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Abstract: Background: The complex nature and heterogeneity involving pituitary surgery results
have increased interest in machine learning (ML) applications for prediction of outcomes over the last
decade. This study aims to systematically review the characteristics of ML models involving pituitary
surgery outcome prediction and assess their reporting quality. Methods: We searched the PubMed,
Scopus, and Web of Knowledge databases for publications on the use of ML to predict pituitary
surgery outcomes. We used the Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) to assess report quality. Our search strategy was based
on the terms “artificial intelligence”, “machine learning”, and “pituitary”. Results: 20 studies were
included in this review. The principal models reported in each article were post-surgical endocrine
outcomes (n = 10), tumor management (n = 3), and intra- and postoperative complications (n = 7).
Overall, the included studies adhered to a median of 65% (IQR = 60–72%) of TRIPOD criteria, ranging
from 43% to 83%. The median reported AUC was 0.84 (IQR = 0.80–0.91). The most popular algorithms
were support vector machine (n = 5) and random forest (n = 5). Only two studies reported external
validation and adherence to any reporting guideline. Calibration methods were not reported in
15 studies. No model achieved the phase of actual clinical applicability. Conclusion: Applications
of ML in the prediction of pituitary outcomes are still nascent, as evidenced by the lack of any
model validated for clinical practice. Although studies have demonstrated promising results, greater
transparency in model development and reporting is needed to enable their use in clinical practice.
Further adherence to reporting guidelines can help increase AI’s real-world utility and improve
clinical practice.

Keywords: artificial intelligence; machine learning; outcomes; pituitary adenoma; adenoma; acromegaly;
Cushing disease; reporting quality assessment; systematic review

1. Introduction

Pituitary adenomas (PAs) comprise 10–15% of all intracranial tumors [1]. Medical
management and radiation therapy are treatment options in selected cases but transsphe-
noidal surgery remains the primary treatment modality for most patients with symptomatic
nonfunctioning and functioning pituitary tumors, with overall low rates of morbidity and
mortality [2,3]. Surgical outcomes, such as disease remission, extent of resection and
complications, are influenced by different factors, including tumor size and invasiveness,
previous treatments and patient age and comorbidities [4–7].
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Machine learning (ML) is a type of artificial intelligence (AI) that uses imputed data
to generate outputs based on the learning of patterns, which has been successfully ap-
plied across different areas of medicine [8–10]. The increasing volume of health care data
provides inputs for innovative methods of data gathering, selection and analysis [11].
ML is especially useful in these settings because of its capacity to deal with large swaths
of data [12].

ML models have shown promising results in neurosurgery. For example, ML-based
imaging analysis is promising for radiological identification of glioblastoma molecular sub-
types [13]; also, ML models have been used to predict outcomes of radiosurgery for cerebral
arteriovenous malformations [14], and outcomes of chronic subdural hematoma [15]. There-
fore, ML holds promise as a tool to augment clinical decision making [16]. Recent studies
on pituitary adenomas and transsphenoidal surgery have also explored methodological
designs based on ML models. Radiological diagnosis, prediction of clinical outcomes and
complications have been evaluated with promising initial results [16–18]. Table 1 presents
a glossary with the most common terms from literature and, in Table 2, we described the
most common ML algorithms used in healthcare.

Table 1. Definitions of important concepts in machine learning and artificial intelligence areas.

Term Description

Artificial Intelligence A broad area of computer applications with the ability to perform tasks that conventionally
require human intelligence.

Machine Learning Machine learning is an application of artificial intelligence (AI) that provides systems with the
ability to automatically learn and improve from experience without being explicitly programmed.

Deep Learning Is a subset of ML which is formally defined as computational models that are composed of
multiple processing layers to learn representations of data with multiple levels of abstraction.

Supervised learning A model that is trained based on inputs of data aiming at determining a target output, which are
manually labeled a priori (e.g., diagnosis or prognosis).

Unsupervised learning ML models that can perform tasks without being set with labels by a human
(e.g., clustering data).

Structured data Data that are pre-defined to be displayed in rows and columns (e.g., electronic medical records,
administrative data). More qualitative form of data.

Unstructured data Data without any predefined structure. More quantitative form of data (e.g., image analysis, text).

Missing values Hyperparameters, which specify how a model learns, need to be set by the data scientist before
training. They are perpetually improved (tuned) to find the model that performs best.

Single case analysis Exclusion of a row with missing data among its features.

Feature Data science term for predictor/independent variable.

Label/Target Data science term for outcome/dependent variable.

Parameter Inherent weights of a given model, which are set in the code of the algorithm. Define a search
space as a grid of hyperparameter values and evaluate every position in the grid.

Hyperparameters An ensemble of wights which define how a model learns. They are arbitrarily attributed, needing
to be set by its developer to optimize its performance during and after training.

Overfitting
When a model performs well on the training data (seen patients) and performs poorly on the

testing data (unseen patients). Regularization is often used to minimize overfitting and optimize
generalizability of machine leaning algorithms

Discrimination Describes the model’s ability to correctly identify from random pairs in which it was trained who
will develop the target condition. Usually evaluated through the model’s AUC/C-statistic.

Area Under Curve/C-statistic
Most used discriminative statistic. An area of 1.0 represents a perfect test; an area of 0.5

represents a worthless test. It enables assessment of predictive ability, and identification of an
optimal threshold to distinguish between classes.
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Table 1. Cont.

Term Description

Accuracy Ratio between the total number of predictions that are correct.

Sensitivity/Recall Proportion of true positives predictions.

Specificity Proportion of correctly predicted true negatives which are correctly identified.

PPV/Precision Proportion of correctly predicted true positives which are correctly identified

NPV Proportion of correctly predicted negatives among all negative predictions.

F1 score Composite metric defined as the harmonic mean between precision (or PPV)
and recall (sensitivity).

Internal Validation Assessment of a model’s performance with the same data or population, if prospective, used in
the development process.

External Validation Assessment of a model’s performance in a dataset which differs from the one used in its
development geographically or temporally.

Cross Validation
Internal validation technique in which the dataset is randomly split into k-1 groups of similar size.
Performance is evaluated in the remaining group with the whole process repeated n times; model

performance is taken as average over n iterations.

Bootstrapping Internal validation approach like cross validation but relying on random sampling with
replacement; each sample is the same size as model development dataset

Split Sample
Internal validation approach in which the available development dataset is divided into two

datasets: one to develop the model and the other to validate the model; division can be random
or non-random.

Table 2. Examples and conceptualization of most utilized machine learning-based algorithms for
binarity outcome prediction.

Algorithm Description

Neural Networks (NN or ANN)

Artificial neural networks are non-linear algorithms loosely inspired by human brain
synapses. Convolutional neural networks, the most commonly applied, comprise input nodes,
output nodes and intervening or hidden layers of nodes, which may number up to 100. Each

node within a layer involves two or more inputs and applies an activation and weighting
function to produce an output which serves as the input data for the next layer of nodes.

Support Vector Machine (SVM)

SVM is based on the idea of computing a hyperplane that best separates the features into
different domains. Its objective is to find a decision boundary (the Hyperplane) that has the

maximum separation degree between two nearer points of each class—i.e., the support
vectors. Kernel functions are used when data are too non-linear functions; the algorithm can

map examples to other dimensions and then operates on non-linear relationships by
transforming low-dimensional input data into high-dimensional space.

k-Nearest Neighbors (k-NN)

The k-NN classing classes based on a distance criterion. The values of the distance from k
(number of neighbors) in given distance between them and the subject of interest. This
distance inputs-output is computed on comparing multidimensional vectors of feature

values, defining the more similar ones as “neighbors”.

Decision Trees (DTs)

DT algorithms are architecture under a tree structure modeling approach with conditional
control statements for establishing a framework of subsequent decisions. Its internal nodes

represent ‘test’ on an attribute, branch represents the results of this test and “leaf”
represents decision taken after computing all attributes.

Random Forest (RF)

RF is essentially an ensemble of DTs, although it differs from usual DTs by using randomly
selected inputs or combinations of inputs at each node to grow each tree rather than a

consistent set. That is intent yielding to avoid the overfitting usually present in deep DTs.
Random distribution of inputs provides, when averaged, lower rates of error in the final

output and reduced variance.
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The popularization of studies based on AI methodology led to development of guide-
lines to specifically address such reports in medicine [19,20]. A version of the Transparent
Reporting for Individual Prognosis Or Diagnosis (TRIPOD) Statement with focus on ML-
based studies was recently proposed [21,22]. Goals of such guidelines include the assurance
that studies are properly reported, providing information necessary for replicability, ensur-
ing critical appraisal of ML models and improving the quality of reporting [22,23].

In the present study, we review the current evidence on the use of ML to predict
outcomes after pituitary surgery. Additionally, we assess the completeness of model
reporting of the reviewed papers according to the TRIPOD Statement.

2. Materials and Methods

This systematic review was conducted according to Preferred Reporting Items for
Systematic Reviews (PRISMA) guidelines. The review protocol was registered within the In-
ternational Prospective Register of Systematic Reviews (PROSPERO) database, maintained
by the University of York (York, UK) (registration number CRD42021253264).

