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Abstract: Advances in applied machine learning techniques for neuroimaging have encouraged
scientists to implement models to diagnose brain disorders such as Alzheimer’s disease at early stages.
Predicting the exact stage of Alzheimer’s disease is challenging; however, complex deep learning
techniques can precisely manage this. While successful, these complex architectures are difficult to
interrogate and computationally expensive. Therefore, using novel, simpler architectures with more
efficient pattern extraction capabilities, such as transformers, is of interest to neuroscientists. This
study introduced an optimized vision transformer architecture to predict the group membership
by separating healthy adults, mild cognitive impairment, and Alzheimer’s brains within the same
age group (>75 years) using resting-state functional (rs-fMRI) and structural magnetic resonance
imaging (sMRI) data aggressively preprocessed by our pipeline. Our optimized architecture, known
as OViTAD is currently the sole vision transformer-based end-to-end pipeline and outperformed the
existing transformer models and most state-of-the-art solutions. Our model achieved F1-scores of
97%± 0.0 and 99.55%± 0.39 from the testing sets for the rs-fMRI and sMRI modalities in the triple-
class prediction experiments. Furthermore, our model reached these performances using 30% fewer
parameters than a vanilla transformer. Furthermore, the model was robust and repeatable, producing
similar estimates across three runs with random data splits (we reported the averaged evaluation
metrics). Finally, to challenge the model, we observed how it handled increasing noise levels by
inserting varying numbers of healthy brains into the two dementia groups. Our findings suggest
that optimized vision transformers are a promising and exciting new approach for neuroimaging
applications, especially for Alzheimer’s disease prediction.

Keywords: Alzheimer’s disease; MCI; vision transformer; rs-fMRI; MRI

1. Introduction

An early diagnosis of Alzheimer’s disease (AD) delays the onset of dementia conse-
quences for this life-threatening brain disorder and reduces the mortality rate and billion
dollars cost of caring for AD patients [1–4]. The damages that Alzheimer’s disease inflict
are widespread, mostly targeting memory. Over time, shrinkage of the brain, the atrophy
of the posterior cortical brain tissue degradation in the right temporal, parietal, and left
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frontal lobes and ventricular expansion interfere with patients’ language, and memory
abilities [5–7]. Researchers consider a transition phase known as mild cognitive impairment
(MCI) from normal aging to acute AD, which often takes two to six years. As a result, pa-
tients lack focus, exhibit poor decision-making and judgment, experience time and location
confusion, and suffer the onset of memory loss [8–10].

Among various biomarkers examinations such as blood and clinical tests, neuroimag-
ing has remained the primary approach for medical practitioners to attempt an early
prediction of Alzheimer’s disease [11–14]. However, neurologists conduct various neu-
roimaging tests to diagnose Alzheimer’s disease, since the impact of normal aging and
early-stage Alzheimer’s are barely distinguishable in neuroimaging [15].

Today, artificial intelligence (AI) in neuroimaging is considered an emerging technol-
ogy where neuroscientists employ and adapt novel and advanced algorithms to analyze
medical imaging data [16–18]. Over the past decade, deep learning techniques have en-
abled medical imaging scientists to predict various stages of Alzheimer’s disease [19,20].
Using robust computational resources such as cloud computing, the scientists could imple-
ment end-to-end prediction pipelines to preprocess medical imaging data, build complex
deep learning models, and post-process results to assist medical doctors in distinguishing
early-stage MCI brains from highly correlated normal aging images [21–24].

Convolutional neural networks (CNNs) inspired by the human visual system form
the core image classification component of pipelines. CNN-based classifiers consist of
sophisticated feature extractors that retrieve hierarchical patterns from brain images and
produce highly accurate predictions [25–30]. Although CNN models often require a light
preprocessing pipeline, and the models aim to lessen the impact of noise implicitly, many
studies have shown that a comprehensive preprocessing pipeline, to prepare neuroimaging
data significantly improves prediction performance [31–33].

Advances in CNNs architectures and hybrid CNNs with other architectures, such as
recurrent neural networks (RNNs), have significantly improved the performance and multi-
stage AD prediction [34–36]. The central pillar of CNN-based pipelines is the convolutional
layer, considered an invariant operator in signal and image processing. The convolutional
layer reduces the sensitivity of the image classification pipeline to morphological variations
such as shift and rotation [37–39].

Also, multi-dimension filters in CNN models and various combinations of feature
map concatenation enhance such models’ invariant characteristics [40,41]. However, the
high complexity of models with hundreds of millions of trainable parameters, requiring
high computations with an enormous amount of data, is considered a disadvantage of such
methods [42–44]. Moreover, CNN models incorporate contextual information into training
without considering positional embedding offered by transformer block [45,46].

In this study, we explore a novel method to bridge the gap of position-based context
extraction through an optimized vision transformer. The literature review shows that using
the vision transformer in predicting Alzheimer’s disease is in a very early stage, and this
study opens a new avenue to employ vision transformers in this domain. We implement
two separate end-to-end pipelines to predict the triple class of Alzheimer’s disease stages
where pre- and postprocessing modules play crucial roles in improving prediction per-
formance. Also, we analyze the impact of merging MCI data with healthy control and
Alzheimer’s brains to analyze modeling performance in binary classification tasks.

We repeat each model three times using random data splits and assess our pipelines
using standard evaluation metrics by averaging across repetitions to ensure the robustness
and reproducibility of our models. Finally, we visualize the attention and features maps to
demonstrate the global impact of attention mechanisms employed in the architecture.

2. Related Work

Machine learning applications in predicting various stages of Alzheimer’s disease
have been of interest to numerous researchers, who began employing classical techniques
such as support vector machines [47,48]. Researchers extracted features from Alzheimer’s
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imaging data using autoencoders and classical techniques to classify AD and MCI brains.
This approach introduced more advanced feature extractors compared to the classical
methods, which improved the performance of AD prediction [49,50]. The next generation
of predictive models included many CNN architectures to classify mainly AD and HC
brains. The successful binary classification motivated imaging and neuroscientists to
employ sophisticated techniques to address 3-class prediction tasks of HC vs. MCI vs.
AD [51–54].

Besides 2D CNN architectures, 3D convolutional layers enabled scientists to incorpo-
rate the volumetric data into the training process. Such approaches produced promising
predictions using structural MRI data [55–57]. The 3D models used the signal intensity
at the voxel level and applied the convolution operator to 3D filters and previous-layer
feature maps. Although 3D models became popular due to producing high accuracy rates,
many scientists challenged these techniques, conducting experiments in which 2D models
outperformed 3D models [54,58–60].

Some research groups considered using functional MRI 4D data to predict various
stages of AD, where they composed the brain images into 2D samples along with depth
and time axes. The data decomposition method produced a significant amount of data for
training and resulted in a nearly perfect binary classification performance, outperforming
most of the models built by structural data. The major challenge in using 4D fMRI data was
to establish a preprocessing pipeline to prepare the data for model development [61–64].

Recurrent neural networks (RNNs) and their subsequent architectures, such as long-
and short-term memory LSTM models, capture features from a sequence of data that are
useful to extract temporal relationships encoded in Alzheimer’s imaging data [65,66]. A
special use of LSTM models occurs in longitudinal analysis for Alzheimer’s disease predic-
tion. In this approach, researchers extract spatial maps from imaging data using various
feature extractors, such as multi-layer perceptron (MLP), and train bi-directional LSTMs to
address the AD classification problems. This two-step prediction allows neuroscientists to
explore the patterns in longitudinal imaging, which are suppressed in cross-sectional meth-
ods [67–69]. However, the extra step of explicit feature extraction and the complex impact of
sensitive longitudinal analysis remains the major challenge of using such methods [70,71].

The next category of machine learning methods used for Alzheimer’s disease predic-
tion is hybrid modeling, where CNNs and RNNs models extract hierarchical and temporal
features in a cascade architecture. The CNN component of such networks is considered the
central feature extractor, and the RNN-LSTM component extracts position-related features
and forms the core of the model [35,71,72].

Multimodal imaging in the same category provides complementary information from
each modality, such as fMRI, structural MRI, and PET, that often transfer the predicted
labels to a postprocessing or ensemble model. Since the nature of each modality is different,
using combined data to build a unique model for AD prediction produces poor perfor-
mance because the model hardly converges [73–76]. Some researchers considered a hybrid
approach, using clinical and imaging data to develop separate models that followed a
predictive model. Such a technique offers strong decision-making, since the misprediction
by imaging models is compensated for by clinical data [77,78].

Transformers with the various implementations of attention mechanisms stemming
from natural language processing (NLP) domains have been of interest to scientists regard-
ing whether such technology is adaptable for Alzheimer’s disease prediction [79,80]. For
example, a deep neural network with transformer blocks was the core of an Alzheimer’s
study to assess risks using targeted speech [81].

Transformers’ temporal or sequential feature extraction capability allowed researchers
to develop end-to-end solutions to predict Alzheimer’s through a longitudinal model
known as TrasforMesh using structural data [82]. Also, a universal brain encoder based on
a transformer with attention mechanisms offered model explainability to analyze 3D MRI
data [82]. The transformer technology has motivated scientists to implement predictive
models using 3D data in non-Alzheimer’s studies, such as defect assessment of knee
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cartilage [83]. To date, our proposed method of using an optimized vision transformer
(OViTAD) to predict various stages of Alzheimer’s is considered the first initiative in
adopting this technology.

3. Materials and Methods
3.1. Datasets

We used two sets of Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu/, 15 July 2021), including fMRI and structural MRI imaging data.
We recruited older adults (age group > 75) for both imaging modalities in this study with
the aim of suppressing the effect of aging on modeling. Using only older adults in this
study enabled us to ensure our models predict the Alzheimer’s stages not aging effect. We
ensured ground truth quality; we cross-checked the participants’ proposed labels by ADNI
with their mini-mental state examination (MMSE) scores. The fMRI dataset contained
275 participants scanned for resting-state fMRI (rs-fMRI) studies; we found 52 Alzheimer’s
(AD), 92 healthy control (HC), and 131 MCI brains in our fMRI dataset. The structural MRI
dataset included 1076 participants, where we found 211 AD, 91 HC, and 744 MCI brains.
Table 1 shows the participants’ demographic details for both modalities categorized into
three groups: gender, age, and MMSE scores.

Table 1. The demographic of two sets of ADNI data used in model development shows all the groups
are older adults within an age group of >75.

Modality Total Group Participant Female Age Male Age MMSE

rs-fMRI 284
AD 54 27 80.96 ± 4.64 27 79.0 ± 2.74 22.70 ± 2.10
HC 99 49 79.78 ± 4.76 50 82.57 ± 3.88 28.82 ± 1.35
MCI 131 66 79.15 ± 3.09 65 79.72 ± 4.84 26.53 ± 2.51

MRI 1460
AD 577 232 80.98 ± 4.65 345 81.27 ± 4.08 23.07 ± 2.06
HC 108 51 79.37 ± 3.54 57 80.81 ± 4.42 28.81 ± 1.35
MCI 775 265 80.28 ± 3.31 510 81.61 ± 4.15 26.53 ± 2.09

3.2. Image Acquisition Protocol

ADNI provided a standard protocol to scientists to acquire imaging data using three
Tesla scanners, including General Electric (GE) Healthcare, Philips Medical Systems, and
Siemens Medical Solutions machines [84]. We ensured that the two datasets utilized
in this study were collected using the same scanning parameters. The protocol stated
that the functional scans were performed using an echo-planar imaging (EPI) sequence
(150 volumes, repetition time (TR) = 2 second (s), echo to time (TE) = 30 milliseconds (ms),
flip angle (FA) = 70 degrees, filed-of-view (FOV) = 20 centimeters (cm)) that produced
64 × 64 matrices with 30 axial slices of 5 millimeters (mm) thickness without a gap. The
structural MRI data acquisition employed a 3-dimensional (3D) magnetization prepared
rapid acquisition gradient echo sequence known as MPRAGE (TR = 2 s, TE = 2.63 ms,
FOV = 25.6 cm) that produced 256 × 256 matrices with 160 slices of 1mm thickness.

