

8 Neck Somatosensory tinnitus 95

Neck somato-sensory modulations 5.3

Somato-sensory modulations 3.2

Jaw somato-sensory modulations 1.8

VAS Cervical pain 0.93

Cervical pain/rigidity 0.74

HAD anxiety 0.7

VAS Jaw pain 0.64

THI 0.6

VAS Vertigo 0.57

ISI 0.56

VAS Anxiety 0.55
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Table 7. Cont.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

9 Pulsatile tinnitus 59

Tinnitus pulsatile 4.8 High tinnitus intensity −0.53

Trouble falling asleep 0.68 Men −0.52

Tinnitus lateralised 0.6 Initial acoustic trauma −0.47

Sensorineural hearing loss 0.54 Somato-sensory modulations −0.35

Sleep onset latency 0.39 Cervical pain/rigidity −0.34

Age (in years) 0.31 Normal hearing −0.34

Tinnitus duration (in months) −0.32

Jaw somato-sensory modulations −0.31

10 High frequency hearing
loss with tinnitus

85

High Frequencies hearing loss 8.5 Sensorineural hearing loss −1.8

Normal hearing 2.3 % time tinnitus present −0.43

Tired when awake 0.33 Age (in years) −0.39

Snoring −0.32

OSA −0.31

11 Sudden hearing loss 82

Brutal onset 0.94 Progressive apparition −0.8

Sensorineural hearing loss 0.68 ISI −0.53

Tinnitus lateralised 0.55 Somato-sensory modulations −0.46

Headaches 0.39 VAS Jaw pain −0.45

Normal hearing −0.4

Sleep onset latency −0.37

Jaw somato-sensory modulations −0.37

HAD anxiety −0.36

Tired when awake −0.36

Neck somato-sensory modulations −0.35

Notch Hearing Loss −0.34
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Table 7. Cont.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

12 Elderly people with bothersome
tinnitus and OSA

61

OSA 1.8 Somato-sensory modulations −0.41

HAD depression 0.73 Normal hearing −0.39

Snoring 0.73 Jaw somato-sensory modulations −0.37

THI 0.73 Brutal onset −0.34

% time tinnitus present 0.69 Notch Hearing Loss −0.33

Hyperacusis Khalfa 0.63 Tinnitus pulsatile −0.32

VAS Tinnitus annoyance 0.62

Sensorineural hearing loss 0.62

Epworth 0.6

Age (in years) 0.59

VAS Anxiety 0.59

13 Otosclerosis oriented group 43

Transmissionnal hearing loss 4.7 OSA −0.43

Progressive apparition 0.59 Brutal onset −0.42

Tinnitus pulsatile 0.56 Initial acoustic trauma −0.4

Tinnitus side right 0.47 Somato-sensory modulations −0.38

Tired when awake 0.39 Jaw somato-sensory modulations −0.36

VAS Sleep quality 0.35 Notch Hearing Loss −0.33

ISI 0.34 Normal hearing −0.32

VAS Vertigo 0.32
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Table 7. Cont.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

14
Somatosensory tinnitus

without annoyance 73

Somato-sensory modulations 2.8 THI −0.79

Jaw somato-sensory modulations 2.7 ISI −0.75

Neck somato-sensory modulations 1.1 VAS Sleep quality −0.67

Men 0.58 VAS Anxiety −0.64

VAS Tinnitus annoyance −0.62

HAD anxiety −0.61

Trouble falling asleep −0.6

Hyperacusis Khalfa −0.55

HAD depression −0.54

% time tinnitus present −0.51

VAS Hyperacusis −0.46

15 Tinnitus and headaches 70

Headaches 1.2 Cervical pain/rigidity −0.54

VAS Headache 0.9 VAS Cervical pain −0.53

ISI 0.63 Somato-sensory modulations −0.46

THI 0.62 Normal hearing −0.4

Sensorineural hearing loss 0.6 Jaw somato-sensory modulations −0.37

VAS Sleep quality 0.6 Neck somato-sensory modulations −0.35

VAS Tinnitus annoyance 0.55 Notch Hearing Loss −0.33

% time tinnitus present 0.54 Tinnitus pulsatile −0.32

VAS Hyperacusis 0.43 High Frequencies hearing loss −0.3

Trouble falling asleep 0.42

Hyperacusis Khalfa 0.42
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Table 7. Cont.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