2.1. Literature Search and Studies Selection

The PubMed, Scopus, and Web of Science databases were searched to identify all
potentially relevant studies. The following search terms were used: “((machine learning) or
(artificial intelligence)) and (pituitary)”. Original articles that described using a machine
learning approach to study pituitary surgery outcomes published between 1 January 2010
and 31 December 2021 were included.

Subsequently, three authors (M.M.R, A.W. and L.M.F) independently screened each
article’s titles and abstracts. Disagreements were resolved through a discussion involving
all three authors. For all studies deemed relevant, the full papers were reviewed.

2.2. Inclusion and Exclusion Criteria

During the full article review process, articles were included based on the following
criteria: (1) specific focus on the development or validation of ML models for prediction;
(2) specific focus of the model on predicting pituitary surgery outcomes; and (3) presented
a ML model as its main prediction tool. Exclusion criteria were the following: (1) review
articles; (2) other applications of artificial intelligence; and (3) studies using ML as a
diagnostic tool. References from previous studies were also evaluated for the inclusion of
additional studies.

2.3. Data Extraction

The data extraction protocol, as well as the form used to conduct it, is described in
Online Resources 1. Outcomes were stratified in three categories: endocrine outcomes;
tumor management or recurrence; or complications. If a study has reported more than
one model or assessed different outcomes of pituitary surgery in a single publication, data
extraction and stratification of this paper in the results section were performed regarding
the model with the higher Area Under the receiver operating characteristics Curve (AUC).

2.4. Report Assessment

The TRIPOD Statement, launched in 2015, is a widely accepted EQUATOR Network
guideline for prediction model reporting [21,24]. It consists of 22 items considered essential
for informative reporting of prediction model studies. It was primarily developed to
evaluate regression-based models, but it has also been successfully used to assess and
guide the production of reports based on ML models [22]. It is important to mention,
however, that differences in terminology are pointed out as one of the barriers to adherence
to TRIPOD during the report of ML studies [25].

In this study, we utilized the TRIPOD Adherence Form as well as the instructions for its
respective description, with two terms adjusted for the specification of ML models as suggested
by Wang et al., to assess the completeness of reporting of ML prediction models [22,26].
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3. Results
3.1. Study Selection

A total of 191 studies were retrieved from PubMed, 89 studies from Web of Science,
and 145 studies from Scopus, giving a total of 425 articles. In total, 219 duplicate studies
were excluded. After abstract and title screening, 53 studies were considered potentially
relevant. Seven additional studies from other sources were included at this time. After
full-text article screening, 20 studies were selected for data extraction (Figure 1).
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Figure 1. PRISMA flowchart of study search and inclusion process. PRISMA = Preferred Reporting
Items for Systematic Reviews and Meta-analyses.

3.2. Characteristics of Included Studies

The most common population studied were general samples of patients with PAs,
without distinction (8 studies) [27–34]. Acromegaly patients were the main population
in five studies [18,35–38]. Furthermore, Cushing disease (CD) patients were the focus
in four additional studies [39–42]. Only two studies reported a multicenter setting for
external validation [18,38]. Only Qiao et al. reported the use of a prospective sample for
internal validation [18]. The time span of patient data collection ranged from 1983 [36] to
2021 [43]. Aside from Muhlestein et al. [29], which used a national inpatient administrative
database, all studies gathered their data from surgeons’ case series or institutional chart
review. The median sample size was 211 (IQR = 138–366) and ranged from 27 [44] to
15,487 [29]. Data extracted from the reviewed papers regarding the studies’ characteristics
and ML algorithms aspects are presented in Tables 3 and 4, respectively. Three studies
had their main ML model predicting pituitary surgery outcomes regarding tumor manage-
ment aspects or recurrence [27,32,44], while ten focused on the endocrine outcomes after
pituitary surgery [18,35,36,39–43,45], and seven studies presented ML models predicting
complications from pituitary surgery [28–30,33,34,38,46].



Brain Sci. 2023, 13, 495 6 of 22

Table 3. Characteristics of included studies.

Study Journal Country No. of Centers Population Time Interval Source of Data Sample Size

Fan et al., 2019 [35] European Journal of Radiology China Single-Center PAs April 2012 May 2018 Chart review 163

Fan et al., 2019 [45] Frontiers in Endocrinology China Single-Center Acromegaly January 2008 and January 2016 Case series 57

Fan et al., 2020 [36] Endocrine China Single-Center Acromegaly 1983 to 2018 Chart review 668

Fang et al., 2021 [43] Frontiers in Endocrinology China Multicenter NFPAs 2015 to 2021 Retrospective database 215

Hollon et al., 2018 [28] Journal of Neurosurgery USA Single-Center PAs Not mentioned Case series 400

Kocak et al., 2018 [37] European Radiology Istanbul Single-Center Acromegaly January 2009 and December 2017 Chart review 47

Liu et al., 2019 [42] Neuroendocrinology China Single-Center CD January 2000 to December 2017 Case series 354

Machado et al., 2020 [44] Computes in Biology and Medicine Brazil Single-Center NFPAs Not mentioned Electronical Clinical Records 27

Muhlestein et al., 2019 [29] Journal of Neurosurgery USA National Inpatient Database PAs 2002 to 2011 Administrative data 15487

Nadezhdina et al., 2019 [41] Pituitary Russia Single-Center CD 2007 to 2014 Chart review 219

Qiao et al., 2021 [47] Pituitary China Multicenter Acromegaly 2010 to 2018 (D); 2019 (EV) Prospective database 833 (D); 52 (EV)

Shahrestani et al., 2021 [46] Pituitary USA Single-Center FPA 1992 to 2019 Chart review 348

Staartjes et al., 2018 [27] Neurosurgical Focus Switzerland Single-Center PAs October 2012 onwards Prospective clinical registry 140

Staartjes, et al., 2019 [34] Journal of Neurosurgery Switzerland Single-Center PAs October 2012 onwards Prospective clinical registry 154

Voglis et al., 2019 [30] Pituitary Switzerland Single-Center PAs October 2012 to December 2019 Case Series 207

Zanier et al., 2021 [38] Endocrine Switzerland Multicenter Acromegaly August 1998 to January 2020 Chart review 307 (D); 40 (E)

Zhang et al., 2020 * [32] Frontiers in Oncology China Single-Center NFPAs September 2010 to December 2017 Chart review 50

Zhang et al., 2021 * [33] Frontiers in Endocrinology China Single-Center CD February 2000 and September 2019 Chart review 1045

Zhang et al., 2021 [40] Journal of Personalized Medicine China Single-Centre PAs January 2017 to June 2019 Chart review 131

Zoli et al., 2020 [39] Neurosurgical Focus Italy Single-Center CD May 1998 to December 2017 Case series 151

Abbreviations: CD = Cushing Disease; PAs = Pituitary Adenomas, NFPA = Non-Functioning Pituitary Adenoma; D = Development; EV = External Validation; * studies that only used radiomics.

Table 4. Machine learning models characteristics.

Study ML Task Outcome; Proportion Software Algorithm AUC Other Measures

Fan et al., 2019 [35] Treatment response Remission; 66 patients (33.7%) MATLAB 2015b (Natick, MA, USA) SVM 0.81 Acc: 74.5%; Sn: 61.3%; Sp 91.7%;
PPV: 70.5%; NPV: 64.7%

Fan et al., 2019 [45] Radiotherapeutic response radiotherapy response; 25
patients (78.1%)

ITK-SNAP 3.8 (Philadelphia, PA, USA);
Python 3.0 (Wilmington, NC, USA),

PyRadiomic library
SVM 0.96 Acc: 91%; Sn: 90%; Sp: 92%; PPV:

935; NPV 0.885
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Table 4. Cont.

Study ML Task Outcome; Proportion Software Algorithm AUC Other Measures

Fan et al., 2020 [36] Remission of acromegaly after surgery Acromegaly remission; 349
patients (52.2%) Python 2.7 (Wilmington, NC, USA) GBDT 0.81 Acc: 79%; Sn: 81%; Sn: 78%; PPV:

81%; NPV: 77%

Fang et al., 2021 [43]
Postoperative hypofunction, new
postoperative hypofunction, and

hormonal recovery

hormone level normalization; 21
patients (64.7%)

R 4.0.4 (Vienna, Austria); Python 3.9
(Wilmington, NC, USA) RF 0.85 AUC-PR: 0.52

Hollon et al., 2018 [28] Poor early postoperative outcome Poor early postoperative
outcome; 124 (31%)

R 4.0.4 (Vienna, Austria), caret package;
Python 3.2 (Wilmington, NC, USA),

SciPy 0.19.1 library
RF 0.84 Acc: 85%; Sn: 56%; Sp: 94.7%;

PPV: 77.8%; NPV: 86.6%

Kocak et al., 2018 [37] Response to somatostatin analogues Responsive; 24 patients
responsive (51%) WEKA 3.8.2 (Waikato, New Zeland) k-NN 0.85 Acc: 85.1%

Liu et al., 2019 [42] Immediate CD remission CD recurrence;
46 patients (13.0%) Python 2.7 (Wilmington, NC, USA) RF 0.78 Acc: 87%; Sn: 71.7%; Sp: 58.4%