3.3. Data Preprocessing
3.3.1. rs-fMRI

We considered an extensive 7-step pipeline to preprocess the rs-fMRI data to pre-
process our data from scratch, as the research indicated that enhanced preprocessing
rs-fMRI data improved the performance of modeling [85,86]. First, we converted the raw
rs-fMRI data, downloaded from ADNI in digital imaging and communications in medicine
(DICOM) format, to neuroimaging informatics technology initiative (NIfTI/NII) format
using an open-source tool known as the dcm2niix software [87]. We removed skull and
neck voxels considered non-brain regions from the structural T1-weighted imaging data
corresponding to each fMRI time course using FSL-BET software [88]. Third, using FSL-
MCFLIRT [89], we corrected the rs-fMRI data for motion artifact caused by low-frequency
drifts, which could negatively impact the time course decomposition. Finally, we applied a

http://adni.loni.usc.edu/
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standard slice timing correction (STC) method known as Hanning-Windowed Sinc Interpo-
lation (HWSI) to each voxel’s time series. According to the ADNI data acquisition protocol,
the brain slices were acquired halfway through the relevant volume’s TR; therefore, we
shifted each time series by a proper fraction relative to the middle point of TR period. We
spatially smoothed the rs-fMRI time series using a Gaussian kernel with 5 mm full width
half maximum (FWHM). Next, we employed a temporal high-pass filter with a cut-off
frequency of 0.01 HZ (Sigma = 90 s) to remove low-frequency noise. We registered the fMRI
brains to the corresponding high-resolution structural T1-weighted scans using an affine
linear transformation with seven degrees of freedom (7 DOF). Subsequently, we aligned the
registered brains to the Montreal Neurological Institute standard brain template (MNI152)
using an affine linear transformation with 12 DOF [90]. We resampled the aligned brains
by a 4 mm kernel that generated 45 × 54 × 45 brain slices per time course. The rs-fMRI
preprocessing pipeline produced 4-dimensional (4D) data, including time series within
T ∈ [124, 200] with the mode of 140 data points per participant; therefore, we obtained 4D
NIfTI/NII files of 45 × 54 × 45 × T.

3.3.2. Structural MRI

We preprocessed the structural MRI data from scratch using a 6-step pipeline where we
first converted the DICOM raw images to NifTi/NII format using dcm2niix software [87].
Next, we extracted the brain regions by removing the skull and neck tissues from the
data [88]. Then, using the FSL-VBM library [91], we segmented the brain images into grey
matter (GM), white matter (WM), and cerebrospinal fluid (CSF). We used the GM images
to register to the GM ICBM-152 standard template using a linear affine transformation
with 6 DOF. Next, we concatenated the brain images, flipped them along the x-axis, then
re-averaged to create a first-pass, study-specific template as a standard approach [88]. Next,
we re-registered the structural MRI brains to the template using a non-linear transformation,
and then resampled to create a 2 × 2 × 2 mm3 GM template in the standard space. Per
FSL-VBM standard protocol, we applied a modulation technique to the structural MRI
data by multiplying each voxel by the Jacobian of the warp field to compensate for the
enlargement that occurred via the non-linear component of transformation. Subsequently,
we used all the concatenated and averaged 3D GM images (one 3D sample per participant)
to create a 4D data stack. Finally, we smoothed the structural MRI data using a range
of Gaussian kernels with sigma = 3, 4 (FWHM of 4.6, 7, and 9.3 mm), as the research
showed that the smoothing significantly impacted the performance of modeling [92,93].
The structural MRI preprocessing pipeline produced two sets (one set per sigma) of 3D
NIfTI/NII files of 91 × 109 × 91.

3.4. Proposed Architecture: Optimized Vision Transformer (OViTAD)

Inspired by a transformer built for natural language processing use cases [94], vision
transformers have been adopted for computer vision tasks such as image classification
or object detection. The vanilla vision transformer [95] employs a dozen multi-head self-
attention (MHSA) layers, considered the transformer blocks building the core of architecture.
This algorithm splits an input image into small patches that are passed through positional
embedding and transformer encoder layers. During the training process, the positional
information is incorporated by attention layers which a similar to better predict farther
data points from the current state [94,95]. The vision transformer generated patches from a
given set of preprocessed images, converted the 2D arrays into 1D arrays, and decomposed
them along the axes for the three channels. The dimension of each patch is calculated by
multiplying the number of channels by the height and width of the patches. We prepared
the linearly embedded arrays to feed into the next blocks. To address the objective of our
multiple-class Alzheimer’s prediction, where we used specific imaging data dimensions;
we set our transformer’s input dimension to 56 × 56 for fMRI and 112 × 112 for structural
MRI, which were the closest meaningful dimensions reflecting popular image size. This
data-driven approach allowed us to bypass a computationally massive grid search by
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optimizing the network’s hyperparameters. Since we reduced the vision transformer input
dimension from 224 × 224 × 3 to 112 × 112 × 3 and 56 × 56 × 3, we reduced the number
of heads in MHSA in architecture to optimize the architecture. The core intention was
to improve the efficiency of our model while producing the same or better performance
compared to the vanilla version with reduced trainable parameters. In the next step, the
vision transformer used a positional embedding to feed the arrays to the transformer 8-head
self-attention block with six layers in depth, which applied a set of standard steps to the
arrays similar to the original architecture [94,95]. To decrease the chance of overfitting,
we set our dropout and embedding dropout to 0.1. We used a multi-perceptron layer,
known as the fully connected layer of 2048 neurons, to translate the features extracted by
the optimal vision transformer to a format usable for the cross-entropy loss function to
evaluate classification performance. Figure 1 pictures the architecture of the optimized
vision transformer implemented in this study.

Figure 1. The OViTAD architecture is an optimized ViT shown for structural MRI data composed of
a linear projection layer applied to the flattened patches fed into an 8-HSA Transformer. The MLP
layer of 2048 parameters translates the features from the transformer encoder to a proper format for
the cross-entropy loss function

We used DeepViT, which is a deeper version of a vision transformer, to build our
baselines [96]. DeepViT employs a mechanism known as re-attention, instead of MHSA,
to reproduce attention maps to increase the diversity of features extracted by the architec-
ture. The re-attention layers benefit from the interaction across various heads to capture
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further information, which improves the diversity of attention maps through a learnable
transformation matrix known as Q. Figure 2 (left) demonstrates the DeepViT transformer
block with its re-attention mechanism. To enhance the scope of our benchmarking, we used
another vision transformer image classifier known as class-attention in image transformers
(CaIT) that introduced a class-attention layer [97]. The CaIT architecture consists of two
major components: (a) standard self-attention step which is identical to the ViT transformer,
and (b) a class-attention layer step, including a set of operations to convert the positionally
embedded patches into class embedding arrays (CLS), followed by a linear classification
method. CaIT with the CLS mechanism avoids the saturation of deep vision transformers
in the early state and allows the model to further learn across training. Figure 2 (right)
shows the CaIT transform block.

Figure 2. The transformer block in DeepViT architecture includes a re-attention module instead of a
standard self-attention layer (Left). Class-Attention in Image Transformer architecture consists of a
class embedding (CLS) and additional class-attention layers preceded by self-attention layers (Right).

3.5. fMRI Pipeline

We categorized the preprocessed 4D fMRI samples (one NIfTI/NII per participant)
into AD, HC, and MCI classes. In the next step, we used a stratified split of 80%–10%–10%
and randomly shuffled data at class level to generate three training, validation, and testing
sets. Therefore, the sets included 226, 27, and 31 participants for training, validation,
and testing. The main objective of this study was to perform a multiclass prediction;
however, we expanded our modeling approach to explore the impact of merging MCI
data with two other classes and generated samples for AD + MCI vs. HC and AD vs.
HC + MCI experiments. Using our optimized model, we also built AD vs. HC and HC
vs. MCI models for a consistent comparison with the literature. To perform a consistent
comparison, we used the identical data splits generated for multiclassification for the two
binary classifications, where we only modified the corresponding ground truth according
to experiments.

3.5.1. Data Decomposition from 4D to 2D

We decomposed the 4D fMRI data and z and t axes into 2D images using a lossless
data conversion method to generate portable network graphics (PNG) samples for model
development. We first loaded the NIfTI files into memory using the Nibabel package
available at https://nipy.org/nibabel/, 20 August 2021 and employed the Python OpenCV
library available at OpenCV.org to store the decomposed 2D images in the server. Next, we

https://nipy.org/nibabel/
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removed the last ten brain slices and empty brain images to improve data quality. To find the
empty slices, we measured the sum of pixel intensity in a given brain image and only stored
images with non-zero-sum. Equation (1) shows the details of fMRI data decomposition.

f or ∀z = 1 to Z− 10

f or ∀t = 1 to T

i f SIz,t(BSz,t(x, y)) =
x=1

∑
X

y=1

∑
Y

BS(x, y) 6= 0 :

BSz,t(x, y)→ PNG(BSz,t(x, y))

otherwise :

Ignore BSz,t(x, y)

(1)

where X, Y, and Z represent the spatial dimensions of fMRI data (45, 54, 45), and T refers to
140 data points of a given fMRI time course. SI(z, t) represents the sum of voxel intensity
in a given brain slice, BSz,t(x, y) represents and PNG denotes the lossless data conversion
function. The decomposition module produced 1,433,880 images consisting of 1,141,280,
138,600, and 154,000 samples for training, validation, and testing purposes.

3.5.2. Modeling

The central objective of our fMRI pipeline was to address the multiclass prediction of
AD, HC, and MCI using our designed optimal vision transformer. Furthermore, we con-
sidered two additional binary classification experiments mentioned earlier: (a) AD + MCI
against HC and (b) HC + MCI against AD, to explore the clinical impact of merging MCI
with the other classes. We built our optimized vision transformer (OViTAD) and three
other baselines—CaIT, DeepViT, and vanilla vision transformer—and used the Amazon
Web Services’ (AWS) SageMaker infrastructure as our development environment. We spun
up a p3.8xlarge instance with 32 virtual central processing units (vCPUs) and 244 gigabyte
(GB) memory. The instance included four NVIDIA TESLA V100-SXM2-16GB graphical
processing units (GPUs) and 10 GB per second (Gbps) network performance. We trained
all the models for 40 epochs and a batch size 64 using the Adam optimization method
with a learning rate lr = 3 × 10−5, gamma = 0.7, and stepsize = 1. We monitored modeling
performance across the epochs using accuracy rates and loss scores for training and val-
idation sets. We used the accuracy rate of validation sets as the criteria for selecting the
best model. We implemented the prediction module to load the stored best models into
the memory and predict validation and testing sets with their probability scores at slice
level. We evaluated the performance of the models using a standard classification report
by calculating precision, recall, F1-score, and accuracy rates. Table A1 in the Appendix A
demonstrates the models’ performance at slice level for validation and test datasets and
three repetitions (random data splits) of fMRI experiments.

3.5.3. Subject-Level Evaluation

We designed our modeling based on the decomposition of brain image into a 2D
image; therefore, the performance obtained from the prediction module demonstrated the
slice-level performance. To calculate the performance of our models at the subject level
(see Table A1 Appendix A), we applied a vote for majority method to the predicted labels
by aggregating the results based on subjects’ identifiers (IDs). Next, we calculated the
probability of each class per subject and then voted for the class with the highest probability.
Finally, we used our standard classification report to measure the performance of our
models at the subject level. Table A2 in the Appendix A shows the models’ performance
for validation and test datasets and three repetitions (random data splits) of experiments
for fMRI data. First, we calculated the macro average (macro-ave) and weighted average
(weighted-avg) for precision, recall, and F1-score evaluation metrics. Next, we analyzed
at model level to explore classification performance across the experiments. We used the
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weighted average scores of the aforementioned four metrics and calculated each exper-
iment’s average and standard deviation against three repetitions (random data splits).
Table 2 shows the performance of models for validation and test sets with the averaged
metrics and the corresponding standard deviation values. We summarized the results of
this table in Figure A5 comparing the performance of fMRI models using averaged F1-score
for three testing sets.

