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Abstract: Schizophrenia (SCZ) is a devastating mental condition with significant negative conse-
quences for patients, making correct and prompt diagnosis crucial. The purpose of this study is to
use structural magnetic resonance image (MRI) to better classify individuals with SCZ from control
normals (CN) and to locate a region of the brain that represents abnormalities associated with SCZ.
Deep learning (DL), which is based on the nervous system, could be a very useful tool for doctors
to accurately predict, diagnose, and treat SCZ. Gray Matter (GM), Cerebrospinal Fluid (CSF), and
White Matter (WM) brain regions are extracted from 99 MRI images obtained from the open-source
OpenNeuro database to demonstrate SCZ’s regional relationship. In this paper, we use a pretrained
ResNet-50 deep network to extract features from MRI images and an ensemble deep random vector
functional link (edRVFL) network to classify those features. By examining the results obtained, the
edRVFL deep model provides the highest classification accuracy of 96.5% with WM and is iden-
tified as the best-performing algorithm compared to the traditional algorithms. Furthermore, we
examined the GM, WM, and CSF tissue volumes in CN subjects and SCZ patients using voxel-based
morphometry (VBM), and the results show 1363 significant voxels, 6.90 T-value, and 6.21 Z-value in
the WM region of SCZ patients. In SCZ patients, WM is most closely linked to structural alterations,
as evidenced by VBM analysis and the DL model.

Keywords: magnetic resonance imaging; random vector functional link; Schizophrenia; voxel-based
morphometry

1. Introduction

Schizophrenia (SCZ) is a severe mental condition marked by the abnormal perception
of reality, hallucinations, delusions, and profoundly disordered thoughts and behavior that
causes significant impairment in daily life. SCZ patients need to be monitored by a doctor
for the rest of their lives. For better results, diagnosis and therapy should begin as soon as
possible, before the condition reaches its severe stage [1,2]. SCZ patients are diagnosed by
collecting a thorough patient history, assessing their mental state through a comprehensive
physical examination, and conducting any necessary laboratory tests. Aside from clinical
rating scales, researchers are working hard to identify imaging biomarkers that can help
with the diagnosis, treatment, and prognosis of illnesses and their subtypes.

Recently, neuroimaging studies have uncovered anomalies in SCZ related to structural
and functional changes in the brain’s cortical (such as the frontal region), subcortical (such
as the hippocampus, thalamus), and network connectivity areas [3–5]. Particularly, there
is growing enthusiasm for utilizing structural neuroimaging findings to better diagnose
SC. Gray Matter (GM), White Matter (WM), and Cerebrospinal Fluid (CSF) are the three
primary regions of the human brain. Over half the human brain is composed of WM.
WM is made up of bunches of myelinated axons that connect neurons to various brain
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regions. GM comprises neuronal cell bodies as well as dendrites that are localized in the
cortex’s outer layers. CSF in the brain and spinal cord is a clear, colorless fluid. CSF has
many purposes, including the prevention of cerebral ischemia and the protection of the
brain from harm. Many advancements in MRI acquisition and image processing have
occurred, including functional MRI (fMRI) and diffusion tensor imaging (DTI), all of which
have empowered us to fully exploit the information contained in the human brain. GM
abnormalities in SCZ have been investigated and detected using structural magnetic res-
onance imaging (sMRI) [6]. With the development of DTI, we can also investigate WM
abnormalities in SCZ [7]. Numerous neuropathological abnormalities have been observed
in SCZ patients, and the latest research reveals that the progression of the disease may be
significantly influenced by the neurological substrates of connection [8]. Walterfang et al. [9]
reviewed WM pathology as a potential substrate of poor connection in SCZ and inves-
tigated the relevant evidence. However, while conventional structural techniques such
as DTI can effectively probe the inner workings of WM architecture, they cannot reveal
the neuronal activity and important functions within WM. The fMRI, which is based on
blood-oxygen-level-dependent (BOLD) data, has shown to be an effective tool for studying
the functional organization of the human brain in the fields of cognitive neuroscience and
clinical neuropsychiatry [10].