Machado et al., 2020 [44] Tumor recurrence Tumor recurrence; 10 (37%) Python 3.0 (Wilmington, NC, USA),
Scikit-learn library k-NN 0.96 Acc: 96.3%; Sp: 100%; Sn: 91.7%

Muhlestein et al., 2019 [29] Hospital total charges,
Postoperative complications

Postoperative complications;
3365 inpatients (25%)

Python 2.7 (Wilmington, NC, USA),
SciPy 0.17 library; DataRobot 3.0

(Boston, MA, USA)
GBDT 0.66 RMSLE: 0.446; Holdout: 0.455

Nadezhdina et al., 2019 [41] Remission/Recurrence of CD Remission; 172 patients (78.5%) IBM SPSS 18 (Armonk, NY, USA) NN 0.91 Acc: 92%; Sn: 75%; Sp 97%; PPV:
85%; NPV: 93%

Qiao et al., 2021 [47] Acromegaly endocrine remission Remission; 434 patients (52.1%) R version 3.4.3 (Vienna, Austria); Python
version 3.6 (Wilmington, NC, USA) GBM 0.87 Acc: 80.3%; Sn 90.5%; Sp 69.6%

Shahrestani et al., 2021 [46] Suboptimal outcomes Suboptimal outcomes; 81
patients (23.3%)

Python 2.7 (Wilmington, NC, USA),
PyRadiomics, Scikit-learn libraries NN 0.91 Acc: 87.1%; Sn: 89.5%; Sp: 76.9%;

PPV: 94.4%; NPV: 62.5%

Staartjes et al., 2018 [27] GTR GTR; 95 patients (68%) R 3.4.4 (Vienna, Austria),
TensorFlow, Keras NN 0.96 Acc: 91%; Sn: 94%; Sp 89%

Staartjes, et al., 2019 [34] Risk level of intraoperative CSF Leak CSF leak; 45 patients (29%) R 3.5.1 (Vienna, Austria); TensorFlow
(Mountain View, CA, USA), Keras NN 0.84 Sn: 83%; Sp: 89%; PPV: 71%; NPV:

94%; F1 score: 0.77

Voglis et al., 2019 [30] Post-operative hyponatremia Post-operative hyponatremia;
44 patients (22%) R 3.6.2 (Vienna, Austria), caret package Boosted GLM 0.84

Acc:78.4%; Sn: 81.4%; Sp: 77.5%;
F1 Score: 62.1%; NPV: 93.9%;

PPV: 50%

Zanier et al., 2021 [38] GTR, Biochemical remission,
or CSF leak CSF leak; 38 patients (12.5%) R 4.0.2 (Vienna, Austria) Bayesian GLM 0.69

Acc: 60%; Sn: 71%; Sp: 59%; PPV:
19%; 93%; Calibration intercept:
−1.77; calibration slope: 0.39

Zhang et al., 2020 * [32] NFPA recurrence Tumor recurrence;
28 patients (56%) MATLAB 2018b (Natick, MA, USA) SVM 0.78 Acc: 82%
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Table 4. Cont.

Study ML Task Outcome; Proportion Software Algorithm AUC Other Measures

Zhang et al., 2021 * [33] Postoperative Immediate
Remission of CD

CD remission;
766 patients (73.3%)

R Studio 1.2 (Vienna, Austria); IBM SPSS
23 (Armonk, NY, USA); Python 3.6

(Wilmington, NC, USA),
Scikit-learn library

Stacking 0.74 Acc: 72%

Zhang et al., 2021 [40] Visual field recovery following
pituitary adenoma surgery

Visual field recovery;
79 patients (60.3%)

ITK-SNAP (Philadelphia, PA, USA); R
3.6.3 (Vienna, Austria) SVM 0.82 Acc: 70%; Sn: 65%; Sp: 80%; PPV:

70%; NPV: 80%

Zoli et al., 2020 [39] GTR, postsurgical remission, and
long-term control of disease GTR; 137 patients (91%) R 3.5.2 (Vienna, Austria) SVM 1.00

Acc: 100%; Sn: 100%; Sp: 100%;
PPV: 100%; NPV: 100%; F1 score:

100%; Brier score: 0.097

CD = Cushing Disease; GTR = Gross-Total Resection; CSF = Cerebrospinal Fluid; NFPA = Non-Functioning Pituitary Adenoma; SVM = Support Vector Machine; GBDT = Gradient
Boosting Decision Tree; RF = Random Forest; k-NN = k-Nearest Neighbors; GLMboost = Generalized Linear Model Boost; Acc = Accuracy; Sn = Sensitivity; Sp = Specificity;
PPV = Predictive Positive Value; NPV = Negative Predictive Value; RMSLE = Root Mean Squared Logarithmic Error; * studies that only used radiomics.
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3.3. Report Assessment

Overall, adherence to TRIPOD among the studies had a median of 65% (IQR = 60–72%),
ranging from 43% to 83. Figure 2 presents the proportions of adhered items across the
included studies. The overall reporting of TRIPOD items was particularly low regarding
abstract completeness of report, where no article fulfilled the criteria of the TRIPOD Adher-
ence Form. Items concerning the report of title and performance measures (considered as
adhered when discrimination with confidence intervals, calibration measure, and comple-
mentary metrics, such as accuracy, where provided) followed as the most underreported
aspects—both with 12% of average adherence.
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3.4. Models’ Assessment

All models presented AUC measures to assess discrimination. The median reported
AUC was 0.84 (IQR = 0.80–0.91). Figure 3 shows the AUC values reported for each of the
subgroups included in this review. Moreover, calibration methods were not reported in
15 studies. When reported, the calibration methods used were the Hosmer–Lemeshow
test (three studies) [36,45], calibration plot (one study) [36], calibration slope (two stud-
ies) [18,38], calibration intercept (two studies) [18,38], and the Brier Score (one study) [39].
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Figure 3. Box and whisker plots of AUC by categories of (A) clinical outcomes, (B) population studied,
and (C) machine learning type of algorithm category. Center lines show the medians; box limits indi-
cate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and
75th percentiles, AUC values of each individual study are represented by dots. PA = Pituitary Ade-
noma; NFPA = Nonfunctioning Pituitary Adenoma; Functioning Pituitary Adenoma; CD = Cushing
Disease; GLM = Generalized Linear Model; RF = Random Forest; SVM = Support Vector Machine;
NN = Neural Network.

All studies reported internal validation. The most common approach was based
on k-fold cross-validation (k-CV) (11 studies) [18,27,28,32,33,37,38,40,42–44]. In terms of
algorithm’s type, ML models derived from support vector machines (SVMs) were the most
reported (five studies) [32,33,35,39,43]. They were followed by neural networks (Neural
Networks) (four studies) [27,34,41,46], and Random Forest (RF) (three studies) [28,42,43].
The median AUC for SVM, NNs, and RFs was 0.82 (IQR = 0.81–0.84), 0.91 (IQR = 0.89–0.92),
and 0.84 (IQR = 0.81–0.85).
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3.5. Clinical Outcomes Predicted
3.5.1. Tumor Management and Recurrence

Two studies assessed tumor recurrence as the main outcome [32,44]. Both studies used
only radiomics features to build the models. AUCs were of 0.78 [32] and 0.96 [44]; however,
confidence intervals were not reported for these measures. The sample size among these
studies ranged from 27 [44] to 50 [32]. Only one study reported how hyperparameters
were defined [44]. Both models used k-fold CV approach for internal validation. Neither
study reported calibration measures. Both studies were conducted in patients with non-
functioning pituitary adenomas (NFPA).

The use of radiomics approaches was prominent among studies predicting manage-
ment and recurrence of pituitary tumors, exclusively inputting raw imaging data [32,44].
Zhang et al. described three important features extracted from preoperative MRI and
selected by an SVM classifier to compose their ML model to predict post-surgery recurrence
in NFPA [32]. Machado et al. also evaluated the prognostic value of MRI radiomics in an
ML model to predict recurrence of NFPA after surgery [44]. The most important features,
selected by a k-NN algorithm, to integrate the model were related to parameters of energy,
total-energy, and non-uniformity, which cannot be detected by the naked-eye but represent
valuable information to be accessed for prediction purposes [44]. Gross-total resection
(GTR) of tumor after pituitary surgery was the outcome predicted in one study [27] and
presented as a secondary outcome in two other studies [38,39] based on structured infor-
mation (i.e., tabular/spreadsheet data). The algorithms utilized were NN [27], k-NN [39],
and generalized linear model (GLM) [38]. Staartjes and colleagues presented a polarity
correlation plot, and found that GTR was prominently correlated with the Knosp grade
and the ratio between the maximum adenoma diameter and the intracarotid distance in C4
horizontal segment [27].

Regarding clinical variables, Zhang et al. found that visual disturbance, extrasellar
extension, hypopituitarism, and symptoms of sexual hormones were related to persis-
tent/recurrent disease in NFPA [33]. Furthermore, prior surgery was the most important
predictor of GTR, while age and Hardy grading were predictors of biochemical remission
and cerebrospinal fluid (CSF) leak, respectively, in a study by Zanier et al. [38].

