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Abstract: Abnormalities in cardiorespiratory measurements have repeatedly been found in patients
with panic disorder (PD) during laboratory-based assessments. However, recordings performed
outside laboratory settings are required to test the ecological validity of these findings. Wearable
devices, such as sensor-imbedded garments, biopatches, and smartwatches, are promising tools
for this purpose. We systematically reviewed the evidence for wearables-based cardiorespiratory
assessments in PD by searching for publications on the PubMed, PsycINFO, and Embase databases,
from inception to 30 July 2022. After the screening of two-hundred and twenty records, eight studies
were included. The limited number of available studies and critical aspects related to the uncertain
reliability of wearables-based assessments, especially concerning respiration, prevented us from
drawing conclusions about the cardiorespiratory function of patients with PD in daily life. We also
present preliminary data on a pilot study conducted on volunteers at the Villa San Benedetto Menni
Hospital for evaluating the accuracy of heart rate (HR) and breathing rate (BR) measurements by the
wearable Zephyr BioPatch compared with the Quark-b2 stationary testing system. Our exploratory
results suggested possible BR and HR misestimation by the wearable Zephyr BioPatch compared
with the Quark-b2 system. Challenges of wearables-based cardiorespiratory assessment and possible
solutions to improve their reliability and optimize their significant potential for the study of PD
pathophysiology are presented.

Keywords: panic disorder; respiration; cardiac function; digital psychiatry; wearable devices;
breathing rate; heart rate; Quark-b2; Zephyr BioPatch

1. Introduction

The involvement of respiratory and cardiac functions in panic attacks (PAs) and panic
disorder (PD) has been extensively documented. Prominent respiratory symptoms during
PAs and respiratory complaints not occurring during PAs during daily life are common
in patients with PD [1–4]. Furthermore, palpitations and accelerated heart rate (HR) are
frequent symptoms both during and beyond PA events [1–4]. Empirical evidence has
pointed to respiratory dysregulation as a biomarker of panic vulnerability [5,6] and several
abnormalities in resting-state respiratory patterns have repeatedly been documented in
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patients diagnosed with PD when compared with healthy controls (HCs) or patients with
other anxiety disorders [4,7–9]. Subclinical abnormalities in autonomic and cardiac function
have also been found in patients with PD [4,7,10–12]. Respiratory and autonomic instability
preceding PA events have been observed [13].

Although these findings are robust and consistent across a plethora of studies, most
research on panic pathophysiology has been conducted in the laboratory through invasive
recording systems, particularly respiratory assessments, which usually require facemasks or
mouthpieces. Even when ambulatory monitoring in a natural environment was conducted,
complex and uncomfortable portable devices were used [13–15]. This research approach
has yielded data with high internal validity and excellent reproducibility. Nevertheless,
concerns have been raised about the invasiveness of data capture. The detected cardiorespi-
ratory abnormalities of patients with PD may have resulted from their increased sensitivity
to unfamiliar or stressful conditions in the laboratory or invasive instrumentation, rather
than being consistent features of their daily lives [16,17]. Consistent with this concern,
preliminary results based on a non-invasive ambulatory monitoring system found only
limited support for previous laboratory-detected respiratory abnormalities in patients with
PD [16,17].

Therefore, much more research outside of the laboratory is required to provide deeper
insights into cardiorespiratory functioning in patients with PD, which may contribute to
diagnostic and therapeutic advances for this disorder [4,18]. Recent technological advances
can facilitate this type of research. The integration of miniaturized physiological sensors
into “smart” non-invasive wearable devices can provide more accessible and less invasive
real-time physiological data collection. Advances in machine-learning techniques can
enable patterns to be more easily detected or offer predictive models from large and highly
composite data samples [19,20].

However, the use of wearable technology devices to record physiological signals
in naturalistic environments may also have shortcomings. Measurement artifacts and
variability may occur when patients move freely without supervision. Moreover, wearables
may be less precise than stationary instruments that are purposefully designed for accurate
data capture. Wearables-based respiratory recordings are particularly challenging and
present technical problems. Since wearable devices do not directly measure air flow, it
is difficult to obtain accurate measurements of factors such as minute ventilation or tidal
volume [21,22], or estimates of optimal respiratory waveforms [23,24]. These critical aspects
might undermine the detection of subtle, subclinical respiratory abnormalities in patients
with PD, especially in dynamic conditions.

The present manuscript includes two sections and a general discussion. The main
section (Part 1) is a systematic review of studies that carried out respiratory and/or cardiac
measurements on patients with PD using wearable devices outside of a laboratory setting,
that is, in the natural environment. No reviews on this topic were available, except for one
published in 2019, which had different aims; these included studies recording electrocar-
diogram signals with wearable or portable devices on patients with different psychiatric
disorders [25]. Thus, we present a critical overview of this topic, evaluate whether advances
have been made in recent years, and discuss the advantages and disadvantages of using
less invasive wearable devices for cardiorespiratory-data capture.

Additionally, in Part 2, we present the preliminary results of a pilot study we conducted
to evaluate the accuracy of the wearable Zephyr BioPatch in the estimation of heart rate
(HR) and breathing rate (BR) using the Quark-b2 stationary testing system as a benchmark.
The inclusion of our explorative results is intended to expand the findings we systematically
reviewed and offer an adjunctive contribution to the open issue of these wearables’ accuracy
in the measurement of cardiorespiratory parameters.
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2. Part 1: Systematic Review
2.1. Materials and Methods

This review was conducted according to the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) 2020 statement [26]. This protocol was not
previously registered.

2.1.1. Search Strategy

A database search of peer-reviewed scientific literature written in English was con-
ducted using PubMed, PsycINFO, and Embase, from their respective inception dates to 30
July 2022.

The following keywords were used in the PubMed search: (Panic[title/abstract]
AND (watch[title/abstract] OR wearable*[title/abstract] OR device*[title/abstract] OR
ambulatory[title/abstract])) AND (“heart rate” [title/abstract] OR HRV[title/abstract]
OR cardiorespir*[title/abstract] OR respir* [title/abstract] OR breath*[title/abstract] OR
cardiac[title/abstract] OR pulse[title/abstract] OR “tidal volume” [title/abstract] OR vari-
ability[title/abstract]).

The following keywords were used in the PsycINFO and Embase searches: Panic AND
(watch OR wearable OR device* OR ambulatory) AND ((‘heart rate’ OR hrv OR respir* OR
breath* OR cardiac OR cardioresp* OR cardiac OR ‘tidal volume’ OR variability)).

The reference lists of relevant studies and pertinent review articles were also used to
retrieve additional research.

2.1.2. Inclusion and Exclusion Criteria

Studies were included in the review if they met the following criteria: participants
≥18 years old; inclusion of a primary diagnosis of PD with or without AG; provision
of respiratory and/or cardiac measurements obtained outside of the laboratory through
wearable technology devices (hereafter referred to collectively as “wearables,” i.e., smart
non-invasive electronic devices that can be physically worn by individuals without encum-
bering daily activities or restricting mobility, such as accessories, biopatches, or objects
embedded in clothing, which automatically collect, monitor, analyze, and communicate
personal data [27]); written in English; and availability of full text. Conference papers
and letters were included only if they reported exhaustive data. Studies were excluded if
they did not provide separate results in subgroups with PD when multiple anxiety disor-
ders were studied or if they provided respiratory and/or cardiac measurements obtained
through wearables in the laboratory only. Reviews, meta-analyses, case reports, book
chapters, editorials, and conference abstracts were also excluded.

2.1.3. Screening and Extraction of Data

Three of the study’s authors (S.D., D.D.D, and D.C.) independently carried out search
and screening process; inconsistencies were discussed and resolved before proceeding.

Two hundred and twenty records were screened to yield eight suitable articles in this
review (Figure 1, PRISMA flow diagram).