16 Habituated patients 103

Sensorineural hearing loss 0.44 VAS Sleep quality −1.2

ISI −1.1

Tired when awake −1.0

THI −0.92

VAS Anxiety −0.88

Nocturnal awakenings −0.87

VAS Tinnitus annoyance −0.86

Hyperacusis Khalfa −0.83

HAD anxiety −0.78

Trouble falling asleep −0.74

VAS Hyperacusis −0.72

17
Young people with normal hearing

with bothersome tinnitus
and hyperacusis

60

Normal hearing 2.0 Age (in years) −1.3

VAS Headache 0.46 Sensorineural hearing loss −1.2

HAD anxiety 0.44 Snoring −0.48

THI 0.43 Tinnitus lateralised −0.42

VAS Jaw pain 0.42 Initial acoustic trauma −0.37

VAS Hyperacusis 0.36 Notch Hearing Loss −0.33

Hyperacusis Khalfa 0.33 Tinnitus pulsatile −0.32

VAS Anxiety 0.33
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Table 7. Cont.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

18 Tinnitus patients with depression 71

HAD depression 1.6 Somato-sensory modulations −0.46

THI 1.3 Normal hearing −0.4

Sleep onset latency 1.2 Jaw somato-sensory modulations −0.37

HAD anxiety 1.2 Neck somato-sensory modulations −0.35

VAS Anxiety 1.1 Epworth −0.33

ISI 1.1 Notch Hearing Loss −0.33

VAS Sleep quality 1.1 Tinnitus pulsatile −0.32

VAS Tinnitus annoyance 0.95 Narrow band noise −0.3

VAS Cervical pain 0.94 High Frequencies hearing loss −0.3

% time tinnitus present 0.83

Trouble falling asleep 0.81

19
Head trauma tinnitus
patients(Majority of

petrous bone fractures)
58

VAS Headache 2.0 Progressive apparition −0.52

VAS Jaw pain 1.4 Men −0.47

Headaches 1.3 Somato-sensory modulations −0.35

VAS Vertigo 1.1 OSA −0.34

HAD anxiety 1.1 Neck somato-sensory modulations −0.34

HAD depression 1.1

THI 1.0

ISI 1.0

VAS Sleep quality 0.98

VAS Anxiety 0.96

VAS Cervical pain 0.92
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Table 7. Cont.

Individual Clusters Characteristics of the Finally Selcted Clustering

Cluster Number Cluster General Description Number of Patients
Positive Differentiation Negative Differentiation

Feature Effect Size Feature Effect Size

20
Tinnitus with OSA seemingly

affecting middle ear conduction,
not bothersome

77

Transmissionnal hearing loss 1.0 THI −1.1

Narrow band noise 0.86 VAS Sleep quality −1.1

OSA 0.56 ISI −1.1

Snoring 0.39 VAS Anxiety −1.0

Hyperacusis Khalfa −1.0

Tired when awake −1.0

VAS Hyperacusis −0.99

VAS Tinnitus annoyance −0.84

Trouble falling asleep −0.81

HAD depression −0.76

HAD anxiety −0.71

THI : Tinnitus Handicap Inventory, ISI : Insomnia Severity Index, HAD : Hospital Anxiety and Depression scale score, OSA : Obstructive sleep apnea, VAS : Visual Analog Scale,
Hyperacusis Khalfa : Khalfa questionnaire score on hyperacusis.
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3. Results
Results Overview

Table 6 presents the results of the best-achieved performances for each combination of
methods of the benchmark explored in this study, for the evaluation metrics presented in
the methods.

The best performances on all three evaluation criteria were achieved simultaneously
by the combination of the t-SNE dimensionality reduction technique and the k-means clus-
tering algorithm. These performances were evaluated on the averaged performances on the
three partitionings of the dataset obtained by the stratified random subsampling procedure.
A set of three best-performing clusterings was constituted at the end of this procedure and
was then presented for the quantitative evaluation of the two ENT tinnitus experts.

The three best clusterings were obtained from the combination of the t-SNE dimension-
ality reduction technique and the k-means clustering algorithm. The sets of hyperparame-
ters of these three clusterings were: Clustering 1: perplexity = 40, number of components
for t-SNE: 2, number of clusters of the k-means: 20; Clustering 2: perplexity = 75, number of
components for t-SNE: 2, number of clusters of the k-means: 20; Clustering 3: perplexity = 5,
number of components for t-SNE: 2, number of clusters of the k-means: 18. The three
clusterings presented to the ENT tinnitus experts were the ones of the partitionings having
the best V-measure score for the given set of hyperparameters.