Table 2. To evaluate the performance of experiments referring to model-level results, we used
the weighted average scores of subject-level results and calculated each experiment’s average and
standard deviation across three repetitions for validation and test sets (random data splits).

Model Dataset Precision Recall F1-Score Accuracy

CaIT_ADMCI-HC Val 0.53 ± 0.14 0.68 ± 0.02 0.57 ± 0.07 0.68 ± 0.02
Test 0.54 ± 0.21 0.66 ± 0.02 0.53 ± 0.04 0.66 ± 0.02

CaIT_AD-HCMCI Val 0.66 ± 0 0.81 ± 0 0.73 ± 0 0.81 ± 0
Test 0.65 ± 0 0.81 ± 0 0.72 ± 0 0.81 ± 0

CaIT_AD-HC-MCI Val 0.4 ± 0.14 0.54 ± 0.06 0.43 ± 0.11 0.54 ± 0.06
Test 0.37 ± 0.01 0.46 ± 0.02 0.37 ± 0.01 0.46 ± 0.02

DeepViT_AD_HC_MCI Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.02

DeepViT_AD_HCMCI Val 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02
Test 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02

DeepViT_ADMCI_HC Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02

ViT_224_8_AD_HC_MCI Val 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02
Test 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03

ViT_224_8_AD_HCMCI Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02

ViT_224_8_ADMCI_HC Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 0.97 ± 0 0.97 ± 0 0.97 ± 0 0.97 ± 0

ViT_vanilla_AD_HC_MCI Val 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02
Test 0.97 ± 0 0.97 ± 0 0.97 ± 0 0.97 ± 0

ViT_vanilla_AD_HCMCI Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02

ViT_vanilla_ADMCI_HC Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02

OViTAD_AD_HC_MCI Val 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02
Test 0.97 ± 0 0.97 ± 0 0.97 ± 0 0.97 ± 0

OViTAD_AD_HCMCI Val 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02
Test 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02

OViTAD_ADMCI_HC Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02

OViTAD_AD_HC Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02

OViTAD_HC_MCI Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03

3.6. Structural Pipeline
3.6.1. Data Split

We categorized the preprocessed 3D structural MRI samples (one NIfTI/NII per
participant) into AD, HC, and MCI classes. In the next step, we used a stratified split
of 80%–10%–10% and randomly shuffled data at class-level to generate three training,
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validation, and testing sets for two sets of preprocessed data S3 (sigma = 3 mm) and S4
(sigma = 4 mm). Therefore, the sets included 1167, 144, and 149 participants for training,
validation, and testing, respectively. Similar to the fMRI pipeline, we explored the impact
of merging MCI data with AD and HC. We used the identical data splits generated for
multiclass prediction to address the binary classification experiments by updating the
corresponding ground truth; this strategy allowed us to perform a consistent comparison
across experiments and two sigma variations.

3.6.2. Data Decomposition 3D to 2D

We employed the same technique explained in Equation 1 to decompose 3D MRI
data into 2D PNG images. As the structural MRI data are constructed without temporal
information, we set the time parameter in the equation to T = 1. The structural MRI
decomposition module produced 111,899 images per set containing 89,446, 11,040, and
11,413 samples for training, validating, and testing our models.

3.6.3. Modeling

The main objective of the structural MRI pipeline was to conduct a multiclass predic-
tion of AD, HC, and MCI classes using two sets of preprocessed data (sigma = 3, 4) and to
evaluate our proposed optimal vision transformer architecture. Also, we used four other
models as baselines similar to the fMRI pipeline to investigate the performance of optimal
architecture. Furthermore, we considered combining MCI data with AD and HC to classify
(a) AD + MCI against HC and (b) HC + MCI against AD. Similar to the fMRI pipeline,
we utilized AWS SageMaker as the development environment on a p3.8xlarge instance
equipped with NVIDIA GPUs. We trained all the models for 40 epochs and a batch size
64 using the Adam optimization method with a learning rate lr = 3 × 10−5, gamma = 0.7,
and step_size = 1. Using loss scores and accuracy rates of training and validation sets, we
evaluated the training process and selected the best model based upon the highest accuracy
rate obtained from the validation sets. Since we designed our vision transformers to use
2D images, we developed a prediction module to output validation and test sets’ labels at
slice level. We employed our standard classification report module to generate a macro
and weighted average of precision, recall, F1-scores, and accuracy rates. We show the
slice-level performance of structural MRI models in Tables A3 and A4 in Appendix A and
for sigma = 3, 4.

3.6.4. Subject-Level

We used the predicted labels for brain slices and aggregated the results by the subject
IDs to calculate the models’ performance at subject level; the slice-level performance is
shown in Table A4 Appendix. Then, using the postprocessing module based on the voting
for majority concept, we counted the number of each class prediction in an experiment
and measured each class probability. In the next step, we assigned the corresponding
label of the highest probability to a given subject. Finally, we employed our standard
classification reports as described earlier, and generated the evaluation scores at the subject
level. Tables A5 and A6 in the Appendix demonstrate the subject-level performance
of structural MRI models for preprocessed data with spatial smoothing sigma = 3, 4,
respectively. To measure the performance of experiments at the model level, we used the
weighted average evaluation scores and calculated the average and standard deviation of
the scores for both structural MRI datasets, shown in Table 3. We summarized the results of
this table in Figure A6 comparing the performance of sMRI models using averaged F1-score
for three testing sets.
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Table 3. The models’ performance of two sets for structural MRI experiments evaluated by standard
evaluation metrics.

Model Dataset Precision Recall F1-Score Accuracy

CaIT_S3_AD-HC-MCI Val 0.74 ± 0.02 0.8 ± 0.02 0.77 ± 0.02 0.8 ± 0.02
Test 0.71 ± 0.02 0.77 ± 0.03 0.73 ± 0.03 0.77 ± 0.03

CaIT_S3_AD-HCMCI Val 0.72 ± 0.02 0.72 ± 0.03 0.7 ± 0.03 0.72 ± 0.03
Test 0.71 ± 0.02 0.7 ± 0.01 0.69 ± 0.01 0.7 ± 0.01

CaIT_S3_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.85 ± 0 0.92 ± 0 0.88 ± 0 0.92 ± 0

DeepViT_S3_AD-HC-MCI Val 0.81 ± 0.06 0.85 ± 0.03 0.82 ± 0.04 0.85 ± 0.03
Test 0.77 ± 0.02 0.84 ± 0.02 0.81 ± 0.02 0.84 ± 0.02

DeepViT_S3_AD-HCMCI Val 0.84 ± 0.04 0.84 ± 0.05 0.84 ± 0.05 0.84 ± 0.05
Test 0.83 ± 0.04 0.83 ± 0.04 0.83 ± 0.04 0.83 ± 0.04

DeepViT_S3_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.85 ± 0 0.92 ± 0 0.88 ± 0 0.92 ± 0

ResNet50_S3_AD-HC-MCI Val 0.85 ± 0.09 0.86 ± 0.05 0.84 ± 0.06 0.86 ± 0.05
Test 0.83 ± 0.06 0.85 ± 0.02 0.82 ± 0.02 0.85 ± 0.02

ResNet50_S3_AD-HCMCI Val 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01
Test 0.84 ± 0.04 0.84 ± 0.04 0.84 ± 0.04 0.84 ± 0.04

ResNet50_S3_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.85 ± 0 0.92 ± 0 0.88 ± 0 0.92 ± 0

ViT_S3_AD-HC-MCI Val 0.84 ± 0.05 0.88 ± 0.02 0.85 ± 0.03 0.88 ± 0.02
Test 0.84 ± 0.08 0.85 ± 0.03 0.83 ± 0.04 0.85 ± 0.03

ViT_S3_AD-HCMCI Val 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.02 0.84 ± 0.01
Test 0.84 ± 0.03 0.83 ± 0.02 0.83 ± 0.02 0.83 ± 0.02

ViT_S3_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.85 ± 0 0.92 ± 0 0.88 ± 0 0.92 ± 0

OViTAD_S3_AD-HC-MCI Val 0.78 ± 0.02 0.84 ± 0.02 0.81 ± 0.02 0.84 ± 0.02
Test 0.75 ± 0.03 0.82 ± 0.03 0.79 ± 0.03 0.82 ± 0.03

OViTAD_S3_AD-HCMCI Val 0.79 ± 0.03 0.77 ± 0.05 0.75 ± 0.07 0.77 ± 0.05
Test 0.79 ± 0.02 0.77 ± 0.04 0.75 ± 0.06 0.77 ± 0.04

OViTAD_S3_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.85 ± 0 0.92 ± 0 0.88 ± 0 0.92 ± 0

OViTAD_S3_AD-HC Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 1 ± 0 1 ± 0 1 ± 0 1 ± 0

OViTAD_S3_HC-MCI Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 1 ± 0 1 ± 0 1 ± 0 1 ± 0

CaIT_S4_AD-HC-MCI Val 0.84 ± 0.03 0.9 ± 0.03 0.87 ± 0.03 0.9 ± 0.03
Test 0.81 ± 0.01 0.88 ± 0.01 0.84 ± 0.01 0.88 ± 0.01

CaIT_S4_AD-HCMCI Val 0.87 ± 0.02 0.87 ± 0.02 0.87 ± 0.02 0.87 ± 0.02
Test 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02

CaIT_S4_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.85 ± 0 0.92 ± 0 0.88 ± 0 0.92 ± 0

DeepViT_S4_AD-HC-MCI Val 0.85 ± 0.01 0.91 ± 0.01 0.88 ± 0.01 0.91 ± 0.01
Test 0.82 ± 0.01 0.88 ± 0.01 0.85 ± 0.01 0.88 ± 0.01

DeepViT_S4_AD-HCMCI Val 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01
Test 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02

DeepViT_S4_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.85 ± 0 0.92 ± 0 0.88 ± 0 0.92 ± 0
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Table 3. Cont.

Model Dataset Precision Recall F1-Score Accuracy

ResNet50_S4_AD-HC-MCI Val 0.93 ± 0.01 0.93 ± 0.01 0.91 ± 0.01 0.93 ± 0.01
Test 0.89 ± 0.06 0.91 ± 0.02 0.89 ± 0.03 0.91 ± 0.02

ResNet50_S4_AD-HCMCI Val 0.93 ± 0 0.93 ± 0 0.93 ± 0 0.93 ± 0
Test 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01

ResNet50_S4_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.87 ± 0.05 0.92 ± 0 0.89 ± 0.01 0.92 ± 0

ViT_S4_AD-HC-MCI Val 0.9 ± 0.06 0.91 ± 0.02 0.89 ± 0.02 0.91 ± 0.02
Test 0.88 ± 0.06 0.9 ± 0.02 0.87 ± 0.02 0.9 ± 0.02

ViT_S4_AD-HCMCI Val 0.91 ± 0 0.91 ± 0 0.91 ± 0 0.91 ± 0
Test 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03

ViT_S4_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.85 ± 0 0.92 ± 0 0.88 ± 0 0.92 ± 0

OViTAD_S4_AD-HC-MCI Val 0.86 ± 0.06 0.9 ± 0.02 0.87 ± 0.03 0.9 ± 0.02
Test 0.81 ± 0.01 0.87 ± 0.01 0.84 ± 0.01 0.87 ± 0.01

OViTAD_S4_AD-HCMCI Val 0.9 ± 0 0.89 ± 0 0.89 ± 0 0.89 ± 0
Test 0.89 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02

OViTAD_S4_ADMCI-HC Val 0.87 ± 0 0.93 ± 0 0.9 ± 0 0.93 ± 0
Test 0.85 ± 0 0.92 ± 0 0.88 ± 0 0.92 ± 0

OViTAD_S4_AD-HC Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 1 ± 0 1 ± 0 1 ± 0 1 ± 0

OViTAD_S4_HC-MCI Val 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Test 1 ± 0 1 ± 0 1 ± 0 1 ± 0