2.1.4. Risk-of-Bias Assessment

Finally, in the framework of the PRISMA statement [26], an assessment of the risk
of bias across all of the reviewed studies was conducted. In addition to the critical as-
pects specifically related to the use of wearables, we considered other methodological
domains suitable for evaluation in the reviewed studies, considering that they presented
strong heterogeneity in terms of design and aims and, in some cases, were secondary
analyses of sub-samples from larger studies with different aims. We mainly focused on
the following: sampling bias, including biases resulting from recruitment strategies and
inclusion/exclusion criteria used; reporting bias, due to selective information or outcome
reporting and/or non-reporting of relevant information or outcomes that would have been
expected to be reported; and other biases, including biases resulting from power calculation.
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Review authors’ judgments were categorized as “low risk” of bias, “high risk” of bias,
or “some concerns” of bias (i.e., when a possible risk was present, but at a lower level
than “high risk”). The assessment of the risk of bias was performed independently by
two authors (D.C. and S.D.), and inconsistencies in the results were discussed and resolved.
Based on the methodological evaluation, a judgment about the quality of the reviewed
studies was also provided.
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2.2. Results

The eight articles fitting the inclusion criteria are detailed in Table 1. Three of them
presented different analyses from a study performed with the LifeShirt system [16,17,28],
two articles were conference papers that presented different aspects of the same study
carried out with the Zephyr BioPatch [29,30], and the other three articles presented studies
performed with different smartwatches, namely the Polar RS800CX [31], the Garmin
Forerunner 310 XT [32], and the Garmin Vivosmart 4 [33]. The studies using the LifeShirt
system [16,17,28] and the Zephyr BioPatch [29,30] obtained both respiratory and cardiac
measurements, while the three studies using the smartwatches [31–33] provided cardiac
measurements only. Finally, five of the studies recorded physiological measurements
during the participants’ daily lives [16,17,28–30,33], while the other two [31,32] contained
measurements captured during in vivo exposure therapy.

In the following paragraphs, we succinctly describe the main features of the differ-
ent types of wearables and the main results concerning cardiorespiratory measurements
obtained from the various studies.
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Table 1. Details of the selected studies.

Authors, Year
[Ref.] Pfaltz et al., 2009 [17] Pfaltz et al.,

2010 [16] Pfaltz et al., 2015 [28] Rubin et al., 2015 [30];
Cruz et al., 2015 [29] White et al., 2017 [32] Mumm et al., 2019 [31] Tsai et al., 2022 [33]

Study design

Cross-sectional
comparison study

between patients with
PD and HCs. Single

site

As in Pflatz et al.,
2009 [17]

As in Pflatz et al.,
2009 [17]

Longitudinal open
study

(detection-feasibility
study). Single site

Sub-analyses of a selected sample
from a multicenter longitudinal
randomized treatment study #

Secondary analysis of a
multicenter randomized

controlled study
investigating the

augmenting effect of DCS
compared to a placebo on

12-session CBT with
in vivo exposure [34]

Longitudinal open
study (development

study of a PA ML
prediction model).

Single site

Participants,
recruitment, and

psychiatric
assessment

methodology

N = 26 patients with
PD (85% F; mean age:
35.5 ± 10.9 years) and
26 HCs (77% F; mean
age: 37.1 ± 9.6 years),

recruited via local
newspaper

advertisements.
Structured Diagnostic
Interview for Mental
Disorders (DSM-IV)

As in Pflatz et al.,
2009 [17]

N = 19 patients with PD
(84% F; mean age: 32.8
± 9.6 years) and 20 HCs
(80% F; mean age: 35 ±

8.3 years) who were
selected from the

original sample in Pfaltz
et al., 2009 [17], based

on the completeness of
data recorded

N = 10 participants (5
females, 4 males, 1

transmale) recruited
from local Meetup

groups, Google
AdWords, and the

website, Craigslist. Each
participant

self-identified
him/herself as suffering

from PD

N = 85 patients with PD and AG
(59% F; mean age: 33.89 ± 10.51;
43 patients were in the standard
in vivo exposure condition, while
the others were in the augmented
exposure condition). The patients

were selected based on data
availability from a larger sample

# recruited through physician
referral and advertisements in
media outlets. The DSM-IV TR

Composite International Clinical
Diagnostic Interview

A subgroup of N = 27
outpatients (from a

specialized clinic for
anxiety disorders) with AG

(with or without PD) §
with available HR and
HRV recordings during

in vivo exposure. No
information on sex

distribution or age of this
subgroup. Clinical

diagnosis based on ICD-10
criteria

N = 59 patients with PD
(61% F; mean age: 46.2
± 14.7), recruited from
patients referred to a

single Hospital in
Taiwan. The DSM 5

clinician-administered
Mini International
Neuropsychiatric

Interview

Comorbid
psychiatric

diagnoses. Current
medications
(number of

participants)

AG = 23; MDD = 4;
PTSD = 3; social

phobia = 3;
hypochondria = 1;

SSRIs = 7;
Benzodiazepines = 4;
Analgesic drugs = 3.

Exclusion criteria
were medical diseases

or medications
possibly influencing

cardiorespiratory
functions

As in Pflatz et al.,
2009 [17]

AG = 19; MDD = 2;
Social phobia = 2;

primary insomnia = 1.
SSRIs = 4;

Benzodiazepines = 2;
Noradrenergic and

serotonergic
antidepressant = 1;

Angiotensin II receptor
antagonist = 1

No information
available

Exclusion criteria were comorbid
psychotic or bipolar I disorder,
substance-use disorder, current

psychotherapeutic or
psychotropic interventions (as

screened in the original study #).
Medical illnesses (e.g.,

cardiovascular or neurological)
that excluded exposure-based

CBT. No information about
medications possibly influencing

cardiac function

In total, 31 (42%) patients
from the entire original

sample were taking
psychopharmacotherapy

(stable for at least 4 weeks;
no changes allowed during

the study). Patients with
severe medical diseases,

cardiovascular diseases, or
taking medications

possibly influencing
cardiac function were

excluded from the
secondary analysis

In total, 51% of patients
had at least 1 comorbid

psychiatric disorder
(mainly AG, GAD,
MDD, and PTSD).

Current substance-use
disorder and

“cardiopulmonary
incapacity” were among

exclusion criteria. No
information about any

types of medication

Setting Daily life Daily life Daily life Daily life

In vivo exposure therapy (bus
rides, suitable for HR collection

due to the relatively minor bodily
movements). Patients had to
assume a seated position to

minimize artifacts

Personalized in vivo
exposure therapy (e.g.,
public transportation,

elevators, driving cars, etc.)

Daily life
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Table 1. Cont.

Authors, Year
[Ref.] Pfaltz et al., 2009 [17] Pfaltz et al.,

2010 [16] Pfaltz et al., 2015 [28] Rubin et al., 2015 [30];
Cruz et al., 2015 [29] White et al., 2017 [32] Mumm et al., 2019 [31] Tsai et al., 2022 [33]

Duration of the
study

Two 24-h recordings
one week apart.
Analyses were

restricted to data
recorded during

waking periods (9
a.m.–9 p.m.)

As in Pfaltz et al.,
2009 [17]

As in Pfaltz et al.,
2009 [17] Three weeks

The entire treatment comprised
12 CBT sessions and 2 follow-up
booster sessions (2 and 4 months

later). The sample included in
this study completed a total of

233 bus-based exposure exercises

Duration of the entire
study: 4 months.

Exposure-related HR and
HRV (whose aim is

relevant to the present
review) § were evaluated

only during the first
exposure in the first

exposure session because it
was the only exposure

without DCS or placebo.

One year

Aim

To assess respiratory
patterns in patients

with PD during
physical inactivity *,
in comparison with

HCs

To assess
respiratory
pattern in

patients with PD
compared with

HCs using
respiratory data

stratified for
predefined levels

of physical
activity *

To investigate whether
patients with PD

presented HR
acceleration higher than
the metabolic demand
(metabolic decoupling,
MD) and whether MD
was related to phasic
and tonic anxiety. The

MV and AccM-physical
activity were used to

index metabolic
demand

Proof-of-concept of
panic-attack prediction
based on physiological

data (HR, BR, HRV,
Temp). The predictive

models were developed
by using change-point

analysis *** and
anomaly-detection

algorithms

To cluster the HR responses
during exposures (by latent class
cluster analysis of the individual

raw HR data); to examine
changes in intra-individual

HR-cluster membership across
sessions, and associations

between HR-response types and
panic-related symptoms

Aim, relevant to the
present review: To evaluate

HR and HRV changes
during the first exposure in
the first exposure session §

To build a 7-day PA ML
learning prediction

model using multiple
physiological, clinical,

and environmental
potential predictors

continuously collected
during daily life

Type of wearable
LifeShirt system
(Vivometrics Inc.,

Ventura, CA, USA)

LifeShirt system
(Vivometrics Inc.,

Ventura, CA,
USA)

LifeShirt system
(Vivometrics Inc.,

Ventura, CA, USA)

Zephyr BioPatch
(Medtronic, Inc., MN,

USA)

Garmin Forerunner 310 XT
(Garmin Ltd., Southampton, UK)

Polar RS800CX and
accelerometer (Polar
Electro Oy, Kempele,

Finland)

Garmin Vivosmart 4
(Garmin International,
Inc., Olathe, KS, USA)

Cardiorespiratory
measures

TV, Ttot, MV, f/TV,
TV/Ti, Ti/Ttot, Sighs,

Sighs%; SD and
RMSSD of TV, MV,

and Ttot were
calculated as indices

of respiratory
variability

TV, MV, Ttot,
Sighs, Sighs%.
RMSSD of TV
and MV were
calculated as

indices of
respiratory
variability

HR, MV.
Within-individual
pairwise Pearson

correlations of
minute-by-minute
average r (H-Acc),

r(H-MV), and r(HR-Acc,
MV) were calculated as

univariate indices of
metabolic coupling

HR, HRV, BR.