Recent studies have found that WM functional activity relates to demands in a range
of activities, including perceptual, linguistic, and motor tasks [11]. Schlosser et al. [12] em-
ployed the combination of fMRI and DTI to demonstrate the altered structure–function re-
lationships in SCZ. According to DTI analysis, there were decreases in fractional anisotropy
(FA) in the right frontal lobe and the right medial temporal lobe, which are regions thought
to include inferior cingulum bundle fibers. Second, among patients with a primary task-
related effect, fMRI revealed significant hypoactivation in the prefrontal, superior parietal,
and occipital areas. Along with the reduction in frontal FA, the patient’s fMRI activation in
the prefrontal and occipital cortical regions was reduced. Jiang et al. [13] evaluated the func-
tional connectivity of WM with a large cohort of 97 SCZ and 126 cognitive normal subjects.
In this research, the authors performed a cluster analysis to determine voxel-based WM
functional connectivity and classified the ten largest WM networks into three distinct layers:
superficial, intermediate, and deep. Individuals with SCZ showed reduced low-frequency
oscillation amplitudes and increased functional connectivity in the motor networks in-
volved in superficial perception, according to an analysis of spontaneous oscillation and
its functional connectivity in the WM network. Singh et al. [14] analyzed the correlation
between hemodynamic and morphometric measurements to ascertain whether the lack of
motor function in SCZ patients is connected to anatomical anomalies in particular brain
regions. In other tests, fMRI scans were conducted on subjects and controls who had SCZ
while they were tapping their right index and middle fingers. During a straightforward
finger-tapping test, patients with SCZ displayed decreased activity in the ipsilateral and
contralateral motor areas compared to controls.

With the advancements of machine learning (ML) and the subsequent proliferation
of computer-assisted diagnosis, MRI has found widespread application in recent years
for SCZ diagnosis [15]. The application of ML classifiers for SCZ diagnosis, however,
requires first extracting features from MRI data [16]. To enable a computer to learn from
data, ML creates algorithms that are related to artificial intelligence [17]. By using prior
knowledge, analysis, and self-training, ML enables computers to deal with novel situations.
These techniques do not perform well with raw data. Thus, the features must be manually
extracted. Handcrafted feature-based ML techniques impose limitations on the usage of
computer-aided diagnostics (CAD) in real applications because the chosen features might
not be reliable. Deep learning (DL) algorithms with various designs have gained popularity
because of their capacity, accuracy, and efficiency in resolving a wide range of problems [18].
DL algorithms’ clinical relevance has improved for specific diagnostic applications, such as
the detection of pulmonary nodules using chest computed tomography (CT) scans [19],
diagnosis of Alzheimer’s Disease using MRI images [20], and the retinal fundus images
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for the diagnosis of diabetic retinopathy [21], due to their enhanced performance in visual
image identification [22]. DL is a type of ML that “learns” by analyzing large amounts of
labeled data and “recognizes” key properties [23] without requiring the user to define spe-
cific qualities. Various studies have been incorporated using different DL-based approaches
using neuroimaging data [24,25]. The benefits of DL algorithms include their ability to
handle huge, complicated datasets, their use of spatial correlation, and their numerous con-
volutional layers. Algorithms for DL can have automatic feature extraction that is crucial for
classification. The main issue with traditional DL algorithms is that their classification layer
uses back-propagation (BP) algorithms. BP algorithms have several drawbacks, including
being time-consuming, depending on the learning rate for convergence, becoming stuck at
the local minimum, and other issues.

Single-layer feed-forward neural (SLFN) networks have undergone extensive inves-
tigation over the past 20 years and have been incorporated into a range of applications,
including classification tasks and regression tasks, due to their capability to mimic any
function. Schmidt et al. [26] presented a feed-forward neural model with random weights
based on the randomization technique. In addition to directly connecting the input and out-
put layers, Pao et al. [27] implemented the random vector functional link (RVFL) network
in which only the output weights must be analytically calculated, and all other parame-
ters are randomly generated from a stable domain. The RVFL’s universal approximator
capability was proved by Igelnik and Pao [28]. The number of enhancement nodes and
activation functions that will be utilized to train the standard RVFL must be known in
advance, and it must overcome the limitations of BP algorithms. Manually determining
the optimal concealed node range and the ideal activation function is challenging. Deep
and ensemble-deep architectures [29] have been added to the shallow RVFL model to
enhance its generalization performance. In the deep RVFL (dRVFL) model, the hidden
layer’s parameters are generated at random and maintained constant throughout training,
whereas only the parameters of the output layer, which contains multiple stacked layers,
must be calculated analytically [30]. Representation learning is improved by comparing the
dRVFL model with the shallow RVFL model. When the amount of training data, hidden
layer count, and feature dimension are high, the dRVFL model experiences memory prob-
lems. Therefore, an implicitly ensemble methodology-based ensemble deep RVFL network
(edRVFL) model has been developed to overcome these concerns.