3.7. Discussion
3.7.1. Technical/Architecture Design

We designed an optimized vision transformer architecture to predict multiple stages of
Alzheimer’s disease using fMRI and MRI data. Our end-to-end pipeline for two modalities
was built on four major components: (a) aggressive preprocessing of fMRI and MRI data,
(b) data decomposition from higher dimensions to 2D, (c) vision transformer model devel-
opment, and (d) postprocessing. The core concept of this study was to explore the capability
of vision transformers to predict Alzheimer’s stages. We exhaustively trained models to
conduct a comprehensive evaluation of our proposed architecture. We investigated the
performance of our baselines and our proposed architecture against fMRI and two sets
of structural MRI data to address the 3-class AD vs. HC vs. MCI, AD vs. HC + MCI,
and AD + MCI vs. HC classifications. To demonstrate the robustness of our modeling
approach, we repeated each experiment with random data splits three times. More random
data splits, such as five to ten runs, could be explored in future work. We reported the
performances at the slice level and subject level, which led us to compare our models across
all experiments (model level). We proposed an optimized vision transformer architecture
as the core of our end-to-end prediction pipeline. Our optimization approach is based on
the scientific fact of using an image input size of architecture that has the closest and most
meaningful input dimensions of preprocessed fMRI data. Therefore, we set the architecture
input dimension to 56 × 56 and resample our data (45 × 54) to fit our optimal architec-
ture, where the originality of data content remains through minimal upsampling. Next,
we consider reducing the number of heads in the multi-head attention layer to decrease
the complexity and trainable parameters of the network. We showed in Table 4 that we
decreased the input image size and trainable parameters in the optimized network by
75% and 28% compared to the vanilla vision transformer, while improving the models’
performance in the fMRI experiments and producing a similar performance to other models
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in the structural MRI experiments. Unlike grid search-based optimization, which requires
massive model development to achieve an optimal architecture and topology, our fact- and
data-driven optimization method, which stems from the impact of input size, produced
faster converging modeling. This allowed us to explore a broader set of model development
and clinical analysis.

Table 4. The number of trainable parameters reduced by 28% compared to vanilla vision transformer
and DeepViT while producing higher performance in fMRI and similar performance to other models
in structural MRI data.

Model Input (Channel,x,y) Params

CaIT 3,224,224 120,707,075
DeepViT 3,224,224 53,532,867
ViT-vanilla 3,224,224 53,532,675
ViT-224-8 3,224,224 40,949,763
OViTAD 3,56,56 38,406,147

We consider the fMRI testing datasets as our gold standard to compare the perfor-
mance of our models. Unlike training and validation datasets, the testing datasets are
unseen and never used in the training processes. The models’ performance at the sub-
ject. level using fMRI data, shown in Table 3, reveals that OViTAD, DeepViT, ViT-vanilla,
and ViT-224-8 in AD-HCMCI classification outperforms other models with an F1-score of
0.99± 0.02. Also, among the models trained for the 3-class AD vs. HC vs. MCI prediction,
our optimized OViTAD model is on par with the ViT-vanilla, and ViT-224-8 outperforms
other models with an F1-score of 0.97± 0.02; our optimized models contain much fewer
trainable parameters than other models. Also, we investigated the impact of the post-
processing step developed based on voting for the majority algorithm, and the results
indicated that the models’ performance at the subject level (after postprocessing) with an
averaged F1-score of 0.89± 0.02 across all experiments (testing datasets) are higher (with
3% improvement) than slice-level ones with an averaged F1-score of 0.86± 0.02. This
finding aligned with the literature [54,58,64] that shows that postprocessing plays a crucial
role in improving the performance of modeling and proves that decomposition of data
from higher dimensions to 2D and back-transforming the slice-level predictions to the
subject level improve the quality of prediction significantly.

Similar to the above approach, we consider the structural MRI (sigma = 3) testing
datasets as the golden standard to investigate the best-performing model. The results shown
in Table 3 reveal that our OViTAD is on par with DeepViT, ViT-vanilla, and ViT-224-8 in the
ADMCI − HC S3 and S4 experiments in terms of F1-scores at the subject level. To explore
the central objective of this study, we reviewed the performance of models for 3-class AD
vs. HC vs. MCI prediction. The results indicated that ViT-vanilla and ViT-224-8 competed
with our OViTAD and produced an F1-score of 0.99± 0.01 (0.004 is negligibly higher than
OViTAD) using MRI S3. After preprocessing, the original MRI dimension was 91X109,
and we downsampled the structural MRI data to 112 × 112, causing a loss in contextual
information. Similarly, we analyzed the behavior of our models trained and evaluated by
the preprocessed MRI with sigma = 4 testing datasets. Our OViTAD model using MRI S4
was on par with other architectures, producing the best performance with an F1-score of
0.99± 0.01.

The results suggest that the input size and number of patches in the attention layers
greatly impact the performance of the structural MRI models. In a similar observation to
fMRI testing datasets, the models’ performance at the subject level (after postprocessing
with voting for a majority) increased by 7% compared to the slice-level models across
the experiments for sigma = 3, 4. Our analysis indicated that spatial smoothing with a
Gaussian kernel of sigma = 3 mm resulted in slightly higher evaluation scores across the
study (an average increase of 0.43% in sigma = 3 compared to the sigma = 4 dataset) which
aligns with the previous research; however, the improvement is negligible [54,58]. Spatial
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smoothing is important in preprocessing MRI data that removes random noise in a given
voxel’s neighborhoods [98,99].

This finding implies that the nature of features extracted by attention layers in the
vision transformer should differ from the features extracted by convolutional layers since
the impact of sigma = 3, 4 in the previous studies was negligible [54,58]. Next, we calculated
the confusion matrix of testing samples normalized per group for the best-performing OVi-
TAD fMRI (test set 2), MRI-S3, and MRI-S4 (test sets 3) models in the multiple classification
experiment to predict AD vs. HC vs. MCI, illustrated in Figure 3. The performance of
the best-performing OViTAD models for the same test sets across 40 epochs is shown in
Figure A4, Appendix A.

Figure 3. The normalized confusion matrices for the best-performing fMRI (left), MRI-S3 (middle),
and MRI-S4 (right) OViTAD models to classify AD vs. HC vs. MCI at subject-level.

Moreover, we comprehensively compared our findings and the recent literature re-
views in which the ADNI dataset was used for Alzheimer’s disease classification. We
carefully selected the most current, highly referenced studies and offered novel techniques
where the performance of models was highly competitive. Table 5 compares the perfor-
mance achieved by OViTAD in the two modalities with the most highly referenced recent
literature. Our finding shows that this study offers a broader range of classifications where
the optimized vision transformer outperforms the state-of-the-art models.

3.7.2. Clinical Observation

We considered combining the health control brains with Alzheimer’s and mild cogni-
tive impairment brains to generate new sets from the ADNI dataset to perform two binary
classification tasks using all the models. The fMRI models revealed a consistent pattern in
which the AD vs. HC + MCI models outperformed AD + MCI vs. HC by 4.64% with respect
to averaged F1-scores across all experiments shown in Table 2. This finding revealed some
level of similarity between HC and MCI functional data. Also, the results showed that our
predictive models could differentiate HC data from non-HC data, which revealed that our
models properly addressed the aging effect in this study. Furthermore, we analyzed the
binary models trained by structural MRI data for AD + MCI vs. HC and AD vs. HC + MCI
experiments for the two sigma = 3,4. The results indicated that our HC vs. AD + MCI
models outperformed AD vs. HC + MCI by 2.82%, respecting the averaged F1-scores across
all experiments for the two sigma values shown in Table 3.
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Table 5. Comparison between recent studies of Alzheimer’s classification using ADNI and our OViTAD. The analysis shows that our study addresses a broader
classification aspect with novel vision transformer technology, and our model performance outperformed the literature. Further details is found at Table A7.

Reference Modality AD vs. HC vs. MCI AD + MCI vs. HC AD vs. MCI+HC AD vs. HC MCI vs. HC

Lin et al. 2018 [100] MRI - - - 88.79% -

Dimitriadis et al. 2018 [101] MRI 61.90% - - - -

Kruthika et al. 2019 [102] MRI 90.47% - - - -

Spasov et al. 2019 [103] MRI + Clinical - - - - 86%

Basaia et al. 2019 [104] MRI - - - 98% 87%

Abrol et al. 2020 [105] MRI 83.01% - - - -

Shao et al. 2020 [106] MRI+PET - - - 92.51% 82.53%

Alinsaif et al. 2021 [107] MRI - 70.50% - 62.22% -

Alinsaif et al. 2021 [107] MRI - 91.61% - 92.78% -

Ramzan et al. 2019 [63] rs-fMRI 97.92% - - - -

Hojjati et al. 2018 [108] MRI + rs-fMRI - - 93% - -

Cui et al. 2019 [109] MRI - - - 91.33% -

Amoroso et al. 2018 [110] MRI 38.80% - - - -

Buvaneswari et al. 2021 [111] rs-fMRI - - - - 79.15%

Duc et al. 2019 [61] rs-fMRI+Clinical - - - 85.27% -

OViTAD—fMRI rs-fMRI 0.97 ± 0 0.98 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.97 ± 0.03

OViTAD—MRI (Sigma = 3) MRI 0.9955% ± 0.0039 1 ± 0 0.9955 ± 0.0039 1 ± 0 1 ± 0

OViTAD—MRI (Sigma = 4) MRI 0.9955% ± 0.0039 1 ± 0 0.9955 ± 0.0039 1 ± 0 1 ± 0
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3.7.3. Local and Global Attention Visualization

We extracted the attention weights and produced post-SoftMax for eight self-attention
heads with a depth of six. Then, using a random AD fMRI brain slice, we generated the
self-attention maps based on OViTAD for AD vs. HC vs. MCI classification as shown in
Figure A1, Appendix A. The attention maps in each column represent one self-attention
head, whereas the maps in each row represent the depth of attention layers. Also, we
explored the impact of attention mechanisms at the global level. We utilized the last feature
vector of OViTAD—the fMRI AD vs. HC vs. MCI classification, which is a fully connected
layer (FC)—and considered it the global attention feature. The FC layer represents the
features produced by the self-attention layers; therefore, it contains the information of
global attention. We employed an element-wise operator to obtain the sum of multiplication
between each pixel and all the elements in the FC vector. Next, we generated the normalized
global attention feature maps for a set of AD fMRI slices in the testing set as shown in
Equation (2) and visualized the maps using the CIVIDIS color map, illustrated in Figure 4.

imageresize = Resize(imageoriginal → 56× 56)

GlobalAttentionFeatureMap(GAFM) = ∑ imageresize × FCvector

GAFMnormalized = (GAFM−min(GAFM)) ∗ 255
max(GAFM)−min(GAFM)

(2)

Figure 4. The global attention feature map was obtained by multiplying the FC layer vector by
each pixel in the fMRI brain slices and measuring the sum of the multiplication per pixel. Next, we
normalized the feature map to (0, 255) and visualized the maps using the CIVIDIS color map. Finally,
we selected the first slice of each time-course to demonstrate various brain morphology across the
fMRI data acquisition.

3.7.4. Limitations

The number of repetitions for model development is considered a limitation in this
research study. Although we utilized a large dataset and generated three random data
splits for modeling, it is highly recommended to repeat this exercise up to 10 times with
randomly shuffled data to ensure the robustness of OViTAD. Also, we included voting
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for a majority technique as postprocessing to stabilize models’ performance; however, this
step would add an extra layer of computation to our pipeline, increasing the modeling cost.
Future work could address such a limitation using upper-dimension models, including 3D
vision transformers. Training of vision transformer models is costly; therefore, reducing the
image input size discussed in this research decreases training time and inspection latency.
Finally, this research study outlined an end-to-end machine learning pipeline to predict
Alzheimer’s disease stages using the ADNI dataset so that the models’ performance reflects
the accuracy of the pipeline for this dataset. Since the early prediction of this brain disorder
is crucial in clinical studies, a variety of existing Alzheimer’s datasets should be explored
along with ADNI to examine OViTAD performance in future work.

