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Abstract: The complication rate of stereotactic electroencephalography (SEEG) is generally low,
but various types of postoperative hemorrhage have been reported. We presented an unusual
hemorrhagic complication after SEEG placement. A 20-year-old man presented with suspected
frontal lobe epilepsy. We implanted 11 SEEG electrodes in the bilateral frontal lobes and the left
insula. Computed tomography after implantation showed intraparenchymal hemorrhage in the left
temporal lobe and insula and subarachnoid hemorrhage in the left Sylvian cistern. Later, the point
of vessel injury was revealed from the identification of a pseudoaneurysm, but this location was
not along the planned or actual electrode trajectory. The cause of hemorrhage was suggested to be
indirect injury from stretching of the arachnoid trabeculae by the puncture needle.

Keywords: stereotactic electroencephalography; hemorrhagic complication; intraparenchymal
hemorrhage; arachnoid trabeculae; pseudoaneurysm

1. Introduction

Stereotactic electroencephalography (SEEG) is an epoch-making method of depth elec-
trode insertion for intracranial EEG evaluation in epilepsy surgery and has recently spread
worldwide as a key method of intracranial EEG evaluation [1–5]. Depth electrodes can
evaluate deeper parts of the brain such as insula, operculum, and cingulate gyrus compared
with subdural electrodes which are implanted to cover some part of the brain surface. The
complication rate from SEEG has been thought to be low, but hemorrhagic complications
are reported in 19.1% of patients and symptomatic hemorrhaging in 2.2% [6]. Another
study summarized complication rates by three hemorrhagic types: epidural hemorrhage
(0.3%), subdural hemorrhage (0.4%), and intraparenchymal hemorrhage (0.7%) [7]. There-
fore, surgeons should not ignore the possibility of hemorrhagic complications. Here, we
report an unusual case of intraparenchymal hemorrhage in SEEG. Pre- and postoperative
evaluations supported the hemorrhage being caused by an indirect injury to the adjacent
artery after the arachnoid trabeculae was stretched by the puncture needle.

2. Clinical Presentation

A 20-year-old, left-handed man presented with focal impaired awareness seizure,
sometimes progressing to secondary generalized seizures with his neck rotated to the right
side. His seizure started at the age of eight and had not been controlled despite taking multi
antiseizure medicines (valproic acid: 700 mg, levetiracetam: 3000 mg, perampanel: 8 mg).
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Interictal scalp EEG showed frequent spikes and waves in bilateral frontal and temporal
areas (left > right) (Figure 1A). Ictal EEG suggested a seizure origin in the left frontal
lobe. In a Wada test, the patient showed no signs of aphasia when propofol was injected
into each internal carotid artery, suggesting that language processing was performed in
both hemispheres. Magnetic resonance imaging (MRI) showed no obvious abnormalities
(Figure 1B) and 18F-fluorodeoxyglucose-positron emission tomography showed slight low
accumulations in some parts of the left frontal lobe, particularly the basal part (Figure 1C).
Computed tomography (CT) angiography showed no arterial and venous anomaly. Higher
brain function score on the Wechsler adult intelligence scale IV (WAIS-IV) was 72 for full
scale intelligence quotient (FIQ), 67 for verbal comprehension index (VCI), 82 for perceptual
reasoning index (PRI), 91 for working memory index (WMI), and 75 for processing speed
index (PSI).
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We hypothesized that the seizures were originating from the antero-basal part of the 
left frontal lobe and propagating dorsally and contralaterally. Intracranial EEG evaluation 
with SEEG was scheduled. We planned to implant 11 electrodes in the bilateral frontal 
lobes and the left insula. Our plan was designed to avoid crossing any arteries or veins 
using source images from CT arteriography and venography (Figure 2 and Table 1). The 
patient consented to the procedure.  

 

Figure 1. (A) Interictal scalp electroencephalography shows frequent spikes and waves in bilateral
frontal and temporal areas (left > right). (B) Magnetic resonance imaging shows no obvious abnormal-
ities. (C) Slight low accumulation is seen on 18F-fluorodeoxyglucose-positron emission tomography
at the basal part of the left frontal lobe (white arrow).

We hypothesized that the seizures were originating from the antero-basal part of the
left frontal lobe and propagating dorsally and contralaterally. Intracranial EEG evaluation
with SEEG was scheduled. We planned to implant 11 electrodes in the bilateral frontal
lobes and the left insula. Our plan was designed to avoid crossing any arteries or veins
using source images from CT arteriography and venography (Figure 2 and Table 1). The
patient consented to the procedure.