In this study, a pretrained DL network, ResNet-50 [31], is used to extract efficient
high-level features from 2D MRI slices. The RVFL network and its derivatives, a type of
SLFN, has been used to categorize these characteristics. During training, RVFL’s weights
and biases for its enhancement layers are arbitrarily fixed after being selected within a
suitable range at random. Voxel-based morphometry (VBM) is a neuroimaging approach
that analyses voxel-wise 3D brain scans to discover changes in regional GM, WM, and CSF
volumes between two groups of subjects, such as SCZ patients and control normal (CN)
subjects. Images from different subjects are normalized and registered to create a brain
template to perform VBM [32]. The following are the key contributions of the current study.

• Using Statistical Parametric Mapping (SPM), version 12 i.e., SPM12 software, we
incorporated preprocessing of the data to increase the model’s learning efficiency and
accuracy.

• A Generative Adversarial Network (GAN) is employed to increase the size of the
dataset.

• ResNet-50 is used to extract robust features from high-dimensional images.
• The edRVFL classifier is employed to classify the extracted features, and results are

acquired using majority voting to obtain efficient outcomes.
• VBM analysis is performed to evaluate the structural changes related to GM, WM,

and CSF volumes.
• Finally, structural abnormalities related to the brain volumes are investigated and

concluded by combining the results obtained from the edRVFL model and VBM
analysis.
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The novelty of this research is correlating DL and VBM analysis of WM alterations
in patients with SCZ. MRI scans are segmented into WM, GM, and CSF to examine the
specified structural changes. The high-level characteristics of MRI slices are extracted to
reduce the complexity of using a pretrained DL network, and the classification is performed
using an edRVFL classifier. Furthermore, VBM analysis was carried out to reveal the
primary brain regions affected in SCZ patients. Finally, structural abnormalities related to
WM are investigated by combining the results obtained from the edRVFL model and VBM
analysis.

The remaining part of this paper is organized as follows: The proposed methodology
is described in Section 2. We report our findings and analyze the experiments in Section 3.
The discussion and remarks are stated in Section 4. The paper is concluded in Section 5.

2. Methodology

This section briefly introduces the proposed methodology for SCZ diagnosis using
structural MRI scans. The diagnosis paradigm for SCZ is depicted as a block diagram in
Figure 1.

Figure 1. Proposed method for SCZ diagnosis using DL: Neuroimaging Informatics Technology
Initiative (NIfTI) images are preprocessed and segmented, and slices are extracted and augmented by
a GAN. The robust features from 2D images are extracted and classified by the edRVFL network

2.1. Data Preparation

The structural MRI images of SCZ patients and CN subjects were collected from an
open source (https://openneuro.org (accessed on 30 December 2022)) with OpenNeuro
Accession Number ds000115 on 14 July 2018. These included 99 participants, which
consisted of 58 SCZ patients and 41 CN patients. All the participants were between the
ages of 12 and 30, of which 39 were females and 60 were males.

2.2. Preprocessing

The preprocessing of data is a crucial stage in most of the DL pipelines to generate
accurate results. Figure 2 shows the pipeline of the preprocessing of MRI scans.