AUCs values were 0.96, 0.98, and 0.68, respectively. Sample sizes were of 140 [27],
151 [39] and 307 [38] participants. Two of the studies used a k-fold CV [27,38] and the other
performed a random split sample to obtain an internal validation group [39]. Calibration
was reported by two of the studies (Brier Score [39], calibration slope [38], and calibra-
tion intercept [38]). Two studies reported the method to handle missing values (single
imputation predictive mean matching [27] and k-NN [38]), although neither reported the
missingness distribution across features. Confidence intervals were reported by two of
the articles [27,38]. The approach to define hyperparameters was mentioned in one of
the studies [39].

3.5.2. Endocrine Outcomes

Ten studies proposed models to predict endocrinological outcomes after pituitary
surgery [18,35–37,39–41,43,45]. Two studies presented models based exclusively on ra-
diomic features [35,45]. Median AUC was 0.85 (IQR = 0.81–0.91). Sample size ranged from
47 [37] to 1045 [40] patients with a median sample size of 219 (IQR = 151–668). Five studies
reported confidence intervals of their respective AUCs [18,40–42,45].

Definition of endocrine outcomes varied across studies. Acromegaly remission was
considered off-medication GH levels (nadir GH < 0.4 µg/L during an oral glucose tolerance
test, and/or random GH < 1.0 µg/L) or normalized IGF-1 (<1) at 6-month follow-up after
surgery by Qiao et al. to forecast response of functioning pituitary adenomas (FPA) to
surgery [18]. Fan et al. defined the endocrine outcome, postoperative remission of GH-
secreting FPAs, as random serum GH < 1 ng/mL or a GH nadir < 0.4 ng/mL during an
oral glucose tolerance test at 12 weeks after surgical treatment [45]. Two studies investi-
gated CD remission, defining it as morning serum cortisol values falling below 5 µg/dL
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(138 nmol/L) or 24 hUFC levels falling below 20 µg (56 nmol) in the 7-day postopera-
tive follow-ups [40,42]. Zoli et al. defined CD postsurgical remission as demonstrated
hypersecretion normalization at 1 to 3–6 months after surgery (the first surgery in case of
repeated procedures) [39]. Kocak et al. defined response to somatostatin analogues (SAs)
in acromegaly after surgery considering patients resistant if GH or age-adjusted IGF-1
levels were still elevated after 6 months of therapy with octreotide (40 mg per 28 days) or
lanreotide (120 mg per 28 days) [37]. Finally, Nadezhdina et al. defined their endpoint, CD
recurrence, as one of the following: increased evening salivary cortisol level; no suppression
of serum cortisol below 50 nmol/L (1.8 µg/dL) during the 1-mg dexamethasone suppres-
sion test; increased 24 h urine free cortisol level; increased concentrations and abnormal
secretory rhythms of ACTH and cortisol; or clinical recurrence of hypercorticism [41].

Tumor invasiveness, usually presented using Knosp grade, was reported as being
among the top three most important variables in the majority of the studies on endocrino-
logical outcomes [35,36,39,40,45]. Tumor size was also of main importance for two stud-
ies [39,40]. The post-operative levels of GH were the second most cited among the main
important variables reported in the studies [18,35,36]. In addition, ACTH and cortisol were
among the most important variables of one study [42].

Regarding clinical variables, Fan et al. found that age, hypertension, ophthalmic
disorders, IGF-1, elevated GH, Knosp grade and maximal tumor diameter were associated
with endocrine response after surgery in patients with acromegaly [36]. In patients with
CD, Zhang et al. found the highest AUC with four variables including cavernous sinus
invasion in MRI, first operation, preoperative ACTH, and tumor size [40]; in another study
by Liu et al., top predictors for recurrence in this subset of patients were post-operative
morning serum cortisol and ACTH nadir, and age [42]. The relevance of cortisol and ACTH
levels in prediction models was also confirmed by Nadezhdina et al. [41].

Four papers presented models developed on acromegaly patients [18,35–37], with
four studying Cushing disease (CD) patients [39–42], one studying functional pituitary
adenoma (FPA) patients [46], and one studying NFPA [43]. Calibration methods were
reported in five studies [18,35,36,39,45]. Approaches to handle missing data were com-
plete case analysis (one study) [41], imputation of variable median (one study) [42] and
k-NN imputation (two studies) [36,40]; five articles did not report handling of missing
data [18,35,37,39,45]. Methods used for defining optimal hyperparameters were reported
in seven studies [35,36,39,40,42,43,45]. For internal validation, five studies reported k-fold
CV (five-fold and ten-fold) [18,37,42,43,45], and one study reported leave-one-out CV
(LOOCV) [35]. One study performed an external validation in a sample of 52 patients
and achieved an AUC of 0.87 [18]. The median of completeness of the TRIPOD was 71.9%
(IQR = 64–78%).

3.5.3. Intra- and Post-Operative Complications

Seven studies presented models to predict complications during or after pituitary
surgery [28–30,33,34,38,46]. Median AUC value was 0.84 (IQR = 0.75–0.84). The sample size
ranged from 131 [33] to 15,487 [29] and presented a median of 348 (IQR = 207–400) patients.
Confidence intervals were reported in four studies [28,29,34,46], although Hollon et al.
provided them for accuracy instead for AUC [28].

Two studies adopted broad criteria defining early complications from pituitary surgery,
aiming to predict at least one among a list of several events [28,29]. One of these analyzed
more than 15 potential complications—e.g., extended length of stay or stroke—and pre-
sented as most influential in their model the disturbances of sodium, age, and body mass
index (BMI) [28]. Muhlestein et al. proposed the prediction of any complication as a
secondary analysis, aiming primarily to predict hospitals’ total charges in an administrative
dataset of almost 15,000 patients [29]. Their model revealed that age, fluid or electrolyte ab-
normalities, and admission type were the most important variables to predict complications
in that sample [29].
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Staartjes et al. proposed a ML model to estimate risk of intraoperative CSF leak-
age using an NN algorithm [34]. They reported a high suprasellar Hardy grade, prior
transsphenoidal surgery, and age as contributing most to the outcome prediction [34]. In
an effort to predict suboptimal outcomes—defined as hormonal non-remission or MRI
evidence of recurrence/progression despite adjuvant treatment—Shahrestani et al. built an
NN model and inputted clinical variables that were significant in a multivariate statistical
analysis [46]. The authors found that additional surgery, preoperative visual deficit not
improved after surgical intervention, and transient diabetes insipidus increased the odds
of suboptimal outcomes [34].

Five studies reported methods to handle missing values. The models were developed
on general samples of PAs patients (four studies) [28–30,34], on a sample of mixed types
of FPAs [46], and on a sample of acromegaly patients [38]. Methods for selection of
hyperparameters were reported by three studies [28,30,34]. Calibration techniques were
mentioned by one of these studies (calibration slope and calibration intercept) [38]. The
median of completeness of the TRIPOD was 62.1% (IQR = 52–63%).

4. Discussion

This systematic review addressed the quality and breadth of studies using ML method-
ology to predict outcomes of pituitary surgery. Heterogeneity in model reporting may
impact the full understanding of ML’s role in outcome prediction for patients with pituitary
tumors and makes it challenging to conduct a meta-analysis of existing studies. Nonethe-
less, interest in the topic has substantially increased in the last decade, which highlights the
importance of adequate reporting to maximize the usefulness of this approach in clinical
research and patient care.

4.1. Clinical Findings

Regarding prediction of pituitary surgery outcomes by ML methods, an important
part to ensure its use in clinical practice relies on variable importance analysis. In this
review, aspects of tumor invasiveness were mentioned among the top predictors in the
majority of the studies, regardless of the classifying system adopted (Table 5). These results
agree with a previous review which found that cavernous sinus invasion is the best single
predictor of tumor remission [48]. Knosp grade is also mentioned as a good predictor for
GTR in previous studies [49,50]. Despite the existence of other tumor invasiveness scales,
such as the Hardy Grade, these are less used in the actual clinical context [51]. Nevertheless,
those tools present limitations such as allocating patients into large groups of risk and not
tailoring individual characteristics, as well as problems in poor interrater reliability [52].

In additional to measures of invasiveness, endocrinological parameters integrated
most of the models (Table 5). Age was the most common demographic variable utilized in
the models and was the one demographic with high importance reported across different
studies (Table 5). Externally validated ML algorithms can play a major role in precise
risk stratification and in identifying patients who will not likely benefit from surgery or
adjuvant therapy [16,49].

Furthermore, the analysis of clinical images through ML algorithms is prominent in
ML models to predict pituitary surgery outcomes (Table 5). ML algorithms are trained to
mine quantitative imaging features from medical images, looking for patterns between
the images and outcome of interest [53,54]. Fan et al. and Niu et al. presented a direct
comparison of their results using ML models inputted with radiomics and clinical features
against the predictive power of Knosp grade alone [35,55]. In both cases, the ML-based
approaches overperformed the traditional tool. Indeed, the studies from our review that
combined radiomic signatures with clinical features and other types of structured data
presented better performance than both forms—radiomics or structured data—alone.
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Table 5. Tabulated data utilized as input into the ML models.