The overall averaged qualitative scores between the ENT Tinnitus experts’ evaluations
gave the following scores: Clustering 1: 4.18/5, Clustering 2: 4.53/5, Clustering 3: 4.22/5.

The best-performing clustering at the end of this procedure was Clustering 2 with hyper-
parameters” perplexity = 75, number of components for t-SNE: 2, number of clusters of the
k-means: 20. Both ENT tinnitus experts ranked this clustering as the most-clinically relevant.

As this clustering is projected in a two-dimensional space by the t-SNE method, it
was possible to present it in Figure 2. The details of the characteristics of each cluster of
this clustering are presented in Table 7. The endotypes’ repartition associated with this
clustering is presented in Figure 3.

4. Discussion

In this study, the main objective was to establish a tinnitus subphenotype clustering (i.e.,
a clustering of parts of a population with a distinct set of observable
characteristics [22,43] that would get as close as possible to the ideal tinnitus endotype
segmentation (i.e., a segmentation between parts of a population with a condition with dis-
tinct underlying mechanisms [21,43]. To achieve this goal, a bootstrapped semi-supervised
and diagnostic-driven benchmark of combinations of algorithmic methods was performed to
obtain the best-possible clusterings of a given dataset of tinnitus patients. The final choice
presented in the results was selected qualitatively by ENT tinnitus experts among almost
equally performing clusterings on the basis of its most-accurate clinical relevance. The
best clusterings were performed by a combination of t-SNE dimensionality reduction and
k-means clustering and successfully separated the known endotypes of tinnitus within differ-
ent clusters. The important number of clusters (18 to 20) of the final subset of best-performing
clusterings highlights the clinically observed and reported highly heterogeneous nature of
tinnitus [4]. The obtained subphenotypes yielded interesting bases for further explorations of
the underlying pathophysiological mechanisms of tinnitus on specific tinnitus homogeneous
subpopulations of patients. This could facilitate the discovery of new endotypes of tinnitus.

4.1. Final Clustering Description

As the finally selected clustering was projected in a two-dimensional space by the t-
SNE dimensionality reduction step, it can easily be displayed and analyzed. It is important
to specify that the presented clustering was applied on the training set of the third partition-
ing of the data. This is the reason why only half of the whole sample of patients is included
in it.
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The general spatial organization of this clustering, as well as the two others that were
evaluated is composed of a big core (here, the grouping of Clusters 1, 4, 6, 7, 11, 12, 15, 16,
18, 19, and 20) and gravitating satellites (Satellite Clusters 2, 3, 5, 8, 9, 10, 13, 14, and 17).

Only the finally selected clustering is presented in this study, yet it is important to note
that some regularities were observed in all three clusterings presented for the evaluation
by the ENT Tinnitus experts:

• The cophosis cluster (Cluster 3) was always dense and isolated in all clusterings. These
patients have most probably a unilateral cophosis, and it makes sense that it contained
neurinoma patients (probably post neuro-radiological procedure).

• The high frequencies of hearing loss and tinnitus cluster (Cluster 10), the pulsatile
group composed of Clusters 5 and 9, and the somatic group composed of Clusters
8 and 14 were always satellites of the clusterings. The pulsatile and somatosensory
groups were sometimes partitioned in two as in this clustering and sometimes unified
within only one cluster.

• The main core group of patients had always a gradient structure where, at one extrem-
ity, the impact of tinnitus and associated symptoms is very important at one end (as
in Clusters 12, 15, 18, and 19) and the impact is either mild or absent at the other end
(patients not impaired as in Clusters 1, 16, and 20). These “poles” have an influence
on the general spatial organization: the otosclerosis Satellite Cluster 13 where the
patients are symptomatic and annoyed was close to Clusters 12 and 18, and similarly,
non-disturbed somatic tinnitus patients Cluster 14 was close to Clusters 16 and 20.
It is worth mentioning that the gradient of impact on the quality of life of tinnitus
was almost aligned and coincident with the gradient of associated quality of sleep
measured by ISI, VAS sleep quality, sleep latency, nocturnal awakenings, etc. In fact,
sleep was disturbed in Clusters 7, 12, 15, 18, and 19 in opposition to Clusters 1, 14, 16,
and 20 (except that, in Cluster 20, patients have OSA, but do not seem to be disturbed
by it).