Neuroimage preprocessing plays a crucial role in disease diagnosis by revealing flaws,
outliers, and missing key information. Incorrect preprocessing would leave these flaws in
the model, reducing its predictive power. The first step was to extract the GM, WM, and CSF
maps from the MRI scans. Preprocessing for MRI includes normalising to the standard
Montreal Neurological Imaging (MNI) space via a diffeomorphic registration technique,
eliminating non-brain tissue, and modifying the results. The GM, WM, and CSF images
were all smoothed using a Gaussian kernel with an FWHM of 8 mm. All the preprocessing
steps were performed using the MATLAB 2021a, SPM12 tool. After preprocessing, 2D
slice extraction was employed to obtain the 2D MRI images. For better visualization, we

https://openneuro.org
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extracted the middle 10 slices out of 256 slices from both SCZ and CN subjects of WM, GM,
and CSF.

Figure 2. Preprocessing steps involved in dataset preparation are image realignment, normalization,
smoothing, and finally segmentation into three tissue maps

2.3. GAN Architecture

Due to the smaller sample sizes of the gathered dataset, it cannot be used to train a DL
network effectively. To address this issue, the proposed model employed GAN to expand
the available datasets [33].

The generator and discriminator are the two DL models that makeup the GAN,
and they both work together to automatically find and learn patterns from the input data.
One competes with the other to find and record unique features in the dataset. New
instances can be generated using GANs that are convincing enough to be considered part
of the original dataset. The generalized GAN network structure is depicted in Figure 3,
and the loss function of GAN is given in Equation (1).

minGmaxDV(D, G) = Ez∼pdata(z)[logD(z)] + Ex∼px(x)[log(1− D(G(x)))] (1)

In Equation (1), G and D represent the corresponding networks for the generator and
discriminator, pdata(z) denotes the distribution of real data, p(x) represents the distribu-
tion of the generator, z is the sample from pdata(z), x is the sample of P(x), D(z) is the
discriminator network, and G(x) is the generator network.
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Figure 3. Generative adversarial network architecture: generator and discriminator networks perform
adversarial functioning with each other.

Original MRI slices and GAN-generated slices from each region: WM, GM, and CSF,
are fed to ResNet-50 [23], a pretrained DL network for the feature extraction. ResNet-50 con-
sists of 50 layers, being the most widely used model for high-level feature extraction from
an image. The skip connection is ResNet’s key technological advancement. The ResNet-50
architecture for extracting features from an MRI picture is displayed in Figure 4.

Figure 4. Architecture of ResNet-50.

2.4. Ensemble Deep Random Vector Functional Link Network (edRVFL)

RVFL is a non-iterative SLFN. The main concept of the RVFL network [28] is to initialize
the random parameter for the enhancement layer (hidden layer), and random parameter
values are fixed during the training phase. For MRI images, which are slightly more
complex in nature, BP-based classifiers may require much more training time. The training
phase of RVFL is faster than other BP classifiers since it has a single hidden layer and
non-iterative operation. The output layer of RVFL is fed with both original input features
denoted as X and output features of the enhancement layer represented as H, which can
be expressed as D = [H X]. If x is the total input features and k is the number of neurons,
then there are (x + k) total features fed to the output layer. The weights W and bias B are
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fixed at the enhancement layer, and the output weights β will be calculated. As a result,
the optimization function may be stated mathematically as:

m
β

in‖Dβ−O‖2 + η‖β‖2, (2)

where η is the regularization parameter, and O is the output target.
Equation (2) is solved by using η 6= 0 (ridge regression) or η = 0 (Moore–Penrose

pseudoinverse). If η = 0, the solution is β = D+O; however, when ridge regression is used,
the solution is

β = (DT D + η I)−1DTO. (3)

The deep RVFL network contains one input layer, various enhancement layers stacked
in parallel, and one output layer. Each stack layer receives input data from the preceding
layer’s output. The enhancement layer weights and biases are randomly obtained from a
fixed domain, and output weights are only analytically computed. In dRVFL, a stack of L
enhancement layers is employed, and each layer contains N number of hidden nodes. First,
hidden layer output is expressed as H(1) = g(XW(1)). For other layers, L > 1 output is
H(L) = g(H(L−1)W(L)); g(.) is the radbas activation function. The mathematical expression
between the input and output layer is

D = [H(1)H(2). . . . . . . . . H(L−1)H(L)X]. (4)

The dRVFL input-to-output layer is comprised of nonlinear features of stacked hidden
layers and original input features, and its output is specified as

O = Dβd. (5)