HR. Baseline was defined as the
tonic, pre-boarding HR levels.
Data were segmented into 3

epochs: before, during, and after
exposure exercise

HR and two HRV indices
(i.e., RMSSD of the NN

intervals and HF), which
reflect parasympathetic
nervous system activity.

Only movement-free
five-minute intervals were

used. The HRV indices
were calculated using the

software, Kubios HRV

Minimum and
maximum HR, average
HR (during the past 7
days), and the average
HR at rest, all in bpm
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Table 1. Cont.

Authors, Year
[Ref.] Pfaltz et al., 2009 [17] Pfaltz et al.,

2010 [16] Pfaltz et al., 2015 [28] Rubin et al., 2015 [30];
Cruz et al., 2015 [29] White et al., 2017 [32] Mumm et al., 2019 [31] Tsai et al., 2022 [33]

Other
physiological or
environmental

measures of
interest

AccM AccM AccM Temp, AccM GPS location, speed AccM

Wakefulness and total-,
deep-, light-, and

REM-sleep duration;
floors climbed, distance

traveled, steps taken;
multiple indices of air

quality

Clinical measures

Psychometric
questionnaires before

recordings: RSQ,
PDSS, MI, STAI, ASI,

BDI. During
recordings:

self-reported PA
occurrence (through a
customized electronic

diary)

Psychometric
questionnaires

before recordings:
RSQ, PDSS, MI,
STAI, ASI, BDI.

During
recordings:

self-reported
anxiety every

three hours (by a
customized

electronic diary)

Tonic anxiety:
STAI-Trait and ASI

before recording; the
mean diary-reported
anxiety levels during

recordings. Phasic
anxiety: standard

deviation of
diary-reported anxiety

levels

Self-reported PAs, by a
smartphone application

Pre-therapy assessment: MI, BSQ,
ACQ; during exposure:

self-reported anxiety collected by
EMA device

_

Self-report clinical
measures (BDI-II,

BAI-II, STAI-S, STAI-T,
PDSS-SR) were

collected at 2-week
intervals, through a

mobile app. “PA yes”
was defined as scores
from 1 to 5 for the first

question of the
PDSS-SR; “PA no” was
defined as scores of 0

Main results

The two groups did
not differ in terms of

age, gender,
body-mass index. No
significant respiratory
differences between
PD group (with or

without current
medications) and HCs
(alpha level was set at

0.05)

No significant
respiratory
differences

between PD
group and HCs
(alpha level was

set at 0.05), except
for higher
variability

(RMSSD) of TV in
PD group vs.

HCs (p = 0.04)
during minimal
movement and
slow walking.

The rHR-Acc, rHR-MV,
and rHR-(Acc, MV)

were lower (p = 0.005,
0.009, and 0.002,

respectively) in PD
group than in HCs,

indicating metabolic
decoupling in PD, even

considering
physical-fitness indices
** as covariates. In PD

group, HR–Acc
coupling was inversely
related to ASI (p = 0.02)

and phasic daytime
anxiety (p = 0.047)

(periods with PAs were
excluded; alpha level

was set at 0.05)

Seven out of ten
participants were

analyzed. Accounting
for AccM-based
physical activity,

predictive models
identified that in

pre-panic periods, HR,
BR, and Temp were

higher and HRV was
lower than expected,

compared with
non-panic periods. Only

general descriptive
statistics were reported.
No statistics concerning

the significance and
accuracy of the

predictive model were
provided.

Pre-treatment-scale scores
indicated that patients had

moderately severe symptoms.
Three low-level clusters (3, 4, 6)

with a median HR < 91 bpm and
four high-level clusters (1, 2, 5, 7)
with a median HR > 97 bpm were

identified. Clusters 5 and 7
presented increased HR
variability and greater

pre-boarding HR changes than
the others. Low and relatively
unvarying HR responses (e.g.,
cluster 4) were associated with

better tolerance of bodily
symptoms (p = 0.02) and low

self-reported anxiety (p = 0.001)
during exposure.

Significant increase in both
HRV indices (HF and

RMSSD of NN, p = 0.02
and 0.007, respectively)

from the beginning to the
end of the exposure,

indicating higher
parasympathetic activity at

the end of the exposure
(alpha level was set at

<0.05)

The Random Forest ML
method provided the

best performance
(accuracy = 81.3%) in
predicting PAs one
week before their
occurrence. Main
predictors: BAI-II,

BDI-II, and STAI-S and
-T scores; Mini
International

Neuropsychiatric
Interview; average and

resting HR; and
deep-sleep duration (no

specifications about
values or directionality

of predictors were
reported)
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Table 1. Cont.

Authors, Year
[Ref.] Pfaltz et al., 2009 [17] Pfaltz et al.,

2010 [16] Pfaltz et al., 2015 [28] Rubin et al., 2015 [30];
Cruz et al., 2015 [29] White et al., 2017 [32] Mumm et al., 2019 [31] Tsai et al., 2022 [33]

Other findings of
interest

In PD group, RSQ
scores were correlated
negatively with f/TV

(p = 0.006) and
positively with Ttot
and RMSSD of Ttot.
(p = 0.01 and 0.05,

respectively)

Self-reported
anxiety levels

during daily life
recordings were

higher in PD
group than HCs
(p < 0.001). The
two groups did

not differ in time
spent at different
physical activity

levels.

Anxiety levels were
higher in PD group than

HCs (p < 0.001). The
two groups did not

differ in mean
accelerometer measures,
MV, and physical fitness

indices **.

The PA-related
symptoms with highest
average severity among

participants were
anxiety, worry, and
shortness of breath;
those with lowest

severity were hot/cold
flashes and fear of

dying.

Self-reported anxiety declined
across sessions (p = 0.002). The
HR-cluster assignments of each

participant were not stable across
sessions or treatment conditions.

Female patients were more
commonly assigned to

high-variability HR clusters (2, 5,
and 7)

During exposure, patients
with

psychopharmacotherapy
presented significantly (p <
0.01) reduced HF HRV and
RMSSD of NN than those

without
psychopharmacotherapy

The prediction
performance of the

all-feature model was
better than that of the

physiological–
environmental model

(accuracy = 0.67%) and
the questionnaire model
alone (accuracy = 0.77%)