Study Demographics Medical History Tumor Morphology and Behavior Endocrine Parameters Surgical Aspects Histological

Fan et al., 2019 [35] Age; sex NA Diagnosis type of tumor; KG NA NA NA

Fan et al., 2019 [45] NA NA KG; tumor consistency; tumor volume;
Random GH; IGF-1 standard

deviation score; GH inhibition
ratio;

NA P53

Fan et al., 2020 [36] Age
Hypertension, ophthalmic

disorders, maximal
tumor diameter

KG GH, IGF-1, nadir GH, NA NA

Fang et al., 2021 [43] NA NA NA Preoperative hormone levels (SH,
FSH, LH, PRL, ACTH NA NA

Hollon et al., 2018 [28] Age; gender;
race; BMI

Prior cardiovascular, renal,
pulmonary or hepatic disease;
prior TSS, prior craniotomy;

current blood thinners intake;
prior visual deficit; use of

postoperative desmopressin

Tumor type
Postoperative sodium low;

postoperative sodium elevated;
diabetes insipidus

NA NA

Kocak et al., 2018 [37] NA NA NA NA NA NA

Liu et al., 2019 [42] Age Disease course; NA

Postoperative levels of morning
ACTH (nadir), morning serum

cortisol (nadir), 24 h UFC;
preoperative levels of morning

ACTH, and serum cortisol

NA NA

Machado et al., 2020 [44] NA NA NA NA NA NA

Muhlestein et al., 2019 [29] NA NA NA NA NA NA

Nadezhdina et al., 2019 [41] Sex; age Duration of disease (months) Type of tumor; Postoperative morning levels of
ACTH and cortisol NA NA

Qiao et al., 2021 [47] Age; gender;
BMI

TSS; specific pharmacotherapy;
radiotherapy

Tumor dimensions; KG; clivus
invasiveness; intraoperative

cavernous sinus invasion; tumor
texture; presence of pseudocapsule;

Serum random GH; serum IGF-1
level; preoperative

hypopituitarism; preoperative
diabetes insipidus

Surgeons’ experience (based
on annual pituitary operations
performed surgical approach;

total resection or subtotal

NA

Shahrestani et al., 2021 [46] NA
Hospital LOS (days); prior

craniotomy; preoperative visual
deficit not improved after surgery;

NA
Transient diabetes Insipidus; low

cortisol axis low GH axis;
panhypopituitarism; acromegaly

NA MIB-1/Ki-67
labeling index
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Table 5. Cont.

Study Demographics Medical History Tumor Morphology and Behavior Endocrine Parameters Surgical Aspects Histological

Staartjes et al., 2018 [27] Sex; age TSS

KG; HG; tumor invasiveness; ICD at
the C6, C4 horizontal, and C4 vertical
segments; R ratio between maximum

adenoma diameter and ICD C4
horizontal segment; adenoma
secretory status, volume, and

diameters in 3 axes

NA NA NA

Staartjes, et al., 2019 [34] Sex; age TSS

KG; HG; tumor invasiveness; ICD at
the C6, C4 horizontal, and C4 vertical
segments; R ratio between maximum

adenoma diameter and ICD C4
horizontal segment; adenoma
secretory status, volume, and

diameters in 3 axes

NA Targeted level of resection NA

Voglis et al., 2019 [30]
Sex; Age;
weight;

height; BMI
TSS; KG; HG

Hypofunctional ACTH and
GNRH in preoperative levels;

prior diabetes insipidus;
preoperative levels of potassium,
sodium, cortisol, IGF-1, fT3, fT4,

TSH, LH, FSH, and PRL

NA NA

Zanier et al., 2021 [38] Age; gender TSS KG; HG; tumoral size NA NA NA

Zhang et al., 2020 * [32] NA NA NA NA NA NA

Zhang et al., 2021 * [33] NA NA NA NA NA NA

Zhang et al., 2021 [40] NA TSS Cavernous sinus invasion on
preoperative MRI; tumor size Preoperative ACTH NA NA

Zoli et al., 2020 [39] Age; sex TSS; specific pharmacotherapy;
radiotherapy

Tumor size; HG; KG; bony tumor or
cavernous invasiveness

Preoperative hypopituitarism;
preoperative diabetes insipidus NA NA

LOS = Length of stay; Body Mass Index = BMI; HG = Hardy Grade; KG = Knosp Grade; TSS = Transsphenoidal surgery; ICC = Intercarotid distances; UFC = urinary free cortisol;
NA: Not Applicable, i.e., the respective paper did not present variables inset in the model regarding this type of data; * studies that only used radiomics.



Brain Sci. 2023, 13, 495 16 of 22

The open-source availability of any reported model is a good practice in research and
contributes to transparency as well as to the presentation of the real value of the developed
model for clinical practice. The description of nomograms is one of the forms to make
a model useful and valuable in practice. In our review, nomograms were presented in
two papers, both carried out by Fan et al. [35,45]. In one of them, the authors presented
a nomogram that uses the radiomic signatures obtained using the ML algorithm and the
Knosp grade [45]. In the other study, the nomogram was composed of radiomics signature,
random GH, IGF-1 standard deviation score, GH inhibition ratio, tumor volume, Knosp
grade, tumor consistency, and P53 value [35]. Three studies provided access to their models,
deploying them as web-based clinical calculators: Qiao et al. for predicting post-surgical
acromegaly remission based on demographics, tumor characteristics and hormone levels
(https://deepvep.shinyapps.io/Acropred/, accessed on 1 December 2022); Zhang et al.
to predict immediate remission of histology-positive CD patients after surgery (http://
smk921101.pythonanywhere.com/index, accessed on 1 December 2022); and Nadezhdina
et al. for the prediction of recurrence and remission within 3 years in patients with Cushing
(https://medcalc.appspot.com/eng_ver, accessed on 1 December 2022) [18,40,41].

4.2. Report Assessment

As measured by the TRIPOD, the rates of report completeness were suboptimal for
several items of the overall assessment. However, certain TRIPOD items are significantly
more important to ensure research utility and quality than others. For instance, although
only one article showed completeness of reporting in the Title and Abstract—Items 1 and
2, respectively—the lack of information on how missing data was handled and how the
models were calibrated has a greater impact on reviewers’ ability to assess the quality of
these studies.

Calibration measures were reported by only three studies, which demonstrates a
potential for improvement in future projects. Calibration is used to assess reliability of
risk predictions of a given model. Thus, a good calibration implies predicting an event
for a person with a specific feature matching with the proportion of all people in the
population with similar feature values who experienced the event [11]. Therefore, even
with a good discriminative performance described by AUC, it is not enough to provide a
critical appraisal of the model and, consequently, not enough to properly guide clinical
decisions. To make this possible, both a discrimination (e.g., AUC) and a calibration
measure (e.g., Brier score) should be presented [56]. The lack of information about the latter
can imply misinterpretation of a given ML model, lower clinical usefulness, compromising
potential external validation by others, and unnecessary risk to patients.

Information on how hyperparameters of the final models were defined was mentioned
in 10 studies [28,30,34–36,39,40,42,44,45]. Hyperparameters settings significantly interfere
in the final performance of the prediction model [57]. The most common approach utilized
in the studies for hyperparameters selection was Grid Search CV—a method that iteratively
tests all potential values for hyperparameters, choosing the ones with the result in the
higher values of the metric of interest (e.g., AUC, F1-Score or accuracy)—which is also
the method most commonly reported in the literature, although it is not always an ideal
choice, given the chances of overfitting training datasets [58]. In addition, even the same
model algorithm often needs different hyperparameter settings when training on different
datasets during out-of-sample validations. For instance, in deep learning (DL) models,
hyperparameters such as the number of layers or the dropout rate can dramatically affect
performance in a NN algorithm [57,58]. Publishing the algorithm code, including exact
hyperparameters utilized, allows for a rigorous assessment of the model and prevents
redundant research from being undertaken.

Only two studies presented external validation [18,38]. External data are significantly
important to assess real-world performance since they can measure performance losses and
provide insight about biases in some step of the model’s development. External validation
is recommended to be performed at a different time (temporal validation) or location

https://deepvep.shinyapps.io/Acropred/
http://smk921101.pythonanywhere.com/index
http://smk921101.pythonanywhere.com/index
https://medcalc.appspot.com/eng_ver
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(geographical validation) from the original dataset which derived the initial ML model.
Every model with only internal validation is marked by the idiosyncrasies of the original
population and may thus perform poorly in others. This is true for a wide range of factors,
including changes in policies, practice and demographics [59,60]. Methods for handling
missing values were fully reported by three of the studies [29,42,46]. When the handling of
missing data was mentioned but not fully reported, it was usually due to not reporting the
number of missing values, the variable where the imputation was performed or the number
of imputations, an important factor for the reliability of a model. However, from the studies
that explicitly described the method used to replace the missing data, only 10 reported
the used approach satisfactorily [27–30,34,36,40–42,46]. When data are considered missing
at random, multiple variable imputations, they are usually considered superior to single
imputation and complete case analysis by preserving the natural variability of the missing
values, and retains more useful information, respectively [61,62]. Within our results, only
one study reported a form of multiple imputation [46].