4. Conclusions

This study introduced an optimized vision transformer called OViTAD to predict
healthy, MCI, and AD brains using rs-fMRI and structural MRI (sigma = 3,4 mm) data.
The prediction pipeline included two separate preprocessing stages for the two modalities,
training and evaluation of slice-level vision transformers and a postprocessing step based on
voting for the majority concept. The results showed that our optimized vision transformer
outperformed and was on par with the vision transformers-based benchmark. OViTAD
30% reduced the number of trainable parameters compared to the vanilla ViT. The average
performance of OViTAD across three repetitions (random data splits) was 97% ± 0.0 and
99.55% ± 0.39 for the two modalities for the multi-class classification experiments, which
outperformed most existing deep learning and CNN-based models. Also, we introduced a
method of visualizing the attention mechanism’s global effect, enabling scientists to explore
crucial brain areas. This study showed that the vision transformers could outperform
and compete with the state-of-the-art algorithms to predict various stages of Alzheimer’s
disease with less complex architectures.
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Appendix A

Table A1. The slice-level models’ performance is described in this table for the validation and test datasets and three repetitions (random data splits). The
classification report includes the macro and weighted average precision, recall, and F1-score. The report also includes the accuracy rate and the number of unseen
slices used for each model evaluation.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

CaIT_AD-HC-MCI

Val
1 0.4984 0.4116 0.449 0.3991 0.4984 0.3614 0.442 138600
2 0.4938 0.4335 0.4598 0.3868 0.4938 0.3519 0.4379 133560
3 0.4877 0.4148 0.4404 0.355 0.4877 0.2777 0.3673 134400

Test
1 0.5011 0.4701 0.4865 0.402 0.5011 0.3604 0.4396 155820
2 0.4989 0.4828 0.4895 0.4005 0.4989 0.3577 0.4377 156100
3 0.4691 0.3507 0.4031 0.3723 0.4691 0.3148 0.3865 155820

CaIT_AD-HCMCI

Val
1 0.8081 0.404 0.653 0.5 0.8081 0.4469 0.7223 138600
2 0.8166 0.4083 0.6668 0.5 0.8166 0.4495 0.7341 133560
3 0.8021 0.9011 0.8413 0.5001 0.8021 0.4452 0.714 134400

Test
1 0.8113 0.4057 0.6582 0.5 0.8113 0.4479 0.7268 155820
2 0.8117 0.4058 0.6588 0.5 0.8117 0.448 0.7273 156100
3 0.7979 0.8989 0.8387 0.5 0.7979 0.4439 0.7082 155820

CaIT_ADMCI-HC

Val
1 0.6799 0.6389 0.66 0.6 0.6799 0.6007 0.6546 138600
2 0.675 0.6496 0.659 0.548 0.675 0.5121 0.6002 133560
3 0.6716 0.5506 0.5924 0.5004 0.6716 0.4039 0.5412 134400

Test
1 0.6502 0.6159 0.6291 0.568 0.6502 0.5536 0.6071 155820
2 0.6572 0.654 0.655 0.5582 0.6572 0.5233 0.5879 156100
3 0.6397 0.4783 0.5239 0.4998 0.6397 0.3923 0.5013 155820

DeepViT_ADMCI_HC

Val
1 0.9723 0.9696 0.9723 0.9681 0.9724 0.9711 0.9723 138600
2 0.9904 0.9895 0.9904 0.9903 0.9904 0.9886 0.9904 138600
3 0.9832 0.9812 0.9831 0.9858 0.9834 0.9771 0.9832 133560

Test
1 0.9109 0.9038 0.9105 0.9076 0.9106 0.9004 0.9109 155820
2 0.989 0.9882 0.989 0.9894 0.989 0.9869 0.989 155820
3 0.991 0.9904 0.991 0.9882 0.9912 0.9928 0.991 156100
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Table A1. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

DeepViT_AD_HCMCI

Val
1 0.9618 0.935 0.9607 0.9618 0.9618 0.9131 0.9618 138600
2 0.9831 0.9719 0.9831 0.9695 0.9832 0.9743 0.9831 133560
3 0.9875 0.9804 0.9875 0.9779 0.9876 0.983 0.9875 134400

Test
1 0.9807 0.9683 0.9806 0.9698 0.9806 0.9668 0.9807 155820
2 0.9719 0.954 0.9719 0.9542 0.9719 0.9538 0.9719 156100
3 0.9315 0.8818 0.9275 0.9381 0.9325 0.8451 0.9315 155820

DeepViT_AD_HC_MCI

Val
1 0.9387 0.9322 0.9385 0.9358 0.9392 0.9296 0.9387 138600
2 0.935 0.9352 0.9352 0.9365 0.9361 0.9347 0.935 133560
3 0.9299 0.9323 0.9299 0.9282 0.9303 0.937 0.9299 134400

Test
1 0.8997 0.9049 0.8995 0.9019 0.8996 0.9083 0.8997 155820
2 0.9069 0.9092 0.9069 0.9123 0.9078 0.9069 0.9069 156100
3 0.8855 0.8727 0.8837 0.8954 0.8879 0.8589 0.8855 155820

ViT24_8_ADMCI_HC

Val
1 0.9772 0.975 0.9773 0.9723 0.9775 0.978 0.9772 138600
2 0.9572 0.9527 0.9572 0.9514 0.9573 0.954 0.9572 133560
3 0.9507 0.9442 0.9507 0.943 0.9508 0.9455 0.9507 134400

Test
1 0.9181 0.9112 0.9176 0.9166 0.9179 0.9068 0.9181 155820
2 0.9396 0.9348 0.9393 0.9387 0.9395 0.9314 0.9396 156100
3 0.9461 0.9412 0.946 0.9438 0.946 0.9388 0.9461 155820

ViT24_8_AD_HCMCI

Val
1 0.9738 0.9564 0.9734 0.9708 0.9736 0.9436 0.9738 138600
2 0.9849 0.9747 0.9849 0.9761 0.9848 0.9733 0.9849 133560
3 0.9894 0.9834 0.9894 0.9784 0.9896 0.9886 0.9894 134400

Test
1 0.9782 0.965 0.9784 0.9571 0.9788 0.9734 0.9782 155820
2 0.9856 0.9765 0.9856 0.9743 0.9856 0.9787 0.9856 156100
3 0.932 0.8852 0.9289 0.9274 0.9314 0.8552 0.932 155820

ViT24_8_AD_HC_MCI

Val
1 0.9491 0.943 0.9487 0.9485 0.9497 0.9392 0.9491 138600
2 0.9318 0.9328 0.932 0.9313 0.9334 0.9354 0.9318 133560
3 0.922 0.9241 0.9218 0.9183 0.9223 0.9308 0.922 134400

Test
1 0.9137 0.9174 0.9135 0.9149 0.9137 0.9202 0.9137 155820
2 0.9207 0.9232 0.9207 0.9226 0.9208 0.9241 0.9207 156100
3 0.887 0.8705 0.885 0.8871 0.8871 0.8596 0.887 155820
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Table A1. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

ViT_vanilla_ADMCI_HC

Val
1 0.9653 0.9622 0.9655 0.9581 0.9661 0.9669 0.9653 138600
2 0.9376 0.9308 0.9376 0.9312 0.9376 0.9304 0.9376 133560
3 0.9445 0.9368 0.9444 0.9381 0.9443 0.9357 0.9445 134400

Test
1 0.9352 0.9298 0.9348 0.9351 0.9352 0.9253 0.9352 155820
2 0.9198 0.9117 0.9185 0.9278 0.922 0.9011 0.9198 156100
3 0.9406 0.9355 0.9406 0.9355 0.9406 0.9355 0.9406 155820

ViT_vanilla_AD_HCMCI

Val
1 0.9663 0.9431 0.9655 0.9656 0.9662 0.924 0.9663 138600
2 0.9777 0.9634 0.9779 0.9568 0.9782 0.9702 0.9777 133560
3 0.9866 0.9791 0.9867 0.9748 0.9868 0.9836 0.9866 134400

Test
1 0.9837 0.9735 0.9837 0.9696 0.9839 0.9776 0.9837 155820
2 0.9706 0.9515 0.9705 0.9559 0.9704 0.9472 0.9706 156100
3 0.9213 0.8677 0.9179 0.906 0.9195 0.8402 0.9213 155820

ViT_vanilla_AD_HC_MCI

Val
1 0.9359 0.9245 0.935 0.9329 0.9355 0.9183 0.9359 138600
2 0.9095 0.9092 0.9095 0.9027 0.9112 0.9174 0.9095 133560
3 0.9255 0.9285 0.9255 0.927 0.9256 0.93 0.9255 134400

Test
1 0.9158 0.9194 0.9155 0.9248 0.9182 0.9165 0.9158 155820
2 0.9074 0.9071 0.9072 0.9073 0.9088 0.9085 0.9074 156100
3 0.8876 0.8653 0.8839 0.8947 0.8901 0.85 0.8876 155820

OViTAD_ADMCI_HC

Val
1 0.9636 0.9602 0.9637 0.9576 0.964 0.9629 0.9636 138600
2 0.9501 0.9445 0.95 0.9459 0.9499 0.9431 0.9501 133560
3 0.9435 0.9362 0.9436 0.9345 0.9438 0.938 0.9435 134400

Test
1 0.9146 0.9073 0.914 0.9134 0.9144 0.9024 0.9146 155820
2 0.9281 0.9211 0.9271 0.9348 0.9297 0.9116 0.9281 156100
3 0.9221 0.9155 0.9222 0.9152 0.9222 0.9159 0.9221 155820

OViTAD_AD_HCMCI

Val
1 0.9539 0.9218 0.9527 0.9467 0.9534 0.9012 0.9539 138600
2 0.9754 0.9586 0.9753 0.9621 0.9753 0.9553 0.9754 133560
3 0.9854 0.9773 0.9855 0.9727 0.9856 0.9819 0.9854 134400

Test
1 0.9699 0.9511 0.97 0.9482 0.9701 0.9541 0.9699 155820
2 0.9843 0.9749 0.9845 0.9653 0.985 0.9853 0.9843 156100
3 0.9205 0.867 0.9173 0.9022 0.9184 0.8412 0.9205 155820
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Table A1. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

OViTAD_AD_HC_MCI

Val
1 0.9239 0.914 0.9232 0.925 0.924 0.9055 0.9239 138600
2 0.9102 0.91 0.9102 0.9097 0.9112 0.9111 0.9102 133560
3 0.9192 0.9219 0.9193 0.917 0.921 0.9283 0.9192 134400

Test
1 0.8939 0.9026 0.8936 0.9057 0.8949 0.9009 0.8939 155820
2 0.9025 0.9053 0.9024 0.9038 0.9024 0.907 0.9025 156100
3 0.8882 0.8682 0.8852 0.891 0.889 0.8557 0.8882 155820

OViTAD_AD_HC

Val
1 0.9615 0.9639 0.9618 0.9519 0.9615 0.9574 0.9612 74900
2 0.9877 0.989 0.9878 0.984 0.9877 0.9864 0.9877 70420
3 0.9815 0.9775 0.982 0.9838 0.9815 0.9804 0.9816 70700

Test
1 0.9608 0.9501 0.9627 0.9653 0.9608 0.9569 0.9611 87220
2 0.9545 0.9429 0.9568 0.9589 0.9545 0.95 0.9549 87500
3 0.8946 0.9004 0.8962 0.8694 0.8946 0.8814 0.8925 87500

OViTAD_HC_MCI

Val
1 0.9596 0.9576 0.9602 0.9608 0.9596 0.959 0.9597 112000
2 0.9265 0.9231 0.9277 0.928 0.9265 0.9251 0.9267 109060
3 0.9283 0.9243 0.929 0.9285 0.9283 0.9262 0.9285 107800