ASI = Anxiety Sensitivity Index; AccM (units) = accelerometry (motion); ACQ = Agoraphobic Cognition Questionnaire; AG = agoraphobia; bpm = beats per minute; BAI = Beck Anxiety
Inventory; BDI = Beck Depression Inventory; BSQ = Body Sensation Questionnaire; CBT = cognitive-behavioral therapy; DCS = D-cycloserine; DSM-IV = Diagnostic and Statistical
Manual of Mental Disorders, 4th Edition (1994); EMA = ecological momentary assessment with a handheld computer and customized software; F = females; f = frequency of breathing
(bpm, breaths per minute); f/TV (bpm/L) = an index of rapid shallow breathing; GAD = generalized anxiety disorder; GPS = Global Positioning System; HCs = healthy controls (i.e.,
without any lifetime anxiety disorders or current psychiatric disorders); HF = high-frequency band; HR = heart rate; HRV = heart-rate variability; ICD-10 = International Statistical
Classification of Diseases and Related Health Problems, 10th revision; MDD = major depressive disorder; MI = Mobility inventory for agoraphobia; ML = machine learning; MV
(L/min) = minute ventilation; N = number of participants; NN = RR interval (i.e., the time between each detected heartbeat) after removing artifacts and noise; PA(s) = panic attack(s);
PD = Panic Disorder; PDSS = Panic Disorder Severity Scale; PDSS-SR = Panic Disorder Severity Scale—Self-Reported; PTSD = post-traumatic stress disorder; REM = rapid-eye movement;
RMSSD = root mean square of successive differences; RSQ = Respiratory Symptoms Questionnaire; SD = standard deviation; SSRIs = selective serotonin reuptake inhibitors; STAI = State
(S)-Trait (T) Anxiety Inventory; Temp = core body temperature; Ti (sec) = inspiration-breath time; Ttot (sec) = 60/frequency of breathing per min; Ti/Ttot (ratio) = duty cycle, indexing the
timing of the respiratory on/off switch; Sigh = inspiratory-breath volumes > 2.5 times the median of running baseline of TV over 2-minute duration; Sighs% = the total number of sighs
divided by the total number of breaths; TV (mL) = tidal volume; TV/Ti = mean inspiratory flow, a putative measure of respiratory drive; * Six physical-activity categories (i.e., inactivity,
minimal movement, slow walking, moderate walking, fast walking, and running) assumed to be relevant in daily life were established based on the quiet-sitting and paced-walking
measurements conducted in the laboratory, before starting the recordings in the natural environment. Through customized programs, mean accelerometer motion (AccM) boundaries for
each activity category were calculated. Each breath was classified as belonging to the inactivity category, or one of the others, by searching through the AccM signal, using the previously
determined category boundaries.** A composite individual physical-fitness index was calculated, including participants’ sex and slope and intercept from the linear prediction of HR
by means of accelerometery during a task performed before leaving the laboratory (i.e., sitting quietly for 2 min and then walking at slow, intermediate, and fast standardized paces
for 3 min). *** The change-point analysis identifies locations where significant changes occur in time-series data. # This is a subsample of a randomized multicenter-treatment study
comparing standard in vivo exposures to fear-augmented exposures (i.e., standard exposure with additional interoceptive exposure); in turn, the multicenter-treatment study is a second
phase of a 6-month multicenter randomized controlled trial [35]. § This is a subgroup of a larger sample included in the study by Mumm et al. [31], whose general aim of evaluating
changes in HR and/or HRV after CBT were beyond the aims of this review, as their findings were recorded in a laboratory.
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2.2.1. LifeShirt-System-Based Results

The LifeShirt system (Vivometrics Inc., Ventura, CA, USA) is a FDA-approved multi-
channel ambulatory monitoring instrument capable of continuously recording several
physiological signals, including multiple respiratory measures, electrical heart activity
(electrocardiogram, ECG), O2 saturation, and posture and activity levels, for up to 24 h. The
system consists of a Lycra undergarment vest with embedded respiratory-inductive plethys-
mography (RIP) and various additional sensors, a portable digital recorder, and a PC-based
analysis software (Vivologic). The RIP monitors respiration through two inductive coils
placed around the rib cage (RC) and abdomen (AB). This functions as an indirect method
to assess respiratory variables and estimate lung volume from respiratory movements
based on two degrees of freedom (DOF; i.e., with two independent variables), wherein the
tidal volume (TV) is assumed to be equal to the sum of the RC- and AB-volume changes.
The RIP captures circumferential changes in the RC and AB during breathing as the raw
voltage changes. To obtain respiratory-volume data, the raw data captured by the LifeShirt
system must be converted to liters through user-specific calibration procedures [21,36,37].
In studies on the LifeShirt system [16,17,28], calibration was a two-step process. First, the
proportional relationship of the RC vs. AB displacements to the TV were estimated for
each participant by using a standard qualitative diagnostic calibration during a 5-min
quiet-sitting period. Second, the two respiratory waveforms from the RC and AB bands
(sampled at 50 Hz) were summed and converted to absolute TV in mL by a fixed-volume
procedure of breathing in and out of a 750-milliliter plastic-bag system eight times in a
sitting position.

The cardiac activity was assessed through three electrodes placed on the upper chest
and lateral abdominal surface, sampled with a lead-II ECG (200 Hz). Finally, the LifeShirt
system monitors physical activity through a tri-axial accelerometer embedded at the ster-
num level.

Of the three articles presenting LifeShirt-system-based results (Table 1), two [16,17]
were intended to evaluate whether the patients with PD presented respiratory-pattern
abnormalities during their everyday lives that were similar to those that were repeatedly
found in the laboratory. They provided different analyses of the same sample of 26 patients
with PD and 26 HCs free from cardiovascular and respiratory disease and medications
with relevant autonomic or respiratory effects. The expected respiratory abnormalities
in the patients with PD were not found during the periods of physical inactivity during
daytime wakefulness [17], while the analyses of different physical activity levels revealed
significantly increased tidal-volume variability in the patients with HCs only during mini-
mal movement and slow walking [16]. Therefore, little support was provided for previous
laboratory-based respiratory findings for PD.

The third article [28] (Table 1) focused on the comparison of metabolic-regulation
mechanisms in a subgroup of 19 patients with PD and AG and 20 HCs selected from the
original sample mentioned above. Given that a large part of HR variation during daily
life usually reflects metabolic demand (metabolic coupling), the authors hypothesized that
patients with PD may have an additional anxiety-related contribution to HR, resulting in HR
acceleration that is greater than metabolic demand (metabolic decoupling). Accelerometer
measurements and minute ventilation were used as metabolic-activity markers to index
metabolic contributions to HR. Self-reported levels of phasic and tonic anxiety were noted
in an electronic diary. As expected, the PD group exhibited significantly decreased coupling
of their metabolic-activity markers from their HRs compared to their HCs, and significant
associations between metabolic decoupling and some measures of anxiety were found.

2.2.2. Zephyr-BioPatch-Based Results

The Zephyr BioPatch (Medtronic Inc., Minneapolis, MN, USA) is a chest-worn patch-
style device consisting of a central electronic module (BioModule) that snaps into the
BioModule Holder, which is attached to the subject via disposable standard ECG electrodes.
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The BioModule must be placed in the epigastric quadrant of the subxiphoid region and
can transmit physiological data to and/or record the data in its internal memory. Through
proprietary circuitries and algorithms, the device continuously records multiple physiolog-
ical and biomechanical signals to generate relevant outputs, such as beat-to-beat “R to R”,
HR per minute, heart-rate variability (HRV), BR per minute, tri-axis accelerometer-based
posture and activity, estimated core body temperature, and calories. The BR is estimated
by impedance pneumography (IP) on the BioPatch, with the signal passing through the
electrodes that are used for the ECG. According to the IP, the individual’s BR is determined
by the changing impedance, measured as voltage changes in the electrodes, of the thoracic
cavity, which increases during inhalation and decreases during exhalation [38]. In addition
to algorithm-based outputs, raw data from the recordings can also be downloaded. The
Zephyr BioPatch has a sampling frequency of 250 Hz for ECG, 25 Hz for BR, and 100 Hz
for tri-axis acceleration. It reports HR and BR every second with millisecond precision.

The study using the Zephyr BioPatch aimed to develop a system combining a personal
wearable device with a smartphone application, with the ultimate goal of predicting the
occurrence of PAs based on physiological data and delivering in-the-moment mobile-based
interventions, such as breathing and relaxation exercises. Two conference papers described
herein [29,30] (Table 1) presented the first steps in this project, namely the preliminary
results from an initial 3-week detection-feasibility study conducted on a small real-world
data set from 10 participants. The HR, BR, HRV, and core body temperature were used
as the inputs within supervised anomaly-detection algorithms to predict imminent PAs,
thereby providing a binary output classified as either “pre-panic” or “non-panic.” In line
with the aim of the study, each of the above measurements was summarized at a frequency
of 1 Hz. The reporting of the occurrence of PAs in daily life, which was required to train
and validate the prediction model, was undertaken manually by each participant through
a smartphone application. The preliminary results of the PA detection revealed variations
in physiological parameters that could identify “pre-panic” periods. No statistics were
provided concerning the accuracy of the panic prediction.