Using robotic arm guidance with Stealth Autoguide (Medtronic, Minneapolis, MN,
USA), we placed all electrodes under general anesthesia. Our surgical procedure of SEEG
implantation was described in detail elsewhere [8]. In brief, after adjusting each trajec-
tory of the insertion by Stealth Autoguide, a small skin incision was made followed by
a skull perforation with 2.4 mm drill (Medtronic). Dura under the skull was intention-
ally perforated by the drill. The depth of the puncture was automatically calculated by
Stealth Autoguide. Then, a puncture of the brain was performed using a needle 2.1 mm in
diameter. After removing the needle, we inserted a depth electrode 1.5 mm in diameter
(Unique Medical, Tokyo, Japan). We checked the depth of the brain puncture and electrode
insertion with intraoperative fluoroscopy. After SEEG implantation, the patient demon-
strated moderate disturbance of consciousness and right hemiparesis, but no aphasia. CT
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showed intraparenchymal hemorrhage in the temporal lobe and insula and subarachnoid
hemorrhage in the Sylvian cistern on the left side (Figure 3A–C). This hemorrhage was
located around the electrode inserted to the insula from the precentral gyrus (Electrode
#9) (Figure 4). We immediately performed hematoma evacuation with fronto-temporal
craniotomy and electrode removal (Figure 3D–F). Intraoperatively, any bleeding points
were found in and around the hematoma cavity.
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Figure 2. Planning for electrode implantation. A total of 11 electrodes were planned for bilateral
frontal lobes and the left insula. Yellow numbers correspond to the electrode numbers in Table 1.
Right side (A); Left side (B).

Table 1. Location of the electrodes.

Electrode # Side Entry Target

1 Left SFG anterior Orb

2 Left IFG posterior Orb

3 Left MFG anterior Cing

4 Left IFG anterior Cing

5 Left FEF middle Cing

6 Left IFG middle Cing

7 Left anterior SFG SMA

8 Left posterior SFG SMA

9 Left PreCG insula

10 Right SFG SMA

11 Right MFG middle Cing
Cing: cingulate gyrus; FEF: frontal eye field; IFG: inferior frontal gyrus; MFG: middle frontal gyrus; Orb: orbital
gyrus; PreCG: precentral gyrus; SFG: superior frontal gyrus; SMA: supplementary motor area.

After the surgery, the level of consciousness and hemiparesis recovered well, but
CT angiography 14 days after SEEG demonstrated an aneurysmal formation at the distal
middle cerebral artery (MCA), which was considered to represent the point of arterial injury.
A superimposed image of the 14-day postoperative CT angiography and preoperative MRI
showed that an aneurysm was located at the opercular segment of MCA (Figure 5A,B). A
superimposed image of the preoperative CT angiography and postoperative CT showed
that the actual trajectory of the electrode was apart from the MCA (Figure 5C). A superim-
posed image of the 14-day postoperative CT angiography and postoperative CT showed a
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postoperative mild deviation of the running course of MCA, but the actual trajectory was
apart from the location of the aneurysm (Figure 5D).
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correspond to the electrode numbers in Table 1. (D–F): Computed tomography just after hematoma
evacuation and electrode removal. Almost all the intraparenchymal hemorrhage has been removed.
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(C), trajectory views (D,E), and 3-dimensional (F) appearances.
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flow to the distal part was confirmed with indocyanine green injection (Figure 6B). Then, 
we performed internal trapping of the aneurysm and removed it (Figure 6C,D). 

 
Pathological findings showed that the aneurysm was a pseudoaneurysm. Postoper-
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Figure 5. (A,B) Superimposed image of 14-day postoperative computed tomography angiography
and preoperative magnetic resonance image. (Axial (A) and coronal (B) sections) Yellow arrowheads
show the location of the aneurysm. (C) Superimposed image of preoperative computed tomography
angiography and postoperative computed tomography. The actual trajectory of Electrode #9 is
apart from the middle cerebral artery. (D) Superimposed image of 14-day postoperative computed
tomography angiography and postoperative computed tomography. The actual trajectory of Electrode
#9 is apart from the location of the aneurysm (yellow arrowhead) which is suggested as the point of
arterial injury.

These findings demonstrated that the aneurysm was located along neither planned
nor actual trajectories of electrodes, suggesting that the cause of hemorrhage might have
been an indirect injury to the MCA. We performed emergency surgery for this aneurysm.
After opening the sylvian fissure, the M2 portion of MCA was found at the surface of the
insula. Following MCA distally, the aneurysm was found at the M3 and M4 portion of the
MCA (Figure 6A). The proximal flow was temporarily arrested by a clip. A good collateral
flow to the distal part was confirmed with indocyanine green injection (Figure 6B). Then,
we performed internal trapping of the aneurysm and removed it (Figure 6C,D).