The output weight βd is solved by using Equation (3).
The ensemble deep RVFL (edRVFL) architecture is shown in Figure 5. In edRVFL,

rather than training L neural networks individually, a single deep RVFL network is trained,
and the ensemble has L-hidden layers with the same number of hidden nodes. The final
output weight βd of dRVFL is divided into various small βd. Each βd is considered as a sep-
arate model and is determined independently. The ultimate result is acquired by majority
voting. Each higher-level model receives a concatenation of the previous model’s non-
linearly modified features and original input data features. The edRVFL first enhancement
layer output is expressed as

H(1) = g(XW(1)). (6)

The output of the other enhancement layers L > 1 is expressed as

H(L) = g
([

H(L−1)X
]
W(L)

)
. (7)

The output weights β
(1)
ed , β

(2)
ed , . . . , β

(L)
ed are then calculated independently using

Equation (3).
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Figure 5. Architecture of ensemble deep RVFL (edRVFL) network.

2.5. Voxel-Based Morphometry (VBM)

VBM [32] is a whole-brain impartial, objective method used to evaluate changes in the
brain in real time using MRI data. VBM looks for differences in the way brain tissues are
made in different parts of the brain. The MRI scans must first be segmented to reveal the
GM, WM, and CSF regions. The GM, WM, and CSF volumes are then spatially normalised
to the MNI space. After that, statistical analysis is performed to determine whether or not
there are statistically significant differences between SCZ patients and CN. The native space
volumes of GM, WM, and CSF images are derived from total intracranial volume (TIV),
which serves as a reference in this investigation. After establishing a p < 0.05 threshold
and conducting family-wise error (FWE) correction, a two-sample t-test was executed.
Finally, we used the xjview MATLAB software to capture the voxel brain region (shown in
pseudocolour), substantial changes, activation volume (cluster), and activation intensity.
We employed a voxel extent threshold of 0.02 (statistically analyzed with two sample t-test
and expressed as T value; the T value is proportional to the intensity). The processing
framework for VBM analysis is depicted in Figure 6.

Figure 6. The architecture of the VBM framework using SPM12 software.
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3. Performance Evaluation of the edRVFL Model and VBM Analysis

This section discusses the experimental results and their comparison with leading-
edge classifiers. Utilizing the DL model and VBM analysis, this portion also looked into
the relationship between WM and SCZ.

3.1. Implementation Detail

The proposed work was carried out in MATLAB 2021a and executed on a Windows
10 computer with an Intel (R) Xenon (R) W-2133 processor running at 3.60 GHz and 64 GB
RAM. NVIDIA Quadro P2200 was the GPU in use. Using a publicly available dataset,
the suggested model was evaluated for CN subjects and SCZ patients. The dataset was
split into training and testing sets in the ratio of 70:30. The whole data preprocessing
steps were conducted using the SPM12 toolbox. After preprocessing and slice extraction,
the data obtained were not sufficient to be used effectively for training the DL network.
This issue can be addressed by incorporating a GAN for image generation. Using the
GAN network, data size was increased from 410 CN and 580 SCZ for WM, GM, and CSF
to 1000 CN and 1000 SCZ slices for WM, GM, and CSF. For RVFL networks, the number
of hidden units were tuned from the range {256, 512, 1024} for each GM, WM, and CSF
dataset. The regularization parameter η of the RVFL models was set to 1

C , and C was
selected from the range 2z, where z = {−6,−4, . . . , 12}. The enhancement layers were
considered to be five. The “radbas” activation function was used in all experiments, and the
two-stage tuning method was used to obtain optimal hyperparameter configuration [34].

3.2. Performance Metrics

In this segment, we will discuss the performance metrics used to evaluate the model’s
capability to diagnose SCZ patients. Accuracy (Acc), sensitivity (Sens), specificity (Spec),
precision (Prec), recall (Rec), F-score, G-mean, confusion matrix (CM), and receiver oper-
ating characteristic (ROC) were determined for the given model in order to evaluate its
capabilities. Specificity assesses the classifier’s ability to identify disease-free individuals
reliably. Sensitivity measures the classifier’s ability to diagnose the person with the disease
correctly. Precision measures the ratio of true diseased out of predicted diseased subjects.
Accuracy can be elaborate as the true revealer of the full process. G-mean examines the
balance between classification’s performances on the multiclass that is provided. CM shows
the prediction analysis and helps to calculate the performance metrics necessary to deduce
the conclusion. The ROC curves are sensitivity vs. specificity 2D plots. The curves near the
left corner of the top will achieve good results.