Test
1 0.9038 0.9049 0.9041 0.9013 0.9038 0.9027 0.9036 126420
2 0.8921 0.8934 0.8926 0.8894 0.8921 0.8909 0.8918 126700
3 0.9419 0.9429 0.9421 0.9398 0.9419 0.9411 0.9418 124320
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Table A2. The fMRI subject-level models’ performance is described in this table for the validation and test datasets and three repetitions (random data splits).
The classification report includes the macro and weighted average precision, recall, and F1-score. The report also includes the accuracy rate and the number of
unseen subjects aggregated by the postprocessing module and used for each model evaluation. In this table, AD-HC-MCI refers to multiclass (3-class) prediction,
AD-HCMCI refers to AD vs. HC + MCI, and ADMCI-HC represents AD + MCI vs. HC binary classifications.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

CaIT_AD-HC-MCI

Val
1 0.5926 0.4127 0.4974 0.4558 0.5926 0.4131 0.5176 27
2 0.5556 0.3818 0.4626 0.4188 0.5556 0.3714 0.473 27
3 0.4815 0.1605 0.2318 0.3333 0.4815 0.2167 0.313 27

Test
1 0.4516 0.3148 0.3781 0.3463 0.4516 0.284 0.359 31
2 0.4839 0.3 0.3677 0.3701 0.4839 0.3 0.3823 31
3 0.4516 0.3148 0.3781 0.3463 0.4516 0.284 0.359 31

CaIT_AD-HCMCI

Val
1 0.8148 0.4074 0.6639 0.5 0.8148 0.449 0.7317 27
2 0.8148 0.4074 0.6639 0.5 0.8148 0.449 0.7317 27
3 0.8148 0.4074 0.6639 0.5 0.8148 0.449 0.7317 27

Test
1 0.8065 0.4032 0.6504 0.5 0.8065 0.4464 0.72 31
2 0.8065 0.4032 0.6504 0.5 0.8065 0.4464 0.72 31
3 0.8065 0.4032 0.6504 0.5 0.8065 0.4464 0.72 31

CaIT_ADMCI-HC

Val
1 0.7037 0.6875 0.6944 0.5833 0.7037 0.5714 0.6508 27
2 0.6667 0.3333 0.4444 0.5 0.6667 0.4 0.5333 27
3 0.6667 0.3333 0.4444 0.5 0.6667 0.4 0.5333 27

Test
1 0.6452 0.3226 0.4162 0.5 0.6452 0.3922 0.506 31
2 0.6774 0.8333 0.7849 0.5455 0.6774 0.4833 0.5753 31
3 0.6452 0.3226 0.4162 0.5 0.6452 0.3922 0.506 31

DeepViT_ADMCI_HC

Val
1 1 1 1 1 1 1 1 27
2 1 1 1 1 1 1 1 27
3 1 1 1 1 1 1 1 27

Test
1 0.9677 0.964 0.9674 0.9762 0.9693 0.9545 0.9677 31
2 1 1 1 1 1 1 1 31
3 1 1 1 1 1 1 1 31
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Table A2. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

DeepViT_AD_HCMCI

Val
1 0.963 0.9333 0.9613 0.9783 0.9646 0.9 0.963 27
2 1 1 1 1 1 1 1 27
3 1 1 1 1 1 1 1 27

Test
1 1 1 1 1 1 1 1 31
2 1 1 1 1 1 1 1 31
3 0.9677 0.9447 0.9666 0.9808 0.969 0.9167 0.9677 31

DeepViT_AD_HC_MCI

Val
1 1 1 1 1 1 1 1 27
2 1 1 1 1 1 1 1 27
3 1 1 1 1 1 1 1 27

Test
1 0.9677 0.9726 0.9675 0.9778 0.9699 0.9697 0.9677 31
2 0.9677 0.9726 0.9675 0.9778 0.9699 0.9697 0.9677 31
3 0.9355 0.9316 0.9354 0.9583 0.9435 0.9141 0.9355 31

ViT24_8_ADMCI_HC

Val
1 1 1 1 1 1 1 1 27
2 1 1 1 1 1 1 1 27
3 1 1 1 1 1 1 1 27

Test
1 0.9677 0.964 0.9674 0.9762 0.9693 0.9545 0.9677 31
2 0.9677 0.964 0.9674 0.9762 0.9693 0.9545 0.9677 31
3 0.9677 0.964 0.9674 0.9762 0.9693 0.9545 0.9677 31

ViT24_8_AD_HCMCI

Val
1 1 1 1 1 1 1 1 27
2 1 1 1 1 1 1 1 27
3 1 1 1 1 1 1 1 27

Test
1 1 1 1 1 1 1 1 31
2 1 1 1 1 1 1 1 31
3 0.9677 0.9447 0.9666 0.9808 0.969 0.9167 0.9677 31

ViT24_8_AD_HC_MCI

Val
1 1 1 1 1 1 1 1 27
2 1 1 1 1 1 1 1 27
3 0.963 0.968 0.9626 0.9762 0.9656 0.963 0.963 27

Test
1 1 1 1 1 1 1 1 31
2 0.9677 0.9726 0.9675 0.9778 0.9699 0.9697 0.9677 31
3 0.9355 0.9316 0.9354 0.9583 0.9435 0.9141 0.9355 31
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Table A2. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

ViT_vanilla_ADMCI_HC

Val
1 1 1 1 1 1 1 1 27
2 1 1 1 1 1 1 1 27
3 1 1 1 1 1 1 1 27

Test
1 0.9677 0.964 0.9674 0.9762 0.9693 0.9545 0.9677 31
2 0.9677 0.964 0.9674 0.9762 0.9693 0.9545 0.9677 31
3 1 1 1 1 1 1 1 31

ViT_vanilla_AD_HCMCI

Val
1 1 1 1 1 1 1 1 27
2 1 1 1 1 1 1 1 27
3 1 1 1 1 1 1 1 27

Test
1 1 1 1 1 1 1 1 31
2 1 1 1 1 1 1 1 31
3 0.9677 0.9447 0.9666 0.9808 0.969 0.9167 0.9677 31

ViT_vanilla_AD_HC_MCI

Val
1 1 1 1 1 1 1 1 27
2 1 1 1 1 1 1 1 27
3 0.963 0.9691 0.9632 0.9667 0.9667 0.9744 0.963 27

Test
1 0.9677 0.9726 0.9675 0.9778 0.9699 0.9697 0.9677 31
2 0.9677 0.9726 0.9675 0.9778 0.9699 0.9697 0.9677 31
3 0.9677 0.9582 0.9668 0.9778 0.9699 0.9444 0.9677 31

OViTAD_ADMCI_HC

Val
1 1 1 1 1 1 1 1 27
2 1 1 1 1 1 1 1 27
3 1 1 1 1 1 1 1 27

Test
1 0.9677 0.964 0.9674 0.9762 0.9693 0.9545 0.9677 31
2 0.9677 0.964 0.9674 0.9762 0.9693 0.9545 0.9677 31
3 1 1 1 1 1 1 1 31

OViTAD_AD_HCMCI

Val
1 0.963 0.9333 0.9613 0.9783 0.9646 0.9 0.963 27
2 1 1 1 1 1 1 1 27
3 1 1 1 1 1 1 1 27

Test
1 1 1 1 1 1 1 1 31
2 1 1 1 1 1 1 1 31
3 0.9677 0.9447 0.9666 0.9808 0.969 0.9167 0.9677 31
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Table A2. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

OViTAD_AD_HC_MCI

Val
1 1 1 1 1 1 1 1 27
2 0.963 0.9691 0.9632 0.9667 0.9667 0.9744 0.963 27
3 1 1 1 1 1 1 1 27

Test
1 0.9677 0.9726 0.9675 0.9778 0.9699 0.9697 0.9677 31
2 0.9677 0.9726 0.9675 0.9778 0.9699 0.9697 0.9677 31
3 0.9677 0.9582 0.9668 0.9778 0.9699 0.9444 0.9677 31

OViTAD_AD_HC

Val
1 1 1 1 1 1 1 1 14
2 1 1 1 1 1 1 1 14
3 1 1 1 1 1 1 1 14

Test
1 1 1 1 1 1 1 1 17
2 1 1 1 1 1 1 1 17
3 0.9412 0.9583 0.9461 0.9167 0.9412 0.9328 0.9398 17

OViTAD_HC_MCI

Val
1 1 1 1 1 1 1 1 22
2 1 1 1 1 1 1 1 22
3 1 1 1 1 1 1 1 22

Test
1 0.96 0.9667 0.9627 0.9545 0.96 0.9589 0.9597 25
2 0.96 0.9667 0.9627 0.9545 0.96 0.9589 0.9597 25
3 1 1 1 1 1 1 1 25
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Table A3. The slice-level performance of structural MRI models using the preprocessed data with spatial smoothing sigma = 3 mm (S3). The naming convention for
models and classes is as in the previous tables.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

CaIT_ADMCI-HC_S3

Val
1 0.9317 0.7997 0.9143 0.5188 0.9317 0.5191 0.9025 11040
2 0.9316 0.7603 0.9098 0.5272 0.9316 0.5345 0.9046 11027
3 0.931 0.7762 0.9105 0.5191 0.931 0.5197 0.9018 11040

Test
1 0.921 0.797 0.9021 0.5243 0.921 0.5265 0.8886 11413
2 0.9198 0.7524 0.8941 0.5177 0.9198 0.5145 0.8861 11427
3 0.9213 0.797 0.9025 0.5253 0.9213 0.5284 0.8892 11455

CaIT_AD-HCMCI_S3

Val
1 0.6912 0.6796 0.6854 0.657 0.6912 0.6602 0.681 11040
2 0.6753 0.6604 0.668 0.6412 0.6753 0.6436 0.6651 11027
3 0.6645 0.6482 0.6559 0.6262 0.6645 0.6274 0.6513 11040

Test
1 0.6687 0.6526 0.6609 0.6349 0.6687 0.637 0.6586 11413
2 0.6619 0.6443 0.6532 0.6264 0.6619 0.6279 0.6507 11427
3 0.672 0.6563 0.6644 0.6378 0.672 0.64 0.6618 11455

CaIT_AD-HC-MCI_S3

Val
1 0.6757 0.6941 0.6764 0.4826 0.6757 0.479 0.6498 11040
2 0.6637 0.6583 0.6595 0.4656 0.6637 0.4533 0.6354 11027
3 0.6591 0.616 0.6478 0.4832 0.6591 0.4919 0.6337 11040

Test
1 0.6496 0.6409 0.6442 0.4701 0.6496 0.464 0.6208 11413
2 0.6331 0.6646 0.637 0.448 0.6331 0.4311 0.6004 11427
3 0.6675 0.6157 0.6538 0.4972 0.6675 0.5038 0.6419 11455

DeepViT_ADMCI_HC_S3

Val
1 0.9898 0.958 0.9894 0.9883 0.9897 0.9318 0.9898 11027
2 0.9901 0.9604 0.9899 0.9796 0.99 0.943 0.9901 11040
3 0.9829 0.9326 0.9827 0.9444 0.9825 0.9215 0.9829 11040

Test
1 0.9891 0.9618 0.9889 0.9859 0.9891 0.9405 0.9891 11427
2 0.9892 0.9618 0.9889 0.9897 0.9892 0.9375 0.9892 11413
3 0.9869 0.9546 0.9867 0.9691 0.9867 0.9412 0.9869 11455

DeepViT_AD_HCMCI_S3

Val
1 0.9452 0.9421 0.9448 0.9494 0.9462 0.9367 0.9452 11027
2 0.9505 0.948 0.9503 0.9519 0.9507 0.9448 0.9505 11040
3 0.9186 0.9137 0.9178 0.9225 0.9196 0.9076 0.9186 11040

Test
1 0.9404 0.9369 0.9399 0.9454 0.9416 0.9308 0.9404 11427
2 0.9458 0.943 0.9455 0.9473 0.946 0.9394 0.9458 11413
3 0.9245 0.9195 0.9236 0.9323 0.927 0.9114 0.9245 11455
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Table A3. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