Overall, the prototype of the mobile application was intended to report current physio-
logical parameters to users, notify the occurrence of physiological modifications that might
be related to an imminent PA (“pre-panic” periods), and provide graphical interfaces for
breathing- or relaxation-exercise interventions.

2.2.3. Smartwatch-Based Results

The three remaining articles [31–33] (Table 1) presented results obtained through
three different types of smartwatch to record HR [31–33] and HRV [31] in various contexts.

White et al. [32] (Table 1) clustered the HR responses of patients with PD and agora-
phobia who undertook repeated situational exposure (i.e., rides on a bus) to determine
how HR-response types related to PD symptoms. This study was a secondary analysis of
85 patients selected, based on data availability, from the second phase of a 6-month multi-
center randomized controlled trial [35]. The original aim of the trial was to evaluate whether
therapist-guided exposure (T+) in situ (12-session manualized cognitive-behavioral ther-
apy (CBT)) was associated with greater clinical effectiveness than therapist-prescribed
exposure (T-) in situ (12-session manualized CBT). Three hundred and sixty-nine patients
were randomized to CBT T+, CBT T+, or wait-list control group [35]. As declared by
White et al. [32], the second phase compared two randomized active treatments, namely
standard situational exposure and fear-augmented exposure (i.e., standard exposure com-
bined with interoceptive exposure). However, details on this phase were lacking, even in
the reference provided by the authors [39].

The authors used the wrist-worn smartwatch, Garmin Forerunner 310 XT (Garmin
Forerunner 310XT, Garmin Ltd., Southampton, UK), a commercial monitor capable of
collecting locations, through global positioning system (GPS) coordinates, and HR, through
electrodes placed on the back of a chest strap, worn just below the breastplate. The authors
identified seven interpretable clusters. Overall, the clusters with low and relatively stable
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HRs before and during exposure were associated with lower self-reported anxiety and
better bodily symptom tolerance, while the opposite was found for the clusters character-
ized by higher absolute levels and larger fluctuations in HR. The individual HR responses
were dispersed across the clusters, suggesting that extrinsic environmental factors pro-
vided an additional contribution, beyond intrinsic personal factors, to the shaping of the
response characteristics.

A similar device was used by Mumm et al. [31] (Table 1) to record the HRs and HRVs
in a sample of 66 patients with AG with and without PD who undertook manualized
CBT. The authors evaluated possible changes in HR and/or HRV after the CBT. The study
utilized the Polar RS800CX (Polar Electro Oy, Kempele, Finland), a wrist-worn smartwatch
capable of recording cardiac activity by using electrodes placed on the back of a chest strap,
and connected to an accelerometer. This study was a secondary analysis of a 4-month
randomized controlled trial investigating the augmenting effect of D-cycloserine (DCS)
compared to a placebo on 12-session CBT with in vivo exposure [34]. For the purpose
of this review, we only examined results concerning the HRs and HRVs recorded during
in vivo exposure in a subsample of 27 patients and the data from the first exposure in
the first exposure session only, as this was the only exposure without the influence of
DCS or placebo (all the other pre- and post-CBT cardiac recordings were conducted in
the laboratory). Only the movement-free periods during the exposure were used, to
minimize the confounding influences of motion on the cardiac measurements. Overall,
the results suggested an increase in parasympathetic nervous system activity at the end of
the exposure.

Finally, Tsai et al. [33] (Table 1) used the wrist-worn smartwatch, Garmin Vivosmart 4
(Garmin International, Inc., Olathe, KS, USA), to continuously collect physiological data,
including HR, activity levels, and the duration of different sleep stages, during a 1-year
real-life study on 59 patients with a primary diagnosis of PD. The Garmin Vivosmart 4 pro-
vides continuous monitoring of HR through photoplethysmography (PPG), a non-invasive
optical measurement method that uses a light source and a photodetector on the surface
of the skin to measure volumetric variations in blood circulation [40,41]. The device also
captures the steps taken, distance traveled, floors climbed, duration of wakefulness, and
different sleep stages of its wearers. The study aimed to provide a 7-day PA machine learn-
ing (ML) prediction model using a series of potential predictors collected over the course
of one year. The potential predictors included the above-mentioned physiological data,
the clinical features obtained through repeated self-report psychometric questionnaires
(administered through an internet-based mobile application), and multiple indices of air
quality obtained from a local open-environmental-data platform. The prediction model’s
ground truth (i.e., the label “PA yes” versus “PA no” in the previous week) was based on
the first question on a 5-point scale (scored from 0 = not at all, to 5 = extreme), the Panic
Disorder Severity Scale-Self Report (i.e., “How many panic and limited-symptom attacks
did you have during the week?”). The response “PA yes” was assigned to scores from 1 to
5, whereas “PA no” was assigned to the “0” scores. The same sample of patients was used
for both training and testing the ML models by using data sets from approximately the
first 10 months and the last two months of the study, respectively. Of the six different ML
models tested, the Random Forest model offered the highest accuracy in the prediction of
PAs one week before their occurrence. Some of the clinical measures, average and resting
HR and deep-sleep duration, were the most important variables in the predictive model.

2.2.4. Risk of Bias and Quality of the Reviewed Studies

A graphical presentation and details on the risk of bias in the individual selected
studies are presented in Figure 2 and Table 2, respectively. In terms of selection bias,
biases in the recruitment strategies and the inclusion/exclusion criteria used were present,
possibly undermining the validity and/or generalizability of the results. In the study
performed with the LifeShirt system [16,17,28], although the psychiatric and medical
assessment was rigorous and presented a low risk of bias in the inclusion/exclusion criteria,
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the recruitment strategy increased the risk that the results would not be generalizable
to clinical populations with PD. Furthermore, as the three reviewed LifeShirt-system-
related articles [16,17,28] were based on re-analyses of the same sample, the certainty of the
evidence was low. The sample in the study performed with the Zephyr BioPatch [29,30]
presented a high risk of bias concerning both the recruitment and the inclusion/exclusion
criteria. A high risk of recruitment-related bias was also present in the study with the
Garmin Forerunner 310 XT [32]. Two of the three smartwatch-based studies raised some
concerns related to possible bias in the inclusion/exclusion criteria [32,33].
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In two studies [29,30,33], a high risk of reporting bias was present.
A power calculation was performed in the LifeShirt-system study [16,17,28] in order

to detect large effect sizes, but this raised the concern that small-to-moderate differences
were not detected between patients with PDs and HCs. The use of a power calculation was
lacking in the study by Mumm et al. [31], and it was not appropriate in the other studies.

In both PA-prediction studies [29,30,33], the use of the self-reported experience of PAs
conferred a high risk of inappropriate labeling upon the predictive model’s development.
This risk was especially high in the Zephyr-BioPatch–based predictive study [29,30], as the
authors included symptoms, such as anxiety and worry, that are not included in the current
nosographic criteria for defining PAs.

The lack of HCs in the studies assessing HR and HRV during exposure situations [31,32]
raised concerns about the specificity of results. Finally, all the critical methodological aspects
specifically related to the use of wearables are extensively described and considered in the
Discussion section.

Overall, due to the several limitations of the body of the reviewed studied, the certainty
of the evidence is generally low and improvements in quality are required in future studies.
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Table 2. Details of the risk of bias in the individual selected studies.