4.3. ML versus Traditional Statistical Methods

Despite the exponential growth of AI research in medical areas during the last
two decades, the real advantage of the use of ML over traditional statistical methods
such as regression analyses remains under question. A systematic review conducted by
Christodoulou et al. showed that discriminative measures of ML models to predict clinical
risk compared with logistic regression were significantly higher only in comparisons with
a high risk of bias and similar in the comparisons with low risk [63]. A common rationale
for the development of ML models among the studies reviewed above was the capability
of ML to identify and handle nonlinear interactions, which traditional methods would not
perform so well with. Other authors report unsupervised ML’s potential to analyze large,
unorganized, and highly complex amounts of information, channeling the potential of big
data to create prediction models [64].

There is more evidence for outperformance by ML compared to traditional models in
neurosurgery, as reviewed by Azimi et al. regarding applications of NNs [65]. Specifically,
this advantage was also reported in studies about pituitary-related ML applications [17,47].
When reporting the performance of prediction models on sellar diseases, Qiao reported
a higher predictive power of ML algorithms compared to conventional regression meth-
ods but acknowledges concerns about the models such as the fact that ML methods are
more time- and data-consuming compared to traditional statistics and less effective in
several cases [47].

Another important difference between ML and traditional statistics lies in the inter-
pretability of each predictor and the interpretability of the final model. While traditional
statistics can offer concrete mathematical rationales between inputs and outputs and con-
sequently optimal explicability, ML is often labeled as a “black box”. That is, even with
plain knowledge about all model’s inputs and outputs, the generalization of the internal
decision-making process is not feasible. Some authors described this phenomenon as a
trade-off between performance and explicability, where one important aspect is sacrificed
to obtain an optimal outcome in the other, also relevant [66]. In 2018, the European Union
pioneered inserting in its General Data Protection Regulation that “meaningful information
about the logic involved” in all decisions made by artificially intelligent systems should be
provided [67]. This “right to explanation” has grounded a movement in favor of explain-
able AI models, which advocates that even with extremally high metrics, when choosing
between models with inherent complexity and more simple ones, (e.g., Decision Trees or
Random Forest) that provides interpretability, the latter should be taken [68].

Some solutions have been proposed to solve the explicability issue in ML. An innova-
tive form for assessing variables’ importance robustly and which reached wide use recently
is the Shapley additive explanation (SHAP) approach, reported as an explainer for ML
models by Lundberg and colleagues [69]. Originally developed in the context of game
theory as a form to look after theoretically optimal solutions for cooperative games, SHAP
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values can be used to assign quantitative distributions of the total risk to individual model
features. In brief, SHAP values apply cooperative game theory concepts to assign theoreti-
cally optimized distributions of the total risk of a given outcome to the individual model
features [70]. In game theory, this is analogous to assigning each player on a team a ranked
value for their contributions towards the team’s overall outcome. Nevertheless, even with
potential solutions to the interpretability issue inherent to ML, there is no current consensus
about a reliable metric or tool to assess the quality or accuracy of these explanations [68].

4.4. ML-Specific Reporting Guidelines

It is expected that a best practices culture regarding all the steps towards ML models’
clinical implementation will be promoted and encouraged by adherence to ML-specific
protocols and statements. To illustrate the guidelines’ potential, clinical trials’ reporting
had a significant improvement in quality after the release of CONSORT and SPIRIT, par-
ticularly when the adherence to them started to be mandatory amongst peer-reviewed
journals [71,72]. Moreover, a crucial milestone to successfully implementing “good practices
on ML modelling” also depends on establishing those proper standards as a mandatory re-
quirement to further ML-model publication by peer-reviewed journals in the medical area.

4.5. Future Perspectives

To date, pituitary surgery has received less exploration than other neurosurgical
entities regarding ML modeling. Other potentially relevant approaches may be pursued,
particularly concerning the use of radiomics as a part of the development of new algorithms.
Innovative applications such as the use of intraoperative MRI may present a pathway to
clinical significance. Particular subjects, e.g., acromegaly condition, may benefit from future
original studies and reviews scrutinizing surgical outcomes predictions and aspects such
as diagnosis (e.g., facial recognition) or response to medical therapy.

4.6. Strengths and Limitations

This systematic review has inherent limitations. First, the data are substantially
heterogeneous across the studies, limiting further comparison between the studies or meta-
analytic approaches. Second, this review focused only on ML models predicting pituitary
surgery outcomes and analyzed the quality of report of the respective studies. Thus, our
review cannot comment on the performance of traditional statistical methods. Overall,
evidence is limited by the lack of transparency in the reporting of the studies. This scope
of literature could also benefit from a formal assessment of the risk of bias of published
studies, for example, with the use of PROBAST (Prediction model Risk Of Bias Assessment
Tool) [73]. The use of TRIPOD-AI guidelines may facilitate a more comprehensive reporting
of ML model development methods in future publications. This review also has several
strengths. Firstly, the review was performed under two guidelines: PRISMA checklist
and TRIPOD Adherence Form, aiming for consistency and transparency. We provided the
rationales and importance of some of the most poorly reported items in the TRIPOD which
could enhance and provide insight for further reviews, as well as for future development
and validation of ML models. To the best of our knowledge, this is the first systematic
review to include assessment of report completeness in regard to ML in neurosurgery.
Finally, this review provides a comprehensive account of the use of ML methods to predict
patient outcomes after pituitary surgery.

5. Conclusions

Applications of ML in the prediction of pituitary outcomes are still nascent. Even
though the articles presented in this review have a broad range of applications on pituitary
surgery, current data suggest that there is an area of opportunity for improving the quality
of ML model reporting. The use of report guidelines should be encouraged mainly by
peer-reviewed journals. The release of TRIPOD-AI is expected to address this need and
contribute to ML research applied to healthcare predictions.



Brain Sci. 2023, 13, 495 19 of 22

Author Contributions: Conceptualization, M.M.R. and J.P.A.; methodology, M.M.R., L.d.M.F., A.J.W.
and J.P.A.; software, M.M.R., L.d.M.F., A.J.W. and J.P.A.; formal analysis, M.M.R. and J.P.A.; investiga-
tion, M.M.R., L.d.M.F. and A.J.W.; data curation, S.L.S., O.U.O. and J.P.A.; writing—original draft
preparation, M.M.R.; writing—review and editing, J.P.A., C.P.-V., S.L.S., K.L.C., O.U.O. and A.Q.-H.;
visualization, M.M.R.; supervision, A.Q.-H. and J.P.A.; project administration, J.P.A. All authors have
read and agreed to the published version of the manuscript.

Funding: No funding was received for conducting this study.

Institutional Review Board Statement: Institutional Review Board Statement Ethical review and
approval were waived because this study is a systematic review.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to privacy and ethical restrictions.

Conflicts of Interest: The authors have no financial or proprietary interest in any material discussed
in this article.

References
1. Sivakumar, W.; Chamoun, R.; Nguyen, V.; Couldwell, W.T. Incidental Pituitary Adenomas. Neurosurg. Focus 2011, 31, E18.

[CrossRef] [PubMed]
2. Ezzat, S.; Asa, S.L.; Couldwell, W.T.; Barr, C.E.; Dodge, W.E.; Vance, M.L.; McCutcheon, I.E. The Prevalence of Pituitary Adenomas:

A Systematic Review. Cancer 2004, 101, 613–619. [CrossRef] [PubMed]
3. Li, A.; Liu, W.; Cao, P.; Zheng, Y.; Bu, Z.; Zhou, T. Endoscopic versus Microscopic Transsphenoidal Surgery in the Treatment of

Pituitary Adenoma: A Systematic Review and Meta-Analysis. World Neurosurg. 2017, 101, 236–246. [CrossRef] [PubMed]
4. Gondim, J.A.; Almeida, J.P.C.; Albuquerque, L.A.F.; Schops, M.; Gomes, E.; Ferraz, T.; Sobreira, W.; Kretzmann, M.T. Endoscopic

Endonasal Approach for Pituitary Adenoma: Surgical Complications in 301 Patients. Pituitary 2011, 14, 174–183. [CrossRef]
[PubMed]

5. Gondim, J.A.; Schops, M.; de Almeida, J.P.C.; de Albuquerque, L.A.F.; Gomes, E.; Ferraz, T.; Barroso, F.A.C. Endoscopic Endonasal
Transsphenoidal Surgery: Surgical Results of 228 Pituitary Adenomas Treated in a Pituitary Center. Pituitary 2010, 13, 68–77.
[CrossRef] [PubMed]

6. Almeida, J.P.; Ruiz-Treviño, A.S.; Liang, B.; Omay, S.B.; Shetty, S.R.; Chen, Y.-N.; Anand, V.K.; Grover, K.; Christos, P.; Schwartz,
T.H. Reoperation for Growth Hormone-Secreting Pituitary Adenomas: Report on an Endonasal Endoscopic Series with a
Systematic Review and Meta-Analysis of the Literature. J. Neurosurg. 2018, 129, 404–416. [CrossRef]

7. Asha, M.J.; Takami, H.; Velasquez, C.; Oswari, S.; Almeida, J.P.; Zadeh, G.; Gentili, F. Long-Term Outcomes of Transsphenoidal
Surgery for Management of Growth Hormone-Secreting Adenomas: Single-Center Results. J. Neurosurg. 2019, 133, 1360–1370.
[CrossRef]