DeepViT_AD_HC_MCI_S3

Val
1 0.9255 0.9152 0.9248 0.9398 0.9284 0.8959 0.9255 11040
2 0.9176 0.9028 0.917 0.9235 0.9183 0.8855 0.9176 11027
3 0.9149 0.9058 0.9147 0.9292 0.9155 0.8865 0.9149 11040

Test
1 0.9202 0.9079 0.9193 0.9388 0.9241 0.8849 0.9202 11413
2 0.9103 0.9014 0.9099 0.9096 0.911 0.8945 0.9103 11427
3 0.9208 0.9156 0.9206 0.9364 0.9215 0.8982 0.9208 11455

ViT44_8_ADMCI_HC_S3

Val
1 0.9912 0.965 0.9911 0.9797 0.9911 0.9512 0.9912 11027
2 0.9913 0.9653 0.9912 0.9817 0.9912 0.9502 0.9913 11040
3 0.9851 0.9402 0.9847 0.9603 0.9847 0.9221 0.9851 11040

Test
1 0.9911 0.9693 0.991 0.9821 0.991 0.9573 0.9911 11427
2 0.9892 0.9624 0.989 0.9827 0.9891 0.9439 0.9892 11413
3 0.9846 0.9465 0.9844 0.9637 0.9843 0.9306 0.9846 11455

ViT44_8_AD_HCMCI_S3

Val
1 0.9607 0.9587 0.9606 0.963 0.9611 0.9552 0.9607 11027
2 0.9636 0.9617 0.9634 0.967 0.9642 0.9574 0.9636 11040
3 0.9372 0.9341 0.937 0.9376 0.9373 0.9311 0.9372 11040

Test
1 0.9616 0.9595 0.9614 0.9653 0.9623 0.9549 0.9616 11427
2 0.962 0.9599 0.9618 0.9658 0.9627 0.9553 0.962 11413
3 0.9362 0.9327 0.9358 0.9383 0.9366 0.9284 0.9362 11455

ViT44_8_AD_HC_MCI_S3

Val
1 0.9359 0.93 0.9358 0.9425 0.9361 0.9189 0.9359 11040
2 0.9279 0.9158 0.9277 0.9232 0.9279 0.9088 0.9279 11027
3 0.9287 0.9209 0.9283 0.928 0.93 0.9155 0.9287 11040

Test
1 0.9339 0.9243 0.9337 0.9407 0.9342 0.9101 0.9339 11413
2 0.9228 0.9179 0.9227 0.9175 0.9228 0.9185 0.9228 11427
3 0.9277 0.9219 0.9272 0.9291 0.9295 0.917 0.9277 11455

ViT_vanilla_ADMCI_HC_S3

Val
1 0.9916 0.9658 0.9914 0.9901 0.9915 0.9442 0.9916 11027
2 0.9915 0.9665 0.9914 0.9765 0.9914 0.9569 0.9915 11040
3 0.986 0.9433 0.9856 0.9688 0.9857 0.9208 0.986 11040

Test
1 0.9898 0.9643 0.9896 0.989 0.9898 0.9424 0.9898 11427
2 0.9892 0.9621 0.989 0.9864 0.9892 0.9405 0.9892 11413
3 0.9844 0.9455 0.9841 0.9635 0.9841 0.929 0.9844 11455
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Table A3. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

ViT_vanilla_AD_HCMCI_S3

Val
1 0.9598 0.9577 0.9596 0.9632 0.9604 0.9533 0.9598 11027
2 0.9566 0.9541 0.9563 0.9619 0.9578 0.9484 0.9566 11040
3 0.9262 0.9225 0.9259 0.9257 0.9261 0.9198 0.9262 11040

Test
1 0.9585 0.9562 0.9582 0.9634 0.9596 0.9507 0.9585 11427
2 0.9545 0.952 0.9542 0.9596 0.9557 0.9463 0.9545 11413
3 0.9319 0.928 0.9314 0.9354 0.9327 0.9226 0.9319 11455

ViT_vanilla_AD_HC_MCI_S3

Val
1 0.9439 0.9408 0.9437 0.9497 0.9443 0.9329 0.9439 11040
2 0.924 0.9109 0.9237 0.9274 0.9241 0.8966 0.924 11027
3 0.9267 0.911 0.9264 0.9204 0.9268 0.9024 0.9267 11040

Test
1 0.9385 0.932 0.9382 0.948 0.9393 0.9182 0.9385 11413
2 0.9214 0.9183 0.9213 0.9267 0.9215 0.9106 0.9214 11427
3 0.9321 0.9211 0.9316 0.9323 0.9331 0.9118 0.9321 11455

OViTAD_ADMCI_HC_S3

Val
1 0.9886 0.9529 0.9882 0.9862 0.9885 0.9245 0.9886 11027
2 0.9901 0.9601 0.9899 0.9839 0.99 0.9388 0.9901 11040
3 0.9828 0.9317 0.9825 0.9474 0.9824 0.9173 0.9828 11040

Test
1 0.9881 0.9576 0.9877 0.9885 0.9881 0.9311 0.9881 11427
2 0.9848 0.9462 0.9844 0.9748 0.9846 0.9214 0.9848 11413
3 0.9791 0.9287 0.979 0.936 0.9788 0.9218 0.9791 11455

OViTAD_AD_HCMCI_S3

Val
1 0.9457 0.9429 0.9455 0.9465 0.9458 0.9399 0.9457 11027
2 0.9455 0.9427 0.9452 0.9467 0.9457 0.9394 0.9455 11040
3 0.9167 0.9114 0.9158 0.9221 0.9182 0.9044 0.9167 11040

Test
1 0.9449 0.9419 0.9446 0.9474 0.9454 0.9375 0.9449 11427
2 0.9403 0.9371 0.94 0.9428 0.9408 0.9327 0.9403 11413
3 0.9176 0.9124 0.9167 0.9232 0.9192 0.9053 0.9176 11455

OViTAD_AD_HC_MCI_S3

Val
1 0.931 0.9243 0.9306 0.9385 0.9322 0.9123 0.931 11040
2 0.9116 0.8931 0.911 0.9078 0.9126 0.8808 0.9116 11027
3 0.911 0.8936 0.9102 0.9207 0.9126 0.8721 0.911 11040

Test
1 0.9113 0.8997 0.9107 0.9182 0.9129 0.8847 0.9113 11413
2 0.9047 0.8983 0.9042 0.9112 0.9058 0.8876 0.9047 11427
3 0.9109 0.8965 0.9099 0.9219 0.9141 0.8774 0.9109 11455
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Table A3. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

OViTAD_AD_HC_S3

Val
1 0.9673 0.9636 0.9671 0.9046 0.9673 0.9311 0.9662 5173
2 0.9628 0.9456 0.962 0.9034 0.9628 0.9229 0.9619 5164
3 0.9656 0.9562 0.9651 0.9052 0.9656 0.9285 0.9646 5173

Test
1 0.9575 0.9607 0.9578 0.8854 0.9575 0.9177 0.9556 5482
2 0.9653 0.9505 0.9648 0.9237 0.9653 0.9365 0.9648 5480
3 0.9534 0.9417 0.9526 0.8873 0.9534 0.9116 0.9519 5493

OViTAD_HC_MCI_S3

Val
1 0.9396 0.8412 0.9445 0.8867 0.9396 0.8619 0.9415 6636
2 0.9183 0.7919 0.9349 0.8841 0.9183 0.8282 0.9238 6630
3 0.9264 0.8104 0.9362 0.877 0.9264 0.8388 0.9299 6641

Test
1 0.9344 0.8572 0.9351 0.865 0.9344 0.8611 0.9347 6857
2 0.9136 0.8045 0.9302 0.8904 0.9136 0.8384 0.9189 6874
3 0.9144 0.808 0.9232 0.8603 0.9144 0.8308 0.9177 6889

Table A4. The slice-level performance of structural MRI models using the preprocessed data with spatial smoothing sigma = 4 mm (S4). The naming convention for
models and classes is as in the previous tables.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

CaIT_ADMCI-HC_S4

Val
1 0.933 0.859 0.9233 0.5255 0.933 0.5314 0.9048 11040
2 0.9307 0.724 0.9058 0.5363 0.9307 0.5498 0.9063 11027
3 0.9329 0.885 0.9265 0.5261 0.9329 0.5324 0.9045 11040

Test
1 0.9221 0.835 0.9089 0.5293 0.9221 0.5356 0.8905 11413
2 0.9184 0.6977 0.8862 0.5253 0.9184 0.5288 0.8877 11427
3 0.9214 0.8152 0.9053 0.5239 0.9214 0.5258 0.8888 11455

CaIT_AD-HCMCI_S4

Val
1 0.7449 0.7367 0.7419 0.7218 0.7449 0.7264 0.7408 11040
2 0.7387 0.7282 0.7359 0.7196 0.7387 0.7227 0.7362 11027
3 0.7339 0.7256 0.7305 0.7076 0.7339 0.7124 0.7284 11040

Test
1 0.7293 0.7191 0.7258 0.7068 0.7293 0.7106 0.7255 11413
2 0.7142 0.7014 0.7113 0.6955 0.7142 0.6978 0.7121 11427
3 0.7418 0.733 0.7386 0.7186 0.7418 0.7231 0.7377 11455
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Table A4. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

CaIT_AD-HC-MCI_S4

Val
1 0.7468 0.769 0.7496 0.5482 0.7468 0.5548 0.7244 11040
2 0.7386 0.703 0.7301 0.5375 0.7386 0.5408 0.715 11027
3 0.7229 0.6716 0.7135 0.5308 0.7229 0.5406 0.6981 11040

Test
1 0.7188 0.6915 0.711 0.5355 0.7188 0.5397 0.6946 11413
2 0.7039 0.6711 0.6944 0.5134 0.7039 0.5084 0.6761 11427
3 0.7308 0.6726 0.7184 0.5474 0.7308 0.5564 0.7056 11455

DeepViT_ADMCI_HC_S4

Val
1 0.9892 0.9564 0.989 0.9788 0.9891 0.9363 0.9892 11027
2 0.9903 0.9611 0.9901 0.9809 0.9902 0.9431 0.9903 11040
3 0.9834 0.9327 0.9829 0.9603 0.983 0.9087 0.9834 11040

Test
1 0.9891 0.9617 0.9888 0.9837 0.989 0.9419 0.9891 11427
2 0.9871 0.9547 0.9868 0.9786 0.987 0.9334 0.9871 11413
3 0.985 0.9468 0.9846 0.9729 0.9847 0.924 0.985 11455

DeepViT_AD_HCMCI_S4

Val
1 0.9569 0.9545 0.9566 0.9612 0.9578 0.9494 0.9569 11027
2 0.9534 0.9508 0.9531 0.9587 0.9547 0.945 0.9534 11040
3 0.9383 0.935 0.938 0.9404 0.9387 0.9308 0.9383 11040

Test
1 0.9491 0.9462 0.9487 0.9533 0.95 0.9408 0.9491 11427
2 0.951 0.9481 0.9506 0.9571 0.9526 0.9418 0.951 11413
3 0.938 0.9344 0.9375 0.9422 0.939 0.9288 0.938 11455

DeepViT_AD_HC_MCI_S4

Val
1 0.9407 0.9314 0.9405 0.936 0.9406 0.9269 0.9407 11040
2 0.9348 0.9168 0.9343 0.9401 0.9351 0.8974 0.9348 11027
3 0.9313 0.9119 0.9309 0.9251 0.9312 0.9001 0.9313 11040

Test
1 0.9359 0.9217 0.9355 0.9354 0.936 0.9098 0.9359 11413
2 0.9248 0.915 0.9245 0.9281 0.9252 0.9036 0.9248 11427
3 0.9351 0.9242 0.9348 0.9409 0.9355 0.9098 0.9351 11455

ViT44_8_ADMCI_HC_S4

Val
1 0.9918 0.9673 0.9917 0.9851 0.9918 0.951 0.9918 11027
2 0.9933 0.9734 0.9932 0.988 0.9932 0.9597 0.9933 11040
3 0.985 0.9384 0.9844 0.971 0.9847 0.9107 0.985 11040