Authors, Year [Ref.] Selection Bias Reporting Bias Other Sources of Bias

Recruitment Strategy Inclusion/Exclusion Criteria Selective Reporting Power Calculation Labeling Methodology in PA
Prediction Studies Adjunctive Bias

Pfaltz et al., 2009 [17] Local newspaper
advertisements (H)

Appropriate criteria assessed by
clinician-administered psychiatric

interview and medical examination.
Exclusion criteria related to

medications possibly influencing
cardiorespiratory functions were

present (L)

Relevant information
appropriately reported (L)

Power calculation performed.
Study powered to detect large
effect sizes; possibly missed
small–moderate effects (SCs)

_ _

Pfaltz et al., 2010 [16] Local newspaper
advertisements (H) As in Pfaltz et al., 2009 [17] (L) Relevant information

appropriately reported (L)
As in Pfaltz et al., 2009 [17]

(SCs) _ _

Pfaltz et al., 2015 [28] Local newspaper
advertisements (H) As in Pfaltz et al., 2009 [17] (L) Relevant information

appropriately reported (L)
As in Pfaltz et al., 2009 [17]

(SCs) _ _

Rubin et al., 2015 [30];
Cruz et al., 2015 [29]

Local Meetup groups,
Google AdWords, and the

website, Craigslist (H)

Self-reported PD (the sole inclusion
criterion); no exclusion criteria (H)

Incomplete reporting of
sample features and results.
No statistics concerning the

results and predictive
model were provided (H)

Power calculation was not
appropriate for the study

Self-reported
experience(s) of PA(s) (H) _

White et al., 2017 [32]

Mixed recruitment strategy,
including physician referral

and advertisements in
media outlets (H)

Appropriate diagnosis-related
criteria assessed by

clinician-administered psychiatric
interview. Medical-disease-based

exclusion criteria were present. Lack
of exclusion criteria related to

medications possibly influencing
cardiac function (SCs)

Relevant information
appropriately reported (L)

Power calculation was not
appropriate for the study _ Lack of healthy control

group (H)

Mumm et al., 2019 [31]

Selection of patients
referred to a specialized

clinic for anxiety and
related diseases (L)

Appropriate diagnosis-related
criteria assessed by

clinician-administered psychiatric
interview. Exclusion criteria related
to medical diseases and medications
possibly influencing cardiac function

were present (L)

Relevant information
appropriately reported (L)

Power calculation was lacking
(H) _ Lack of healthy control

group (H)

Tsai et al., 2022 [33] Selection of patients
referred to a hospital (L)

Appropriate diagnosis-related
criteria assessed by

clinician-administered psychiatric
interview. Lack of medication-related

exclusion criteria and definition of
the exclusion criterion,

“cardiopulmonary incapacity” (SCs)

No reporting of current
medications, values or

directionality of predictors
(H)

Power calculation was not
appropriate for the study

Self-reported
experience(s) of PA(s) (H) _

L = low risk of bias; H = high risk of bias; PA(s) = panic attack(s); PD = panic disorder; SCs = some concerns over risk of bias.
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3. Part 2: Pilot Comparison of Simultaneous Cardiorespiratory Recordings by the
Wearable Zephyr BioPatch and the Quark-b2 Stationary Testing System
3.1. Materials and Methods

In this pilot study, we evaluated the accuracy of the chest-worn wearable Zephyr
BioPatch (Zephyr BioPatch, Medtronic, Inc., Minneapolis, MN, USA) in estimations of HR
and BR compared with the Quark-b2 stationary testing system (Cosmed, Italy). The Zephyr
BioPatch is described above, in Section 2.2.2. For additional details on the Materials and
Methods, please see the Supplementary Materials.

Briefly, the Quark-b2 stationary testing system assesses respiration physiology on a
breath-by-breath basis. It is a validated instrument widely used in sports medicine and
respiration-physiology studies [42]. An open, light face mask connects the subject to the
respiratory testing system. The Quark-b2 also assesses cardiac activity using a 12-lead ECG
monitor to provide HR and HRV estimation. The system reports BR, multiple respiratory
volumetric measures, and HR, for every breath, to the nearest second.

We simultaneously recorded respiratory and cardiac signals by applying the Zephyr
BioPatch, placed in the epigastric quadrant of the subxiphoid region, and the Quark-b2
stationary testing system, to 10 volunteers (5 males and 5 females) recruited from among
staff of Villa San Benedetto Menni Hospital, Albese con Cassano, Como, Italy. Recordings
were taken over 20 min and captured when volunteers were at rest and in a sitting position.
Beyond obtaining written informed consent from the participants, no inclusion or exclusion
criteria were applied.

The experimental setup and the two instruments are shown in Figures S1 and S2 in
the Supplementary Materials.

We compared the performances of the two devices using Bland–Altman (B&A)-plot
analysis [43–46], which quantifies the agreement between two quantitative methods of
measurement by studying the mean difference and constructing limits of agreement. We
also applied linear mixed model (regression) analyses to investigate whether the estimated
biases of the two devices were different at different levels of measurement, and whether
they were affected by age, sex or body-mass index. We set the level of significance at
the conventional value of 0.05 and performed the analyses using the R programming
language, version 3.6.3 (R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2020).

3.2. Results

The full results of our pilot study are detailed in the Supplementary Materials.
We obtained 176 and 175 matched 1-min-data-collection periods for the HR and BR,

respectively, from the simultaneous recordings provided by the two devices.
In the B&A-plot analysis of the 1-min-average HR (Figure S3 in the Supplementary

Materials), no significant overall bias across the two devices was found. However, a
statistically significant variation in the bias at different average HR values (B = 0.539,
p < 0.001) was detected. The predicted bias at the minimum observed 1-min-average HR
value (60.342) was −1.046, indicating the expected overestimation of the Zephyr BioPatch
compared to the Quark-b2. The predicted bias at the maximum observed 1-min-average HR
value (101.81) was 1.912, indicating the expected underestimation of the Zephyr BioPatch
compared to Quark-b2. The upper- and lower-bound limits of agreement were 2.044
(95% bootstrap confidence intervals: 1.506; 2.413) and −1.812 (95% bootstrap confidence
intervals: −2.109; −1.373), respectively.

Similarly, no significant overall bias was found by analyzing the 1-min-average BR,
whereas a statistically significant variation in the bias at different average BR values
(B = 0.10283, p < 0.001) was found (Figure S5 in the Supplementary Materials). The pre-
dicted bias at the minimum observed 1-min-average BR value (5.431) was −5.1, indicating
the expected overestimation of the Zephyr BioPatch compared to the Quark-b2. The
predicted bias at the maximum observed 1-min-average BR value (24.45) was 4.123, indi-
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cating the expected underestimation of the Zephyr BioPatch compared to the Quark-b2.
The upper- and lower-bound limits of agreement were 3.705 (95% bootstrap confidence
intervals: 2.617; 4.584) and −3.51 (95% bootstrap confidence intervals: −4.145; −2.661),
respectively (Figure S5 of the Supplementary Materials).

Finally, when we used the breaths detected by the Quark-b2 instead of the 1-min
episodes as a time unit, the B&A-plot analysis revealed a significant overall bias in both the
HR (Figure S4 in the Supplementary Materials) and the BR (Figure S6 in the Supplementary
Materials), indicating an average overestimation by the Zephyr BioPatch compared to the
Quark-b2. A statistically significant variation in the bias at different average values of
both parameters was also found. The predicted biases at the minimum observed breath-
by-breath Quark-b2 HR and BR measurements were −5.155 and −11.844, respectively,
indicating the expected overestimation of the Zephyr compared to Quark-b2. The predicted
biases in the maximum observed breath-by-breath Quark-b2 HR and BR measurements
were 16.65 and 31.024, respectively, indicating the expected underestimation of the Zephyr
compared to the Quark-b2. The upper- and lower-bound limits of agreement for the
HR were 6.352 (95% bootstrap confidence intervals: 5.886; 6.897) and −5.9287675 (95%
bootstrap confidence intervals: −6.330; −5.492), respectively; those for the BR were 8.455
(95% bootstrap confidence intervals: 8.150; 9.086) and −7.090358 (95% bootstrap confidence
intervals: −7.603; −6.783), respectively.

No significant influence of age, sex, or body-mass index, was found in any of the
analyses.

4. Discussion

In this manuscript, we aimed to systematically review and critically comment on
studies that conducted respiratory and/or cardiac measurements using wearable devices in
non-laboratory settings on patients diagnosed with PD. Our primary goal was to highlight
the current opportunities and challenges in this field. Our second goal was to share our
preliminary work comparing cardiorespiratory recordings by the wearable Zephyr BioPatch
and the Quark-b2 stationary testing system; the inclusion of our explorative results was
meant as an adjunctive contribution to the open issue of the wearables’ accuracy in the
measurement of cardiorespiratory parameters.