• This clustering seemed to highlight and isolate clusters centered on sudden hearing
loss (Cluster 11) and head trauma (Cluster 19) and to show an association between
hyperacusis and headaches (Clusters 15 and 17). It was also interesting to observe that
one of the pulsatile tinnitus clusters had the feature “side right” presenting an impor-
tant effect size. In fact, it is reported in the literature that, very often, the tinnitus is lo-
calized on the right side, due to the important prevalence of venous origin pulsatile tin-
nitus in the population [58]. Likewise, it is no surprise that, for both pulsatile tinnitus
groups, effect sizes highlighted a over-prevalence of women in these groups, as well as
lateralized tinnitus.

4.2. Merits

4.2.1. Changing Framework from Non-Supervised to Semi-Supervised Enabling
Benchmark on Performance

This study was the first in the field of tinnitus to leverage the partial existing knowl-
edge of tinnitus heterogeneity to drive the clustering procedure. Although this procedure
can probably be largely improved in the future (see the Limits Section and the Suggestions
for Future Research Section), it opens the path to a new framework of analysis on the issue
of tackling tinnitus heterogeneity.

The main perspective that this new framework brings for future research is a (partial)
ground base for evaluating the performance of tinnitus patient segmentation (and in the
case of the present study, tinnitus clustering). This basis enables quantitatively evaluating
and, thus, comparing the performances between different competing algorithmic methods
or a combination of methods to solve the task at hand. For the first time, a benchmark of
performances between several combinations of methods was made possible to evaluate
which combination best reproduces the partially known diagnostic segmentation. It should
be noted that the best-performing clustering obtained in the present study achieved a
0.386 score on the main criterion, the V-measure score. Such a score is comparable to the
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best performances achieved for spondyloarthritis clustering by a recent study with a similar
database size of 3438 patients. The best clustering of this study obtained a V-measure score
of 0.588 [59].

4.2.2. Stability Assessment

This study is also the first to have performed an equivalent to a cross-validation
procedure (here, a bootstrap procedure) aiming at ensuring the quantified stability of its
clusterings, following the suggestion of [15]. Here, three partitionings of the dataset into
training and test subdatasets were conducted following a resampling with replacement
procedure. The evaluation of stability involved the use of the adjusted mutual information
score between clusterings, as described in the stability assessment section.

Applying such a procedure is a well-known safeguard against over-fitting of the model
and ensures its replicability to some extent.

It is also important to mention that, in the present study, adjusted mutual information
scores between the best-performing clusterings were surprisingly quite elevated (>0.7),
suggesting a quite stable structure of the dataset.

4.2.3. Performing Clustering on a Large and Rich Patient Questionnaire Sample

Such semi-supervised paradigm adoption would hardly have been possible without
the importance of the unified dataset analyzed in this study. It is also important to stress
that the 44 features reported per sample in this database covered a wide spectrum of
tinnitus patient characteristics from hearing, hyperacusis, to somato-sensory modulations
and to associated sleep disturbance and depression. Such a specter covers the majority of
items suggested to be addressed by the review on tinnitus clustering published by [15].

4.2.4. Reproducing in the Benchmark Already Tested Dimensionality Reduction Methods
and Clustering Methods and Proposing Original Combinations

In the present study, the methods (PCA, k-means, and DBSCAN) used by [52,53] were
included in the benchmark and applied on the same dataset. Likewise, the silhouette score
evaluation method presented in [30] was reproduced and presented, although it was not
the main criterion for discriminating the performances of the clusterings.

New original methods have also been proposed and included in the benchmark of this
study: One was the factor analysis for mixed data framework that appeared as a promising
improvement to the classic PCA approach. It actually performed slightly better than PCA
when combined with either k-means or DBSCAN. Likewise, t-SNE appeared as a relevant
dimensionality reduction technique to be applied on such mixed data and performed best
in combination with the k-means clustering method.

4.3. Limits

4.3.1. Missing Values

A first limit of this study was the non-negligible presence of missing data in the initial
dataset, which required excluding some features, as well as a non-negligible amount of
patients (929 rows) and the use of missing value imputation. Although an adaptive and
stable method was used for missing value imputation (MissForest [46]), even more accurate
results could have been obtained with a complete and larger dataset.