3.3. Computational Complexity and Model Parameter Sensitivity Analysis

The computational complexity (CC) of the current approach combines the CC of
ResNet-50 and edRVFL. Training a ResNet-50 has a CC of O(MKn2FA), where M and K
are the dimensions of a 2D image, n× n is the kernel filter size, F is the number of filters,
and A represents the number of activations. In RVFL networks, matrix inversion is used to
determine the output weights. The input training data dimensions define the computation
needed for calculating the pseudoinverse. The computations needed to calculate the output
for RVFL of N × N matrix size is O((N + k)3) time, where k represents the number of
hidden nodes. In deep RVFL, the CC is O((kL + m)3) time, where L is hidden layers,
and m is the dimension of the input data. In edRVFL, we decompose the overall output
weight βd of deep RVFL into various small βed. Each small βed is assessed individually,
and the final outcome is decided by majority vote or model averaging. Every βed requires
the matrix inversion of size ((k + m)(k + m)) for the first layer and for higher layers
((2k + m)(2k + m)).

3.4. Comparison of Different Regions of the Brain

Table 1 depicts the performance analysis of WM with different regions of the brain
area using ResNet-50 as the feature extractor and edRVFL as the classifier. Figures 7 and 8
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show the comparison using the ROC and CM for WM, GM, and CSF. The proposed model
achieved 96.50%, 88.17%, and 89.17% classification accuracy with WM, GM, and CSF
datasets, respectively. Based on Acc, Sens, Spec, Prec, Rec, F-score, and G-mean, the WM
was found to be highly affected.

Figure 7. Confusion matrix of: (a) CSF-89.17% accuracy; (b) GM-88.17% accuracy; (c) WM-96.50%
accuracy.

Figure 8. Region of convergence of: (a) CSF; (b) GM; (c) WM.
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Table 1. Comparison of WM with other regions of the brain using the edRVFL classifier.

Region of Interest Acc Sens Spec Prec Recall F-Score G-Mean

Cerebrospinal Fluid 89.17 87.67 90.67 90.38 87.67 89 89.15
Gray Matter 88.17 89.67 86.67 87.06 89.67 88.34 88.15
White Matter 96.50 95.33 97.67 97.61 95.33 96.46 96.49

3.5. Comparison with Different State-of-the-Art Classifiers

Table 2 depicts the performance analysis of WM using edRVFL and compares it
with state-of-the-art classifiers: K-nearest neighbors (KNN) [35], random forest (RF) [36],
decision tree (DT) [37], ensemble bagging (EB) [38], softmax [39], support vector machine
(SVM) [40], extreme learning machine (ELM) [41], kernel ridge regression (KRR) [42],
RVFL [43], and dRVFL [29]. The edRVFL network based deep model outperformed the
different classifiers in terms of Acc, Sens, Spec, Prec, Rec, F-score, and G-mean.

Table 2. Comparison of WM with various state-of-the-art classifiers.

Classifier Acc Sens Spec Prec Rec F-Score G-Mean

KNN [35] 94.25 93.50 95 94.92 93.50 94.21 94.25
RF [36] 94.50 93 96 95.88 93 94.42 94.49
DT [37] 94.25 93.50 95 94.92 93.50 94.21 94.25
EB [38] 94.75 93.50 96 95.90 93.50 94.68 94.74
Softmax [39] 94 93.50 94.50 94.44 93.50 93.97 94
SVM [40] 93.50 92.50 94.50 94.39 92.50 93.43 93.49
ELM [41] 93.33 92.67 94 93.92 92.67 93.29 93.33
KRR [42] 94.33 92 96.67 96.50 92 94.20 94.30
RVFL [43] 89.67 95.67 83.67 85.42 95.67 90.25 89.47
dRVFL [29] 91.17 91.67 90.67 90.76 91.67 91.21 91.17
Proposed Algorithm 96.50 95.33 97.67 97.61 95.33 96.46 96.49