4.1. General Limitations and Comments on the Reviewed Studies

We found very few studies suitable for review, which highlights the pioneering na-
ture of this field. Rapid progress has been made in wearable-device technology over
the last few years and researchers are only beginning to utilize this technology for non-
laboratory-setting data capture. The reviewed studies represent valuable, if only prelimi-
nary, attempts to evaluate whether patients with PD have cardiorespiratory abnormalities
outside of the laboratory that are similar to those found in laboratory-based testing envi-
ronments [16,17,28], with the goals of predicting the occurrence of PAs using multimodal
signals, including cardiac [33] and cardiorespiratory signals [29,30], and identifying the
cardiac responses of patients during CBT exposure [31,32]. Overall, the reviewed stud-
ies suggest the significant potential of these new technologies to capture fine-grained,
patient-specific, physiological profiles and their changes under normal environmental
circumstances. However, these studies presented methodological limitations (please see
Section 2.2.4, “Risk of Bias and Quality of the Reviewed Studies”), heterogeneous method-
ologies, and small sample sizes; in addition, confirmatory replications in independent
samples are lacking and, most importantly, certain intrinsic limitations of the wearables
might have undermined the reliability of the physiological recordings, as discussed be-
low. Furthermore, the self-reporting of the experiences of PAs that were used to verify
PA events (label) was highly dependent on the participants’ understanding of the nature
of PA events. Thus, the ability use this input solely to develop prediction models of PA
occurrence [29,30,33] potentially undermines the labeling validity. Finally, the lack of HCs
in the studies assessing HR and HRV during exposure situations [31,32] prevented us from
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determining the extent to which the cardiac-related results were specific to PD. For these
reasons, this body of research is insufficient to draw reliable conclusions about the role
of cardiorespiratory function in the pathophysiology of PD and therapeutic situational
exposure. Nevertheless, these studies offer important insights into the challenges related to
wearable technology. These challenges are further explored in the following paragraphs,
including those related to our study of the Zephyr BioPatch.

4.2. Critical Wearables-Related Aspects of the Reviewed Studies and Future Research

A critical aspect common to many of the reviewed studies was the difficulty in record-
ing respiratory signals. The LifeShirt system provides RIP-based recordings of BR, TV,
and MV, but some methodological issues can compromise the accuracy of volumetric
measurements. Since RIP is an indirect approach to the estimation of volume changes,
calibration procedures are needed to convert RIP-based circumferential changes in RC and
AB to liters [21,36,37]. Pfaltz et al. [16,17,28] applied a qualitative diagnostic calibration
with fixed-volume breathing to a 5-min quiet-sitting period. Although this is the most
common calibration procedure, due to its simplicity, it was found to systematically un-
derestimate the true values of TV and MV, with high variability in the underestimation
levels among the subjects when compared to standard ergospirometry techniques for volu-
metric measurements [21]. The 5-min fixed-volume breathing-calibration procedure also
appeared to fail in terms of accuracy when the measurement conditions or breathing pat-
terns changed. Therefore, it only seems suitable for entire sets of breaths with unchanging
or quasi-unchanging TVs [36]. Since such controlled conditions rarely occur in real-world
environments, in which individuals move freely, this calibration procedure for the LifeShirt
system may not be suitable for precise respiratory measurements in daily life. Furthermore,
thoracoabdominal kinematics and the contribution of RC and AB to TV usually change
under different postures and movements. Therefore, the performance of calibration in a
single posture (e.g., only in a quiet-sitting position [16,17,28]) may undermine calibration
accuracy and compromise respiratory recordings that are collected in daily life [21,47,48].
Finally, respiratory assessments based on 2-DOF systems, such as the LifeShirt system, as-
sume that the TV is equivalent to the sum of the RC and AB volume changes. However, the
accuracy of 2-DOF models in freely moving situations has also been questioned. Postural
changes induce cranial–caudal displacements of the chest wall that are not covered by the
RIP bands, which only capture RC and AB cross-sectional-area changes. Consequently,
non-detected chest wall displacements may cause posture-related errors in volumetric
estimates [36,49].

For all these reasons, Pfaltz et al.’s conclusion that patients with PD have very lim-
ited respiratory abnormalities in daily life, unlike the results obtained under laboratory
settings [16,17,28], require replication with independent samples using approaches, which
may overcome the methodological limitations induced by wearable devices.

Several strategies have been proposed to improve the accuracy of volumetric respira-
tory estimates when using RIP-based, or similar, devices, such as respiratory magnetometer
plethysmography (RMP). The use of reference-standard spirometry during calibration
and the application of separate calibration procedures for different postures were recom-
mended [21,36,47]. Furthermore, the application of nonlinear machine learning (NL-ML)
techniques to estimate respiratory variables during calibration has also been suggested. Res-
piratory volumes estimated from thoracoabdominal displacements using different NL-ML
models exhibited higher accuracy than linear methods in the matching of spirometry-based
volumes under different conditions, such as lying, sitting, standing, and various physical
exercises. Higher accuracy when using NL-ML models has also been observed during
different types of breathing, including normal or constant and variable or asynchronous
respiration [36,50]. The higher precision of these models probably arises from their ability
to capture the complexity and variability of ventilation dynamics, which change from cycle
to cycle, are associated with composite thoracoabdominal interactions, and depend on
multiple variables [36,50–52].
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Devices based on 4-DOF systems have been proposed to detect additional posture-
associated chest-wall displacements for further improving the accuracy of indirect volumet-
ric measurements. For example, RMP-based devices identify the anterior axial displacement
(i.e., the variation in the distance between the xiphoid and umbilicus) and the posterior axial
displacement of the spine in addition to RC and AB cross-sectional-area changes, using
four coupled electromagnetic coils [51,52]. These devices provided accurate volumetric
estimates for different postures: at rest, during sedentary activities, and at different levels
of physical activity. However, although the results are promising and advanced versions
of RMP-based wearable devices are lightweight and small [51,52], only laboratory-based
studies have been performed. Future research reporting on data capture in non-laboratory
settings (real-world conditions) is warranted.

Finally, several methods have been proposed to filter measurement noise and ar-
tifacts, which may undermine the recording of physiological signals with RIP-or RMP
techniques [36].

Given the aforementioned methodological advancements under consideration by
the research community, we are confident that the accuracy of respiratory measurements
can be improved. However, even recent versions of undergarment vests, smart shirts,
or wearable strips and coils may still cause patient discomfort and other challenges over
prolonged measurement periods in daily-life environments. Furthermore, recalibration may
be necessary after the removal of these devices before their reapplication [53]. Therefore,
these wearables seem to be suitable for the recording of respiratory measures during
relatively limited periods in highly selected samples, whereas they may be less appropriate
for prolonged use in large samples.

To enlarge the applicability of daily-life recordings, an emerging alternative approach
involves tri-axial accelerometer sensors, patched on the subject’s chest and, in some, cases
on the abdomen. These sensors assess respiratory patterns by measuring the thoracoab-
dominal acceleration caused by respiration. Recently, wearable calibrated accelerometer
sensors have appeared to be a simple, comfortable, and cost-effective solution to reliably
measure respiratory rate, TV variability, and respiratory waveforms, during both sleep and
wakefulness [23,54–57]. A preliminary study [23] proposed that the positioning of four
accelerometers in specific positions on the subject’s thorax and abdomen may be the best
combination for respiratory-waveform estimation in different postures at rest, with minimal
signal-to-noise ratios. The same study also provided proof-of-concept results for the blind
estimation of respiratory waveforms based on an independent-component analysis using
the four accelerometers alone, suggesting that they are applicable when no reference signal
is available. Since motion artifacts can undermine accelerometer-based recordings under
non-resting conditions, the use of gyroscopes coupled to accelerometers may improve the
reliability of respiratory measurement during a user’s physical activity [27,58]. Given that
respiratory variability and waveforms are of particular interest in the pathophysiology
of panic [4,59], accelerometer- and gyroscope-based respiratory measurements should be
explored in patients with PD. Should reliable results be obtained, these devices may be
suitable for large-scale studies over protracted recording periods, as they offer easy man-
agement and high comfort levels when worn. Longer recordings outside of the laboratory
are crucial to understanding the cardiorespiratory functioning of patients with PD under
multiple circumstances, making them complementary to shorter assessments under more
selective conditions [16,17,28].

In line with the idea of using simple and comfortable wearables for prolonged data
capture, the reviewed 3-week detection-feasibility study [29,30] used the chest-worn Zephyr
BioPatch to predict oncoming PAs based on physiological data (i.e., HR, HRV, BR measured
by IP, and temperature). The application prototype was also intended to notify users of their
current BR and HR values while simultaneously offering breathing or relaxation exercises
to pre-emptively treat imminent PA events. The prototype was built through proprietary
algorithms; therefore, the methodological evaluation was severely limited. However, the
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authors did not provide any comments concerning the reliability of cardiorespiratory-signal
recordings by the Zephyr BioPatch.