Pathological findings showed that the aneurysm was a pseudoaneurysm. Postop-
eratively, the patient returned to daily life after rehabilitation without any neurological
deterioration. He has not experienced any seizures since then. WAIS-IV at 1 year after
surgeries was 82 for FIQ, 71 for VCI, 114 for PRI, 69 for WMI, and 69 for PSI.
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Figure 6. (A) The aneurysm at M3 and M4 portion of the middle cerebral artery. White triangle
indicates the aneurysm. (B) Confirmation of the good collateral flow to the distal part (yellow triangle)
with indocyanine green injection. (C) Internal trapping of the aneurysm (white triangle). (D) Final
surgical view after the removal of the aneurysm.

3. Discussion

Postoperative hemorrhage is the most concerning complication of SEEG. Although
complete removal of risk is impossible, surgeons should make the maximum effort to
reduce the risk of hemorrhage. Preoperatively, all trajectories must be planned to avoid
crossing any visible arteries or veins on CT angiography and/or MR angiography. In
particular, arteries and veins running in the subarachnoid space show a higher risk of
injury than small medullary vessels running in the brain parenchyma, because vessels in
the subarachnoid space are fixed to the pia mater by the arachnoid trabeculae. The usual
cause of vessel injury is direct damage by the puncture needle. However, another possible
but unusual cause, as in this case, is indirect damage caused by excessive stretching of
the arachnoid trabeculae. Along this line, one factor increasing the risk of hemorrhage
is likely the number of pial penetrations. We speculated that the cause of hemorrhage in
this patient was indirect arterial injury, supported by the fact that the location of arterial
injury in the subarachnoid space was apart from the planned or actual trajectory of the
adjacent electrode.

Generally, investigation of the insula by depth electrodes is achieved using either
an orthogonal or oblique trajectory [9–12]. With the orthogonal trajectories, electrodes
are inserted through the operculum part, which enables evaluation of the operculum [9].
However, the pia mater is penetrated three times. In this patient, we selected orthogonal
trajectory, penetrating the pia mater at the precentral gyrus, frontal operculum, and insular
cortex. In the Sylvian cistern, thick vessels are fixed to the pia mater by tough arachnoid
trabeculae, which should be considered on the selection of the trajectory. On the other
hand, with the oblique trajectories, electrodes are inserted from the superior frontal gyrus
or superior parietal lobule to the insula [11,12]. The number of electrode contacts placed
in the insular cortex is greater than with orthogonal trajectories and the pia mater is
only penetrated once in this trajectory. Theoretically, oblique trajectories might be safer
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than orthogonal trajectories, but low complication rates have been reported with both
trajectories [9,11,12] and no comparative studies have clarified the risks of hemorrhage.
Although trajectories are determined depending on the specific preoperative information
in each patient and the preferences of each institution, we now prefer oblique trajectory to
the insula because of the theoretically safer profile after encountering the complication in
this case.

To penetrate the pia mater without excessive stretching of the arachnoid trabeculae,
the use of thin puncture needles would be safer. Thinner puncture needles and electrodes
are not currently available in Japan; the puncture needle used for this patient was 2.1 mm
in diameter and the electrodes were 1.5 mm in diameter. Once thinner electrodes and
puncture needles are introduced, the risk of excessive stretching of the arachnoid trabeculae
will presumably decrease.

Fortunately, this patient recovered well from the neurological deficit and returned
to his daily life as a university student. Higher brain function score on WAIS-IV did
not decline postoperatively. This is possibly because the patient’s language function was
processed bilaterally which was proved with a WADA test. Furthermore, the patient has
not experienced any seizures since surgery. Obviously, that was an unexpected favorable
result, which probably occurred because the epileptogenic zone or network was totally
involved in the damaged brain by the hemorrhage. By February 2023, eighteen months had
passed since the surgery, but we are planning to continue following up this patient carefully.

4. Conclusions

We reported an unusual complication of intraparenchymal and subarachnoid hemor-
rhage following SEEG. Pre- and postoperative evaluations suggested that this hemorrhage
was caused by excessive stretching of the arachnoid trabeculae resulting in indirect injury
to an adjacent artery. This report offers a caution to epilepsy surgeons regarding the pos-
sibility of indirect vessel injury in the subarachnoid space and the potential risk of thick
puncture needles.
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