3.6. Voxel-Based Morphometry Analysis

As shown in Table 3, the two-sample t-test was used with a covariate of TIV to compare
SCZ patients to CN. By employing family-wise error (FWE) with p < 0.05 in voxel by voxel
analysis, three regions: left cerebrum extranuclear, right cerebrum temporal lobe, and left
cerebrum claustrum, in the SCZ participants showed more variations in GM volumes
than for the CN subjects. WM alterations were found extensively in the right cerebrum
insula, right cerebrum temporal lobe, and left cerebrum internal ventricle. We observed no
significant brain CSF alterations in SCZ patients over the controls. For WM maps, T-value
(6.90) and Z-value (6.21) were more compared with GM maps, which indicates that the
WM abnormalities are more in SCZ patients over controls. Figure 9 shows the anatomical
changes in WM volume of brain regions.

Table 3. Voxel-wise variations in WM, GM, and CSF volumes with p < 0.05.

Region of Interest Anatomical Region Voxels T-Value Z-Value

WM
Left cerebrum Internal Ventricle 1363 6.90 6.21
Right cerebrum Insula 340 4.83 4.56
Right cerebrum Temporal lobe 41 3.70 3.57

GM
Left cerebrum Extra -Nuclear 12 4.82 4.56
Right cerebrum Temporal lobe 27 4.64 4.40
Left cerebrum claustrum 6 3.47 3.36

CSF No Clusters are identified
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Figure 9. WM volume alterations in the brain regions with p < 0.05 and external threshold K = 0.2.

4. Discussion

The goal of the current study was to categorize SCZ based on the kinds of changes
that happen to brain tissue. Our most important observation is that SCZ has a stronger
relationship with WM than with GM and CSF. Kadry et al. [39] proposed an automatic
SCZ detection framework based on MRI scans. The pretrained VGG-16, DL network was
used to analyze brain MRIs. The deep features retrieved were optimized using the slime
mould algorithm (SMA) and then classified with an SVM binary classifier with 90.33%
accuracy. The GM and WM volumes of 42 CN individuals and 41 SCZ patients [44] were
analyzed using SVM with 88.4% accuracy. The authors concluded that particular brain
neuroimaging patterns related to SCZ might be discovered as a potential biomarker for
disease detection. Pinaya et al. [45] utilized a deep belief network (DBN) to extrapolate
and interpret characteristics from MRI data from 83 CN subjects and 143 patients with
SCZ. The classification accuracy of DBN was 73.6%, which is higher than that of the
traditional SVM (68.2%). A DL algorithm [46] was fed with MRI scans that are able to detect
SCZ accurately in a random sample of pictures with an AUC of 0.96. The DL algorithm
accurately identified SCZ by analyzing structural brain MRI data and isolating relevant
structural features. Supriya et al. [47] implemented a 3D CNN framework to detect SCZ
over CN subjects. The robust features were extracted using a 3D CNN and classified by an
ensemble bagging network with 92.22 % classification accuracy.

In the present study, 99 MRI scans were acquired from the Open Neuro database,
out of which 58 were SCZ patients, and 41 were CN subjects. The SPM12 toolbox was
used for the segmentation and preprocessing of all MRI images. For the suggested model,
we compiled three datasets: GM, WM, and CSF. ResNet-50 extracts features from input
2D slices, and edRVFL performs the classification of the extracted features. Regarding
classification accuracy, the model was trained and tested on GM, WM, and CSF and
obtained 88.17%, 96.50%, and 89.17% accuracy, respectively. We compared the proposed
edRVFL-based deep model to other classifiers such as KNN, RF, DT, EB, softmax, SVM,
ELM, KRR, RVFL, and dRVFL on the WM dataset. As can be seen in Table 2, the edRVFL-
based deep model outperformed the other classifiers in terms of performance measures.