8. Johnson, K.W.; Torres Soto, J.; Glicksberg, B.S.; Shameer, K.; Miotto, R.; Ali, M.; Ashley, E.; Dudley, J.T. Artificial Intelligence in
Cardiology. J. Am. Coll. Cardiol. 2018, 71, 2668–2679. [CrossRef]

9. Niel, O.; Bastard, P. Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. Am. J. Kidney
Dis. 2019, 74, 803–810. [CrossRef]

10. Hogarty, D.T.; Mackey, D.A.; Hewitt, A.W. Current State and Future Prospects of Artificial Intelligence in Ophthalmology: A
Review. Clin. Experiment. Ophthalmol. 2019, 47, 128–139. [CrossRef]

11. Shah, N.D.; Steyerberg, E.W.; Kent, D.M. Big Data and Predictive Analytics: Recalibrating Expectations. JAMA 2018, 320, 27–28.
[CrossRef]

12. Wilkinson, J.; Arnold, K.F.; Murray, E.J.; van Smeden, M.; Carr, K.; Sippy, R.; de Kamps, M.; Beam, A.; Konigorski, S.; Lippert, C.;
et al. Time to Reality Check the Promises of Machine Learning-Powered Precision Medicine. Lancet Digit. Health 2020, 2, e677–e680.
[CrossRef]

13. Macyszyn, L.; Akbari, H.; Pisapia, J.M.; Da, X.; Attiah, M.; Pigrish, V.; Bi, Y.; Pal, S.; Davuluri, R.V.; Roccograndi, L.; et al. Imaging
Patterns Predict Patient Survival and Molecular Subtype in Glioblastoma via Machine Learning Techniques. Neuro Oncol. 2016,
18, 417–425. [CrossRef]

14. Oermann, E.K.; Rubinsteyn, A.; Ding, D.; Mascitelli, J.; Starke, R.M.; Bederson, J.B.; Kano, H.; Lunsford, L.D.; Sheehan, J.P.;
Hammerbacher, J.; et al. Using a Machine Learning Approach to Predict Outcomes after Radiosurgery for Cerebral Arteriovenous
Malformations. Sci. Rep. 2016, 6, 21161. [CrossRef]

15. Abouzari, M.; Rashidi, A.; Zandi-Toghani, M.; Behzadi, M.; Asadollahi, M. Chronic Subdural Hematoma Outcome Prediction
Using Logistic Regression and an Artificial Neural Network. Neurosurg. Rev. 2009, 32, 479–484. [CrossRef]

16. Senders, J.T.; Arnaout, O.; Karhade, A.V.; Dasenbrock, H.H.; Gormley, W.B.; Broekman, M.L.; Smith, T.R. Natural and Artificial
Intelligence in Neurosurgery: A Systematic Review. Neurosurgery 2018, 83, 181–192. [CrossRef]

17. Saha, A.; Tso, S.; Rabski, J.; Sadeghian, A.; Cusimano, M.D. Machine Learning Applications in Imaging Analysis for Patients with
Pituitary Tumors: A Review of the Current Literature and Future Directions. Pituitary 2020, 23, 273–293. [CrossRef]

http://doi.org/10.3171/2011.9.FOCUS11217
http://www.ncbi.nlm.nih.gov/pubmed/22133173
http://doi.org/10.1002/cncr.20412
http://www.ncbi.nlm.nih.gov/pubmed/15274075
http://doi.org/10.1016/j.wneu.2017.01.022
http://www.ncbi.nlm.nih.gov/pubmed/28104521
http://doi.org/10.1007/s11102-010-0280-1
http://www.ncbi.nlm.nih.gov/pubmed/21181278
http://doi.org/10.1007/s11102-009-0195-x
http://www.ncbi.nlm.nih.gov/pubmed/19697135
http://doi.org/10.3171/2017.2.JNS162673
http://doi.org/10.3171/2019.6.JNS191187
http://doi.org/10.1016/j.jacc.2018.03.521
http://doi.org/10.1053/j.ajkd.2019.05.020
http://doi.org/10.1111/ceo.13381
http://doi.org/10.1001/jama.2018.5602
http://doi.org/10.1016/S2589-7500(20)30200-4
http://doi.org/10.1093/neuonc/nov127
http://doi.org/10.1038/srep21161
http://doi.org/10.1007/s10143-009-0215-3
http://doi.org/10.1093/neuros/nyx384
http://doi.org/10.1007/s11102-019-01026-x


Brain Sci. 2023, 13, 495 20 of 22

18. Qiao, N.; Shen, M.; He, W.; He, M.; Zhang, Z.; Ye, H.; Li, Y.; Shou, X.; Li, S.; Jiang, C.; et al. Machine Learning in Predicting Early
Remission in Patients after Surgical Treatment of Acromegaly: A Multicenter Study. Pituitary 2021, 24, 53–61. [CrossRef]

19. Liu, X.; Cruz Rivera, S.; Moher, D.; Calvert, M.J.; Denniston, A.K.; SPIRIT-AI and CONSORT-AI Working Group. Reporting
Guidelines for Clinical Trial Reports for Interventions Involving Artificial Intelligence: The CONSORT-AI Extension. Lancet Digit.
Health 2020, 2, e537–e548. [CrossRef]

20. Rivera, S.C.; Liu, X.; Chan, A.-W.; Denniston, A.K.; Calvert, M.J.; SPIRIT-AI and CONSORT-AI Working Group. Guidelines
for Clinical Trial Protocols for Interventions Involving Artificial Intelligence: The SPIRIT-AI Extension. BMJ 2020, 370, m3210.
[CrossRef]

21. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Ann. Intern. Med. 2015, 162, 55–63. [CrossRef]

22. Heus, P.; Damen, J.A.A.G.; Pajouheshnia, R.; Scholten, R.J.P.M.; Reitsma, J.B.; Collins, G.S.; Altman, D.G.; Moons, K.G.M.; Hooft, L.
Uniformity in Measuring Adherence to Reporting Guidelines: The Example of TRIPOD for Assessing Completeness of Reporting
of Prediction Model Studies. BMJ Open 2019, 9, e025611. [CrossRef] [PubMed]

23. Heus, P.; Damen, J.A.A.G.; Pajouheshnia, R.; Scholten, R.J.P.M.; Reitsma, J.B.; Collins, G.S.; Altman, D.G.; Moons, K.G.M.;
Hooft, L. Poor Reporting of Multivariable Prediction Model Studies: Towards a Targeted Implementation Strategy of the TRIPOD
Statement. BMC Med. 2018, 16, 120. [CrossRef] [PubMed]

24. Ibrahim, H.; Liu, X.; Denniston, A.K. Reporting Guidelines for Artificial Intelligence in Healthcare Research. Clin. Experiment.
Ophthalmol. 2021, 49, 470–476. [CrossRef] [PubMed]

25. Collins, G.S.; Moons, K.G.M. Reporting of Artificial Intelligence Prediction Models. Lancet Lond. Engl. 2019, 393, 1577–1579.
[CrossRef]

26. Wang, W.; Kiik, M.; Peek, N.; Curcin, V.; Marshall, I.J.; Rudd, A.G.; Wang, Y.; Douiri, A.; Wolfe, C.D.; Bray, B. A Systematic Review
of Machine Learning Models for Predicting Outcomes of Stroke with Structured Data. PLoS ONE 2020, 15, e0234722. [CrossRef]

27. Staartjes, V.E.; Serra, C.; Muscas, G.; Maldaner, N.; Akeret, K.; van Niftrik, C.H.B.; Fierstra, J.; Holzmann, D.; Regli, L. Utility of
Deep Neural Networks in Predicting Gross-Total Resection after Transsphenoidal Surgery for Pituitary Adenoma: A Pilot Study.
Neurosurg. Focus 2018, 45, E12. [CrossRef]

28. Hollon, T.C.; Parikh, A.; Pandian, B.; Tarpeh, J.; Orringer, D.A.; Barkan, A.L.; McKean, E.L.; Sullivan, S.E. A Machine Learning
Approach to Predict Early Outcomes after Pituitary Adenoma Surgery. Neurosurg. Focus 2018, 45, E8. [CrossRef]

29. Muhlestein, W.E.; Akagi, D.S.; McManus, A.R.; Chambless, L.B. Machine Learning Ensemble Models Predict Total Charges and
Drivers of Cost for Transsphenoidal Surgery for Pituitary Tumor. J. Neurosurg. 2018, 131, 507–516. [CrossRef]

30. Voglis, S.; van Niftrik, C.H.B.; Staartjes, V.E.; Brandi, G.; Tschopp, O.; Regli, L.; Serra, C. Feasibility of Machine Learning Based
Predictive Modelling of Postoperative Hyponatremia after Pituitary Surgery. Pituitary 2020, 23, 543–551. [CrossRef]

31. Zhang, S.; Song, G.; Zang, Y.; Jia, J.; Wang, C.; Li, C.; Tian, J.; Dong, D.; Zhang, Y. Non-Invasive Radiomics Approach Potentially
Predicts Non-Functioning Pituitary Adenomas Subtypes before Surgery. Eur. Radiol. 2018, 28, 3692–3701. [CrossRef]