4.3.2. Limited Number of Diagnostics

The main aim of the study was to create a clustering that would find and separate the
known endotypes of tinnitus. Yet, due to the retrospective nature of this work performed
on an already acquired dataset, several limitations are to be considered on this matter in the
present study. First, although this labeling was performed by a skilled ENT specialist and
on the basis of objective diagnostic measurement, it cannot be excluded that some diagnoses
were wrongly attributed to some patients. Even more, some patients were probably not
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diagnosed, although they were part of a known endotype. The diagnosis partitioning that
served as a reference in this study is hence limited in its validity.

Secondly, the prevalence of some endotypes is naturally rare in the tinnitus population.
This dataset was obtained over several years of clinical practice taking care of any patient
that sought the help of this practitioner. Consequently, there has been no specific selection
procedure applied that would have led to a more advantageous representation of known
endotypes in the dataset. As a consequence, the total percentage of labeled data in the
dataset was quite low (12.59%), and the prevalence of some endotypes was extremely low
(seven patients for Eustachian tube dysfunction).

Lastly, a question that remains open is the boundary between what can be considered
as a “known endotype” and a “comorbidity”. It could be argued that “ototoxicity”, a good
potential candidate, should not be included in such work as several different drugs could
lead to such an attribution of the label without affecting similarly the auditory system. Yet,
the question is posed when it comes to more prevalent subgroups such as presbyacusis,
acoustic trauma, somato-sensory tinnitus, or sudden hearing loss to a lesser extent: Should
such conditions be considered as endotypes of tinnitus? More refined criteria to delimit
between what should be considered eligible labels or comorbidity should be proposed in
the future.

On the other hand, some etiologies chosen in the present study could be considered as
heterogeneous. For example, pulsatile tinnitus patients all received the same diagnostic
label, although it could be argued that one should have separated patients affected by
semicircular canal dehiscence, carotid aneurysm, neurovascular conflict, etc. This example
highlights the question of the level of granularity one should give to the definition of a
tinnitus etiology, a question that goes beyond the scope of the present work. Here, the
decision to take pulsatile tinnitus as a unique diagnostic label was a pragmatic choice
acknowledging the limited number of labels available to map such pulsatile tinnitus sub-
etiologies. The limited size of the database in and of itself also conditioned the maximum
number of clusters that could be allowed for the grid search. Moreover, only a weak
constraint from the V-measure was placed on the algorithms on the number of clusters
that could include pulsatile tinnitus. As a consequence, the best clustering presented in the
results exhibited two different clusters with pulsatile tinnitus patients.

4.3.3. Mono-Label Clustering

In this study, a methodological choice was to attribute each patient to one endotype
and one endotype only. It was hence a mono-label clustering. Yet, it could be easily argued
that this methodological choice over-simplifies the sometimes complex and intricate na-
ture of clinical presentations of some patients. For example, as the ENT tinnitus experts
commented on the results of the final clustering, it was reassuring to observe that some
“pulsatile tinnitus” patients were attributed to the cluster where otosclerosis was predom-
inant (Cluster 13). Indeed, in some cases, otosclerosis can produce a tinnitus presenting
with a pulsatile sound.

4.3.4. Biases of the Questionnaire

There is no ideal questionnaire to make an optimal anamnesis of tinnitus. However,
some good directions were given regarding the important components such questionnaire
should at least contain so that the chances to perform a good clustering are maximized [15].
Here, due to the retrospective nature of this study concerning the database acquisition, the
questionnaire used, although reasonably complete, did not include all the items suggested
by this review.

Another more subtle bias in the questionnaire is the heterogeneity in the level of
scrutiny given to some dimensions of the symptomatology compared to others. In the case
of the questionnaire used for this study, only one feature in the dataset was associated with
vertigo (VAS scale on vertigo), whereas eight features were devoted to the impact of tinnitus
on sleep (ISI, Epworth, VAS scale on sleep disturbance, nocturnal awakenings, sleep latency,
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quality of the sleep onset, snoring, sleep apnea). This bias was most probably introduced
by the fact that V.L. has studied sleep medicine in addition to his ENT specialization. Such
over-representation of sleep features in the dataset, compared to others, induced biases in
the dataset that may not have been solved by the redundancy limitations induced by the
dimensionality reduction techniques.

It could also of course be argued that the focus given on tinnitus interactions with
sleep in the present study brings additional value to this study. Indeed, until now, the
description of the nature of those interactions had been limited [60].