Voxel-based morphometry (VBM) helps to find differences in the brain’s structure in
neurodegenerative diseases such as dementia, Parkinson’s disease (PD), SCZ, and multiple
sclerosis (MS). When looking for volumetric differences between GM, WM, and CSF, VBM
examines each voxel size of segmented tissue. VBM is not partial to alterations in any
one region of the brain; it eliminates the arbitrary distinctions in perception that come
from highlighting certain areas of the brain. Qiang Li et al. [48] used VBM and functional
connectivity density (FCD) analyses to reveal GM volume reduction and structural and
functional abnormalities in the brain. In this study, 79 CN subjects and 55 SCZ patients were
used to perform the experiments. The authors identified GM volume decline in temporal,
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frontal, occipital, and parietal lobes and increased FCD in the cerebellum, decreased FCD
in the precuneus, and no GM volume variations in the cerebellum and precuneus. Zhao
et al. [49] used diffusion tensor imaging (DTI) and VBM multimodal analysis to identify
the common and specific abnormalities in WM volume and fractional anisotropy (FA)
between SCZ and bipolar disorder (BD). They discovered that SCZ patients have more
significant WM alterations than BD patients. The bilateral corpus callosum had low WM
volume and FA in SCZ and BD. Chen Li et al. [50] explored the GM volume alterations in
86 SCZ patients compared with 86 CN subjects using the VBM analysis, and they observed
the increased GM within the cerebellum. The limitation of this work is that only default
parameter settings are used in VBM processing phases as provided by the development
tools. Lee et al. [51] investigated the abnormalities in GM and WM between SCZ patients
and BD cases. Some 65 SCZ patients, 65 BD, and 65 CN were enrolled. The authors used
VBM analysis for MRI scans, and tract-based special statistics (TBSS) for DTI scans acquired
at a single center. They detected GM volume loss in the thalamus and insular and WM
abnormalities in the superior longitudinal fasciculus, corpus callosum, external capsule,
internal capsule, and posterior thalamic radiation. When comparing SCZ patients and CN
participants, we found substantial differences in WM volume in three regions and GM
volume in three regions, but no differences in CSF volume as illustrated in Table 3.

Remarks

For the proposed model, Table 1 depicts the performance analysis of WM with different
regions of the brain, using ResNet-50 as the feature extractor and edRVFL as the classifier.
According to the results obtained, WM reached 96.50% accuracy compared to CSF’s (89.17%)
and GM’s (88.17%). Table 2 depicts the performance evaluation of WM using edRVFL and
compares it with state-of-the-art classifiers. In this comparison, edRVFL outperformed
with 96.50% accuracy over other state-of-the-art networks such as KNN (94.25%), RF
(94.50%), DT (94.25%), EB (94.75%), softmax (94%), SVM (93.50%), ELM (93.33%), KRR
(94.33%), RVFL (89.67%), and dRVFL (91.17%). Table 3 depicts voxel-wise variations in
WM, GM, and CSF volumes. In this observation, WM shows 1363 significant voxels, a 6.90
T-value, and a 6.21 Z-value in the left cerebral internal ventricle compared to GM and CSF.
According to the findings of the above experiments, WM plays a significant role in SCZ
patients. As a result, the proposed model may help clinicians diagnose SCZ patients with
structural anomalies in the WM.

5. Conclusions

This study uses MRI data to train a deep learning (DL) algorithm to create a diagnosis
model for schizophrenia (SCZ) patients and control normals (CN). In order to conduct a
region-by-region analysis on an MRI scan, the image was first segmented into its component
parts: Gray Matter (GM), White Matter (WM), and Cerebrospinal Fluid (CSF). The first step
was preprocessing, which involved removing outliers, realigning the image, registering it to
the reference template, and extracting the 2D key slices. Due to insufficient data for training
a deep learning (DL) model, a generative adversarial network (GAN) was used to produce
synthetic pictures. ResNet-50 was used to extract features from the MRI slices, and the
features were then classified using an ensemble-based deep random vector functional link
(edRVFL) classifier. When using WM volume, the best detection performance was seen for
SCZ. A voxel-based morphometry study also showed that SCZ had the most effect on the
WM. This leads us to the conclusion that the WM is the primary site of damage in SCZ.

Future work aims to acquire a more extensive dataset from several test sites to imple-
ment the suggested architecture into real-world clinical decision making. Additionally, we
can investigate functional MRI (fMRI) scans in addition to structural MRI (sMRI) to provide
the model with as much data as possible to use when deciding on a course of action.
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