32. Zhang, Y.; Ko, C.-C.; Chen, J.-H.; Chang, K.-T.; Chen, T.-Y.; Lim, S.-W.; Tsui, Y.-K.; Su, M.-Y. Radiomics Approach for Prediction of
Recurrence in Non-Functioning Pituitary Macroadenomas. Front. Oncol. 2020, 10, 590083. [CrossRef]

33. Zhang, Y.; Chen, C.; Huang, W.; Cheng, Y.; Teng, Y.; Zhang, L.; Xu, J. Machine Learning-Based Radiomics of the Optic Chiasm
Predict Visual Outcome following Pituitary Adenoma Surgery. J. Pers. Med. 2021, 11, 991. [CrossRef]

34. Staartjes, V.E.; Zattra, C.M.; Akeret, K.; Maldaner, N.; Muscas, G.; Bas van Niftrik, C.H.; Fierstra, J.; Regli, L.; Serra, C. Neural
Network-Based Identification of Patients at High Risk for Intraoperative Cerebrospinal Fluid Leaks in Endoscopic Pituitary
Surgery. J. Neurosurg. 2019, 133, 329–335. [CrossRef]

35. Fan, Y.; Jiang, S.; Hua, M.; Feng, S.; Feng, M.; Wang, R. Machine Learning-Based Radiomics Predicts Radiotherapeutic Response
in Patients with Acromegaly. Front. Endocrinol. 2019, 10, 588. [CrossRef]

36. Fan, Y.; Li, Y.; Li, Y.; Feng, S.; Bao, X.; Feng, M.; Wang, R. Development and Assessment of Machine Learning Algorithms for
Predicting Remission after Transsphenoidal Surgery among Patients with Acromegaly. Endocrine 2020, 67, 412–422. [CrossRef]

37. Kocak, B.; Durmaz, E.S.; Kadioglu, P.; Polat Korkmaz, O.; Comunoglu, N.; Tanriover, N.; Kocer, N.; Islak, C.; Kizilkilic, O.
Predicting Response to Somatostatin Analogues in Acromegaly: Machine Learning-Based High-Dimensional Quantitative
Texture Analysis on T2-Weighted MRI. Eur. Radiol. 2019, 29, 2731–2739. [CrossRef]

38. Zanier, O.; Zoli, M.; Staartjes, V.E.; Guaraldi, F.; Asioli, S.; Rustici, A.; Picciola, V.M.; Pasquini, E.; Faustini-Fustini, M.; Erlic, Z.;
et al. Machine Learning-Based Clinical Outcome Prediction in Surgery for Acromegaly. Endocrine 2021, 75, 508–515. [CrossRef]

39. Zoli, M.; Staartjes, V.E.; Guaraldi, F.; Friso, F.; Rustici, A.; Asioli, S.; Sollini, G.; Pasquini, E.; Regli, L.; Serra, C.; et al. Machine
Learning-Based Prediction of Outcomes of the Endoscopic Endonasal Approach in Cushing Disease: Is the Future Coming?
Neurosurg. Focus 2020, 48, E5. [CrossRef]

40. Zhang, W.; Sun, M.; Fan, Y.; Wang, H.; Feng, M.; Zhou, S.; Wang, R. Machine Learning in Preoperative Prediction of Postoperative
Immediate Remission of Histology-Positive Cushing’s Disease. Front. Endocrinol. 2021, 12, 635795. [CrossRef]

41. Nadezhdina, E.Y.; Rebrova, O.Y.; Grigoriev, A.Y.; Ivaschenko, O.V.; Azizyan, V.N.; Melnichenko, G.A.; Dedov, I.I. Prediction of
Recurrence and Remission within 3 Years in Patients with Cushing Disease after Successful Transnasal Adenomectomy. Pituitary
2019, 22, 574–580. [CrossRef] [PubMed]

http://doi.org/10.1007/s11102-020-01086-4
http://doi.org/10.1016/S2589-7500(20)30218-1
http://doi.org/10.1136/bmj.m3210
http://doi.org/10.7326/M14-0697
http://doi.org/10.1136/bmjopen-2018-025611
http://www.ncbi.nlm.nih.gov/pubmed/31023756
http://doi.org/10.1186/s12916-018-1099-2
http://www.ncbi.nlm.nih.gov/pubmed/30021577
http://doi.org/10.1111/ceo.13943
http://www.ncbi.nlm.nih.gov/pubmed/33956386
http://doi.org/10.1016/S0140-6736(19)30037-6
http://doi.org/10.1371/journal.pone.0234722
http://doi.org/10.3171/2018.8.FOCUS18243
http://doi.org/10.3171/2018.8.FOCUS18268
http://doi.org/10.3171/2018.4.JNS18306
http://doi.org/10.1007/s11102-020-01056-w
http://doi.org/10.1007/s00330-017-5180-6
http://doi.org/10.3389/fonc.2020.590083
http://doi.org/10.3390/jpm11100991
http://doi.org/10.3171/2019.4.JNS19477
http://doi.org/10.3389/fendo.2019.00588
http://doi.org/10.1007/s12020-019-02121-6
http://doi.org/10.1007/s00330-018-5876-2
http://doi.org/10.1007/s12020-021-02890-z
http://doi.org/10.3171/2020.3.FOCUS2060
http://doi.org/10.3389/fendo.2021.635795
http://doi.org/10.1007/s11102-019-00985-5
http://www.ncbi.nlm.nih.gov/pubmed/31506907


Brain Sci. 2023, 13, 495 21 of 22

42. Liu, Y.; Liu, X.; Hong, X.; Liu, P.; Bao, X.; Yao, Y.; Xing, B.; Li, Y.; Huang, Y.; Zhu, H.; et al. Prediction of Recurrence after
Transsphenoidal Surgery for Cushing’s Disease: The Use of Machine Learning Algorithms. Neuroendocrinology 2019, 108, 201–210.
[CrossRef] [PubMed]

43. Fang, Y.; Wang, H.; Feng, M.; Zhang, W.; Cao, L.; Ding, C.; Chen, H.; Wei, L.; Mu, S.; Pei, Z.; et al. Machine-Learning Prediction of
Postoperative Pituitary Hormonal Outcomes in Nonfunctioning Pituitary Adenomas: A Multicenter Study. Front. Endocrinol.
2021, 12, 748725. [CrossRef]

44. Machado, L.F.; Elias, P.C.L.; Moreira, A.C.; Dos Santos, A.C.; Murta Junior, L.O. MRI Radiomics for the Prediction of Recurrence in
Patients with Clinically Non-Functioning Pituitary Macroadenomas. Comput. Biol. Med. 2020, 124, 103966. [CrossRef] [PubMed]

45. Fan, Y.; Liu, Z.; Hou, B.; Li, L.; Liu, X.; Liu, Z.; Wang, R.; Lin, Y.; Feng, F.; Tian, J.; et al. Development and Validation of an
MRI-Based Radiomic Signature for the Preoperative Prediction of Treatment Response in Patients with Invasive Functional
Pituitary Adenoma. Eur. J. Radiol. 2019, 121, 108647. [CrossRef]

46. Shahrestani, S.; Cardinal, T.; Micko, A.; Strickland, B.A.; Pangal, D.J.; Kugener, G.; Weiss, M.H.; Carmichael, J.; Zada, G. Neural
Network Modeling for Prediction of Recurrence, Progression, and Hormonal Non-Remission in Patients following Resection of
Functional Pituitary Adenomas. Pituitary 2021, 24, 523–529. [CrossRef]

47. Qiao, N. A Systematic Review on Machine Learning in Sellar Region Diseases: Quality and Reporting Items. Endocr. Connect.
2019, 8, 952–960. [CrossRef]

48. Agrawal, N.; Ioachimescu, A.G. Prognostic Factors of Biochemical Remission after Transsphenoidal Surgery for Acromegaly: A
Structured Review. Pituitary 2020, 23, 582–594. [CrossRef]

49. Fang, Y.; Pei, Z.; Chen, H.; Wang, R.; Feng, M.; Wei, L.; Li, J.; Zhang, H.; Wang, S. Diagnostic Value of Knosp Grade and Modified
Knosp Grade for Cavernous Sinus Invasion in Pituitary Adenomas: A Systematic Review and Meta-Analysis. Pituitary 2021,
24, 457–464. [CrossRef]

50. Knosp, E.; Steiner, E.; Kitz, K.; Matula, C. Pituitary Adenomas with Invasion of the Cavernous Sinus Space: A Magnetic Resonance
Imaging Classification Compared with Surgical Findings. Neurosurgery 1993, 33, 610–617. [CrossRef]

51. Hardy, J.; Vezina, J.L. Transsphenoidal Neurosurgery of Intracranial Neoplasm. Adv. Neurol. 1976, 15, 261–273.
52. Mooney, M.A.; Hardesty, D.A.; Sheehy, J.P.; Bird, R.; Chapple, K.; White, W.L.; Little, A.S. Interrater and Intrarater Reliability of

the Knosp Scale for Pituitary Adenoma Grading. J. Neurosurg. 2017, 126, 1714–1719. [CrossRef]
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