4.3.5. Limited Range of the Hyperparameters for the Grid Search

In the present study, the grid search parameters were set to explore a range of values
that may have constrained the exploration to a space yielding suboptimal performances.
A wider range for grid search was explored in testing the dataset before the decision was
made on these ranges. From these explorations, it seems that widening the ranges for
the dimensionality reduction hyperparameters’ PCA, FAMD, or t-SNE components, as
well as for perplexity for t-SNE did not seem to produce better performances. It was also
remarkable to note that the best performances on the V-measure were always obtained on
the lowest possible numbers of components (mostly 2, sometimes 3).

Notably, it is unsure whether the ranges explored for minimum sample and epsilon
hyperparameters for DBSCAN were optimal. Above all, the range of exploration for the k-
means number of clusters was selected as a trade-off and not as the optimal for performance.
In fact, simulations of the V-measure’s best performances showed it to be an increasing
function of the maximum number of clusters. This function, for the different combinations
of algorithms, had an asymptotic convergence. The asymptotic value, as well as the speed
of convergence depended on the combination of algorithms, as well as the value of the
parameter β of the V-measure. For the different simulations performed, it was observed
that the combination t-SNE + k-means, which elicited the best results for this study, was
also the combination of algorithms that converged the most rapidly to the asymptotic value
and had the most-elevated asymptotic value.

The maximal value of 20 for the range of exploration of the number of clusters was
the result of a trade-off: this number was enough to reach 75% of the asymptotic value for
this method, while breaking the samples into groups of around 70 samples on average. It
made it possible to characterize the symptomatic specificities of each cluster. Likewise, it
brought a fine granularity for the evaluation of clusterings for the ENT tinnitus experts and
separated the endotypes without dividing each endotype too many times into different
groups. What was surprising was that, while simulating the clusterings for a greater
number of clusters (for example taking a maximal number of clusters yielding at least 95%
of the asymptotic value of the V-measure), the obtained clustering appeared to divide the
endotypes too much. This suggests that the V-measure might not be totally optimal in
achieving the desired goal. It is important to point out that increasing the value of β instead
(to favor less the optimization on homogeneity) resulted in another problem: the results
regrouped different (and clinically incompatible) endotypes in the same clusters.

4.3.6. Limited Stability Assessment for the DBSCAN Output

In the present study, a rigorous bootstrap procedure was applied to assess the stability
of the k-means clustering method’s output. Yet, such a method could not be applied
for the DBSCAN algorithm. In fact, due to the transductive nature of DBSCAN (i.e., it
cannot predict the labels of new data), the fit and predict methods of DBSCAN cannot be
disentangled, so it was not possible to make a prediction of the labels of a subset of samples
with a model fit on the other sample subset. Counting the difference of the clusters in the
outputs proposed by the DBSCAN was used as a replacement for the stability assessment:
indeed, the number of clusters of the output clustering is a free parameter of DBSCAN.
Yet, it can be questioned whether such replacement constitutes the best-possible stability
assessment for a transductive method.
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4.4. Suggestions for Future Research

4.4.1. Widen Hyperparameter Search on Larger Databases

As stated in the Limits Section, our grid search ranges were limited, especially for the
maximal number of clusters, which was chosen as a trade-off considering the sample size of
the database.

On the other hand, it seems intuitive to induce that if six different endotypes of tinnitus
are already present in 12.59% of the dataset as in the present study, it could be expected
that the total number of clusters of an ideal clustering should be above 20. Future research
should hence work to apply such techniques on wider datasets to enable widening the
range of hyperparameters.

Similarly, the set of features of our database was limited and did not cover all the
important dimensions advised in [15]. Future research should constitute their databases
prospectively and, hence, actively shape the questionnaires so as to cover globally the
anamnesis of a tinnitus patient. Focus should also be put on not over-weighting the
exploration of some dimensions compared to others (as illustrated in the limits for vertigo
and sleep in our case).

4.4.2. Change Framework to Longitudinal Data

A supplementary important suggestion for future research would be to switch from an
initial dataset composed of a unique point in time (and thus, a unique completion of a given
questionnaire) per patient to a longitudinal dataset in which each patient should answer a
given set of questionnaires at some strategic points in time. In fact, the clustering chosen
to be presented in this study tried to capture the time dimension by the feature “tinnitus
duration”. Yet, such a metric poorly captures the level of intrusiveness of a patient, which
can evolve at different speeds according to the psychological and behavioral adaptation to
the tinnitus and to the efficiency of therapeutic interventions. Likewise, some clusters tend
to reflect such a difference of temporality, with clusters that evoke a state of initial crisis
and others where one could hypothesize that patients are habituated to their condition (i.e.,
where the tinnitus annoyance is significantly lower).