Critical wearables-related aspects were also present in the last three reviewed studies,
which provided results only on the cardiac activity recorded by different commercially
available smart sports-watches (Polar RS800CX [31], the Garmin Forerunner 310XT [32],
and the Garmin Vivosmart 4 [33]).

These types of consumer-graded wearable are commonly used for non-clinical pur-
poses, as fitness trackers during exercise-training programs. Although their application for
clinical and research purposes in the medical field is increasing [60,61], the reliability of
consumer wearables for fine-grained analyses on cardiac-activity recordings under different
daily-life conditions is unclear. When compared to a reference-standard chest-strapped
monitor during a series of sedentary and moderate physical activities in the laboratory,
HR detection based on the Garmin Vivosmart wrist-worn optical HR sensors (PPG) was
found to underestimate the average HR and produced some unexpected outlier readings,
despite a generally acceptable accuracy [62]. Similarly, different optical devices, including
the Garmin Vivosmart, provided reasonably accurate HR measurements during various
physical activities in the laboratory, but presented an overall tendency to underestimate
HRs in certain conditions, such as during high-intensity activities [63,64], when there
was no repetitive wrist motion and when the HR signal changed quickly and at higher
intensities. During activities in which the contact between the device’s sensor and skin
was decreased, data capture and signal recording were negatively affected [64]. Similarly,
during the in-laboratory simulation of real-world activities monitored by the Garmin
Vivosmart, the individual heart-rate measurements of the older adults in one study group
may have been underestimated by up to 30 beats per minute compared to an ECG-based
chest strap [65]. The Garmin-based HR measurements improved when the device was in
the “activity mode” setting, which probably increased the frequency with which HR was
measured and instructed the device to use different algorithms, making it more suitable
for detecting rapid or sudden HR changes [64]. Since the HR-measurement algorithms of
smart sports-watches are generally proprietary, access to their recorded raw data might be
more useful to researchers, allowing them to perform additional analyses and identify more
reliable patterns of cardiac activity under different conditions. Finally, due to the generally
high susceptibility of PPG-based devices to motion artifacts, several signal-processing
techniques, also using simultaneously recorded accelerometer data, may remove motion-
artifact effects from PPG signals and improve the detection of PPG pulses, making them
suitable for performing HR estimates under various movement intensities [40,66].

Even when smartwatches such as the Polar RS800CX [31] and Garmin Forerunner
310XT [32] are connected to chest-strapped HR monitors, difficulties with data acquisition
still arise. While chest-strapped monitors collect more accurate cardiac recordings, users’
levels of familiarity with the devices (difficulties experienced when wearing and using the
recorders) and possible recorder-motion-signal loss (dropout) remain challenging issues,
especially for prolonged data collection during various daily-life activities. Furthermore,
the distinguishing of physical activity from the influence of emotions on cardiac activity
is an important and challenging problem in the psychiatric field. To partly minimize the
confounding effects of motion on cardiac signals, in one of the reviewed studies [37], only
movement-free periods during different exposures were analyzed. In another study [32],
only the “riding on a bus” exposure was considered, and participants were instructed
to adopt a seated position while traveling. Nevertheless, the ability of these strategies
to overcome motion-related limitations remains elusive. Additionally, a reliable cardiac
recording during physical activity and free movement may also provide information on the
pathophysiology of panic [16,28]. For these reasons, future studies should correlate cardiac
recordings with movement trajectories and physical activity obtained by location tracking
(GPS technology), accelerometers, and gyroscopes.
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4.3. Suggestions from the Pilot Comparison of Simultaneous Cardiorespiratory Recordings by the
Wearable Zephyr BioPatch and the Quark-b2 Stationary Testing System

Our explorative comparison between the Zephyr BioPatch and the reference-standard
Quark-b2 stationary testing highlighted possible misestimations; therefore, the accuracy
of wearables should not be assumed when they are used for clinical or research purposes.
We found preliminary indications of significant bias in the two devices during at-rest
recordings, especially concerning BR. Although global overlapping (i.e., a non-significant
overall bias) was present between the Zephyr- and Quark-b2-based HR and BR measure-
ments using 1-min averages, a significant variation in the bias emerged at different average
values of both HR and BR. The Zephyr BioPatch overestimated both the HR and the BR
at the lowest 1-min-average values and underestimated both HR and BR at the highest
1-min values. Given the wide range of values that can be encountered in HR over several
minutes of recording, the HR differences we found between the two devices, although
statistically significant, can be considered negligible from both clinical and research points
of view [43], at least at rest. Conversely, considering the physiologically narrow range of
BR values, the discrepancy we detected in the BR recording may have relevance. Finally,
when we used a different duration period for the analyses (i.e., breath-by-breath instead of
1-min. periods) we found an even more pronounced discrepancy between the two devices,
namely a significant overall bias in both HR and BR and a larger predicted bias in both the
minimum and maximum HR and BR measurements, which may have practical relevance
for both cardiac and respiratory assessments. As our results were exploratory and obtained
in a small sample of participants who were at rest in a sitting position, larger comparisons
in different positions and at different activity levels are required. However, our findings
suggest caution in the use of physiological measurements based on wearable ECG elec-
trodes, especially concerning BR, without considering potential misestimations. Inaccurate
estimates may be particularly relevant when therapeutic interventions are delivered based
on these estimates, as proposed in the reviewed Zephyr BioPatch-based study [29,30]. To
minimize this risk, preliminary comparisons with reference standards should be performed,
at least in a subgroup of participants before they use a wearable device in an entire research
sample, to evaluate possible under- or overestimations in different conditions, including
different resting postures, sedentary activities, and physical activities. If the misestimations
are systematic and not particularly variable in the exploratory subgroup, the analyses of
the entire sample might be adjusted based on the predicted misestimation levels. Fur-
thermore, our finding that the use of different duration periods can lead to differences
in the performances of wearables suggest that the definition of a usable time frame for a
specific research aim can help researchers to identify the wearable that is most suitable
for providing reliable data in the timeframe of interest. Finally, achieving optimal respi-
ration measurements with IP can greatly depend on an individual’s position because the
application of certain ECG leads to patients in specific postures can capture signals better
than others. Hence, the appropriate lead should be chosen to optimize the measurement or,
when possible, the multiple leads should be used simultaneously to ensure the extensive
capture of breathing-related signals [38].

Recently, we used a stepwise regression algorithm to indirectly estimate TV during
exercise from wearable-device-based measurements of HR and BR [67]. Due to the prelimi-
nary nature of our analyses, we focused only on HR and BR, which are directly measured
by the Zephyr BioPatch, to explore potential basal misestimations and provide “starting-
point” comparisons that are easily usable without the application of inferential methods.
However, the novel possibility of estimating TV from HR and BR [67], or TV variability
from accelerometer-based signals [23,54–57] recorded by the Zephyr BioPatch, paves the
way for further analyses to extend our comparisons to TV.

5. Conclusions

In conclusion, reliable cardiorespiratory measurements obtained by wearable devices
in daily life under changing physical, psychological, or behavioral conditions may offer
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external and ecological validity to studies on panic pathophysiology and complement
laboratory-based studies. Unfortunately, the studies reported to date were limited and
several shortcomings were noted. Together with our preliminary results on the Zephyr
BioPatch, these studies highlight the challenges associated with wearables-based cardiores-
piratory recordings and offer an opportunity to develop solutions to improve the reliability
of data collection before further work is undertaken.

Overall, the exciting potential of these new technologies to provide valuable insights
into the cardiorespiratory pathophysiology of PD outside of laboratory settings is clear.
The expansion of this research is a medical need as it can contribute to the more pre-
cise phenotyping of each patient and the identification of more personalized targets for
therapeutic intervention.
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AB Abdomen
B&A Bland–Altman-plot analysis
BR Breathing rate
CBT Cognitive-behavioral therapy
DCS D-cycloserine
DOF Degrees of freedom
ECG Electrocardiogram
HCs Healthy controls
HR Heart rate
HRV Heart-rate variability
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IP Impedance pneumography
ML Machine learning
MV Minute ventilation
NL Nonlinear
PA(s) Panic attack(s)
PD Panic Disorder
PPG Photoplethysmography
RC Rib cage
RMP Respiratory magnetometer plethysmography
RIP Respiratory inductive plethysmography
TV Tidal volume
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