It would naturally require more resources to lead such a study over a longer time frame
to enable mapping the trajectories of patient symptoms. However, such initiatives could be
led by digital mobile platforms such as TrackYourTinnitus [61] or Siopi [62]. Furthermore,
it would require reorganizing the framework of analysis of such a characterization of
each patient so as to achieve a clustering of different trajectories of patients, rather than a
clustering of questionnaire entries.

4.4.3. Going Further in the Semi-Supervised Framework

In the present study, the semi-supervision of the algorithm only intervened in the
evaluation of the clusterings obtained at the end of a systematic unsupervised process
set in motion on a constrained grid search exploration space. This is the reason why the
description of the procedure is only referred to as a semi-supervised framework. Yet, future
research should investigate how to include semi-supervision directly into the pipeline of
clustering. It could be at the level of the dimensionality reduction or at the level of the
clustering algorithms [63,64].

4.4.4. Going from Mono-Label to Multi-Label Clustering and beyond

As suggested among the limits of the present study, the methodological choice of
applying a mono-label clustering might not be well fit to describe the clinical reality of
patient symptomatology. When defining endotypes more restrictively, it becomes possible
for a patient to be part of several endotypes: for example, a patient presenting presbyacusis
with somato-sensory tinnitus due to a jaw instability would hence be assigned to two
endotypes, as these two reasons in and of themselves can lead to the emergence of tinnitus.
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It would hence appear useful for future research to adapt the clustering framework to
perform a multi-label clustering.

To go even further, it can be questioned whether segmentation, due to its discrete and
non-continuous nature, is the best methodological tool to address tinnitus heterogeneity.
Another possibility to address the heterogeneity problem would be to tackle it with a more
continuous and local approach by only looking locally for the best neighbors to a given
patient. Such an approach has been attempted by Siopi as its mutual-help community
could involve metric learning methods (supervised or weakly supervised) such as metric
learning with application for clustering with side information (MMC) [65], large margin
nearest neighbor metric learning (LMNN) [66], or other deep metric learning methods.

4.4.5. Apply the Semi-Supervised Clustering to Other Labels

It seems important to point out that a semi-supervised framework for tinnitus cluster-
ing can also be applied taking as a reference something different from endotype labels. For
example, taking individual treatment responses as the labels could also be very interesting
to try to define subtypes of tinnitus.

4.4.6. Explore Other Dimensionality Reduction Techniques and Clustering Techniques

Here, methods that had been tested in past studies were replicated and two new
original dimensionality reduction techniques were introduced. Yet, a great amount of other
dimensionality reduction techniques and clustering methods could be tested in the future
so as to outperform the results obtained in the present study. Interesting candidates would
be HDBSCAN [67] for which, in some references, its transductive nature could be overcome
by cross-validation (https://hdbscan.readthedocs.io/en/latest/prediction_tutorial.html,
accessed on 23 November 2022). This method has the advantage of not tending to form
Voronoi-cell-shaped clusters that tend to have similar numbers of samples per cluster (like
DBSCAN). Such methods appear to be more adapted in the case of subgrouping samples
in groups that can have diverging prevalence in the population.

Additionally, a very good semi-supervised candidate could be the heterogeneity
through discriminative analysis (HYDRA) method [68], which has proven to be quite
efficient at subtyping schizophrenia [69,70]. However, this method would be best fit for
application to neuroimaging datasets, rather than questionnaire datasets.

5. Conclusions

The present study aimed at presenting a new semi-supervised framework to bring
guidance when facing the issue of heterogeneity in the population of tinnitus patients. It
is the first to achieve such a clustering while enabling quantified comparisons between
the performance of different algorithmic combinations. Through this process and through
a bootstrap procedure for stability assessment, a 20-cluster solution was selected and
presented. With this solution, most clusters were confirmed by ENT tinnitus experts to
convey strong clinical relevance. Such clusters define homogeneous subphenotypes of
patients. Those are relevant to be studied independently to look for objective signatures of
different potential underlying pathophysiological mechanisms.
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