Test
1 0.9935 0.9778 0.9934 0.9897 0.9935 0.9665 0.9935 11427
2 0.9912 0.969 0.9909 0.9919 0.9912 0.9484 0.9912 11413
3 0.9846 0.945 0.9841 0.9768 0.9844 0.9179 0.9846 11455
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Table A4. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

ViT44_8_AD_HCMCI_S4

Val
1 0.968 0.9663 0.9678 0.9718 0.9687 0.9619 0.968 11027
2 0.9682 0.9667 0.9681 0.9692 0.9683 0.9644 0.9682 11040
3 0.95 0.9475 0.9498 0.9508 0.9501 0.9447 0.95 11040

Test
1 0.9667 0.9648 0.9664 0.9715 0.9677 0.9596 0.9667 11427
2 0.9671 0.9654 0.967 0.9686 0.9672 0.9627 0.9671 11413
3 0.9449 0.9421 0.9447 0.9463 0.9451 0.9386 0.9449 11455

ViT44_8_AD_HC_MCI_S4

Val
1 0.9511 0.9451 0.9509 0.9592 0.9517 0.9326 0.9511 11040
2 0.9468 0.9347 0.9466 0.9454 0.9468 0.9249 0.9468 11027
3 0.9462 0.9348 0.9461 0.9407 0.9462 0.9292 0.9462 11040

Test
1 0.9453 0.9331 0.945 0.9552 0.9462 0.9148 0.9453 11413
2 0.9354 0.9298 0.9352 0.9313 0.9357 0.9289 0.9354 11427
3 0.9497 0.94 0.9495 0.9473 0.9498 0.9332 0.9497 11455

ViT_vanilla_ADMCI_HC_S4

Val
1 0.9922 0.9685 0.992 0.9911 0.9922 0.9482 0.9922 11027
2 0.9943 0.9775 0.9942 0.9887 0.9943 0.9669 0.9943 11040
3 0.988 0.9526 0.9878 0.965 0.9877 0.941 0.988 11040

Test
1 0.9919 0.9721 0.9918 0.9887 0.9919 0.9568 0.9919 11427
2 0.989 0.9618 0.9888 0.977 0.9888 0.9477 0.989 11413
3 0.9858 0.9512 0.9856 0.9608 0.9856 0.9421 0.9858 11455

ViT_vanilla_AD_HCMCI_S4

Val
1 0.9689 0.9675 0.9689 0.9684 0.9689 0.9667 0.9689 11027
2 0.9621 0.9602 0.962 0.9642 0.9624 0.9569 0.9621 11040
3 0.9441 0.9411 0.9438 0.9464 0.9445 0.937 0.9441 11040

Test
1 0.9671 0.9655 0.967 0.9678 0.9672 0.9635 0.9671 11427
2 0.9609 0.9589 0.9607 0.9639 0.9614 0.9548 0.9609 11413
3 0.9423 0.9392 0.942 0.9449 0.9428 0.9347 0.9423 11455

ViT_vanilla_AD_HC_MCI_S4

Val
1 0.9472 0.9266 0.947 0.9326 0.947 0.9209 0.9472 11040
2 0.943 0.9269 0.9427 0.9401 0.9431 0.9151 0.943 11027
3 0.9366 0.9256 0.9365 0.9265 0.9368 0.9251 0.9366 11040

Test
1 0.9452 0.9298 0.9449 0.9411 0.945 0.9196 0.9452 11413
2 0.9397 0.9368 0.9395 0.9467 0.9404 0.9282 0.9397 11427
3 0.9404 0.9244 0.9402 0.9282 0.9404 0.921 0.9404 11455
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Table A4. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Slices

OViTAD_ADMCI_HC_S4

Val
1 0.9901 0.9601 0.9899 0.982 0.99 0.9404 0.9901 11027
2 0.9889 0.9547 0.9886 0.9811 0.9887 0.9315 0.9889 11040
3 0.983 0.9299 0.9823 0.9647 0.9825 0.9007 0.983 11040

Test
1 0.989 0.9613 0.9887 0.9847 0.9889 0.9404 0.989 11427
2 0.9868 0.9526 0.9863 0.9865 0.9868 0.9239 0.9868 11413
3 0.9793 0.9256 0.9786 0.9581 0.9787 0.8982 0.9793 11455

OViTAD_AD_HCMCI_S4

Val
1 0.956 0.9539 0.9559 0.9568 0.9561 0.9513 0.956 11027
2 0.9499 0.9471 0.9495 0.9547 0.951 0.9414 0.9499 11040
3 0.9355 0.9324 0.9353 0.9349 0.9354 0.9301 0.9355 11040

Test
1 0.9544 0.952 0.9542 0.9566 0.9548 0.9483 0.9544 11427
2 0.9495 0.9465 0.9491 0.9559 0.9512 0.94 0.9495 11413
3 0.939 0.9359 0.9388 0.9392 0.939 0.9332 0.939 11455

OViTAD_AD_HC_MCI_S4

Val
1 0.9403 0.9311 0.9401 0.943 0.9404 0.9203 0.9403 11040
2 0.9343 0.9163 0.9339 0.9381 0.9346 0.898 0.9343 11027
3 0.9287 0.9142 0.9282 0.9314 0.9299 0.8999 0.9287 11040

Test
1 0.9288 0.9132 0.9284 0.9288 0.9288 0.8996 0.9288 11413
2 0.9209 0.9099 0.9205 0.925 0.9214 0.8969 0.9209 11427
3 0.9338 0.9167 0.9332 0.9329 0.9349 0.9032 0.9338 11455

OViTAD_AD_HC_S4

Val
1 0.9735 0.9653 0.9732 0.9281 0.9735 0.9455 0.973 5173
2 0.9562 0.941 0.9553 0.8801 0.9562 0.9072 0.9546 5164
3 0.9668 0.9513 0.9661 0.915 0.9668 0.932 0.9661 5173

Test
1 0.9668 0.9637 0.9666 0.9159 0.9668 0.9377 0.9659 5482
2 0.9578 0.9388 0.957 0.9076 0.9578 0.9223 0.9571 5480
3 0.955 0.9283 0.9543 0.9085 0.955 0.918 0.9545 5493

OViTAD_HC_MCI_S4

Val
1 0.926 0.807 0.9403 0.8966 0.926 0.843 0.9307 6636
2 0.9075 0.7718 0.9236 0.8503 0.9075 0.8033 0.9134 6630
3 0.9368 0.8338 0.9433 0.8891 0.9368 0.8583 0.9392 6641

Test
1 0.9164 0.8103 0.9294 0.8833 0.9164 0.8405 0.9208 6857
2 0.9082 0.7955 0.925 0.8773 0.9082 0.8279 0.9138 6874
3 0.9273 0.8318 0.9351 0.8874 0.9273 0.8562 0.9301 6889
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Table A5. The performance of structural MRI models at subject-level for preprocessed data using spatial smoothing with sigma = 3 mm (S3). The naming convention
for models and classes is as in the previous tables.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

CaIT_ADMCI-HC_S3

Val
1 0.9306 0.4653 0.8659 0.5 0.9306 0.482 0.8971 144
2 0.9306 0.4653 0.8659 0.5 0.9306 0.482 0.8971 144
3 0.9306 0.4653 0.8659 0.5 0.9306 0.482 0.8971 144

Test
1 0.9195 0.4597 0.8454 0.5 0.9195 0.479 0.8809 149
2 0.9195 0.4597 0.8454 0.5 0.9195 0.479 0.8809 149
3 0.9195 0.4597 0.8454 0.5 0.9195 0.479 0.8809 149

CaIT_AD-HCMCI_S3

Val
1 0.7431 0.7416 0.7423 0.7087 0.7431 0.7152 0.7338 144
2 0.7083 0.715 0.7124 0.6588 0.7083 0.6606 0.6871 144
3 0.6944 0.7055 0.7017 0.6382 0.6944 0.6353 0.6659 144

Test
1 0.7047 0.704 0.7043 0.6592 0.7047 0.6619 0.6869 149
2 0.6913 0.6893 0.6901 0.6423 0.6913 0.6426 0.67 149
3 0.7181 0.7267 0.7233 0.6703 0.7181 0.6737 0.6987 149

CaIT_AD-HC-MCI_S3

Val
1 0.8194 0.5425 0.7603 0.5746 0.8194 0.5561 0.7861 144
2 0.7986 0.5341 0.7445 0.5556 0.7986 0.5386 0.7625 144
3 0.7847 0.5228 0.7299 0.5439 0.7847 0.5263 0.7473 144

Test
1 0.7852 0.5202 0.7195 0.5537 0.7852 0.5318 0.7448 149
2 0.745 0.4914 0.6807 0.5225 0.745 0.5007 0.7037 149
3 0.7919 0.5245 0.7255 0.5593 0.7919 0.5374 0.752 149

DeepViT_ADMCI_HC_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149

DeepViT_AD_HCMCI_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9927 0.993 0.9943 0.9931 0.9912 0.9931 144

Test
1 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149
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Table A5. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

DeepViT_AD_HC_MCI_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 0.9933 0.995 0.9933 0.9958 0.9934 0.9944 0.9933 149
2 0.9866 0.9901 0.9866 0.9901 0.9866 0.9901 0.9866 149
3 1 1 1 1 1 1 1 149

ViT44_8_ADMCI_HC_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149

ViT44_8_AD_HCMCI_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9927 0.993 0.9943 0.9931 0.9912 0.9931 144

Test
1 1 1 1 1 1 1 1 149
2 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
3 1 1 1 1 1 1 1 149

ViT44_8_AD_HC_MCI_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 0.9933 0.995 0.9933 0.9944 0.9934 0.9957 0.9933 149
3 1 1 1 1 1 1 1 149

ViT_vanilla_ADMCI_HC_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149
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Table A5. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

ViT_vanilla_AD_HCMCI_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9927 0.993 0.9943 0.9931 0.9912 0.9931 144

Test
1 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
2 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
3 1 1 1 1 1 1 1 149

ViT_vanilla_AD_HC_MCI_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 0.9933 0.995 0.9933 0.9944 0.9934 0.9957 0.9933 149
3 1 1 1 1 1 1 1 149

OViTAD_ADMCI_HC_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149

OViTAD_AD_HCMCI_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9927 0.993 0.9943 0.9931 0.9912 0.9931 144

Test
1 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
2 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
3 1 1 1 1 1 1 1 149

OViTAD_AD_HC_MCI_S3

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9949 0.993 0.9957 0.9931 0.9942 0.9931 144

Test
1 0.9933 0.995 0.9933 0.9958 0.9934 0.9944 0.9933 149
2 0.9866 0.9901 0.9866 0.9901 0.9866 0.9901 0.9866 149
3 1 1 1 1 1 1 1 149
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Table A5. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

OViTAD_AD_HC_S3

Val
1 1 1 1 1 1 1 1 67
2 1 1 1 1 1 1 1 67
3 1 1 1 1 1 1 1 67

Test
1 1 1 1 1 1 1 1 71
2 1 1 1 1 1 1 1 71
3 1 1 1 1 1 1 1 71

OViTAD_HC_MCI_S3

Val
1 1 1 1 1 1 1 1 87
2 1 1 1 1 1 1 1 87
3 1 1 1 1 1 1 1 87

Test
1 1 1 1 1 1 1 1 90
2 1 1 1 1 1 1 1 90
3 1 1 1 1 1 1 1 90

Table A6. The performance of structural MRI models at subject-level for preprocessed data using spatial smoothing with sigma = 4 mm (S4). The naming convention
for models and classes is as in the previous tables.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

CaIT_S4_ADMCI-HC

Val
1 0.9306 0.4653 0.8659 0.5 0.9306 0.482 0.8971 144
2 0.9306 0.4653 0.8659 0.5 0.9306 0.482 0.8971 144
3 0.9306 0.4653 0.8659 0.5 0.9306 0.482 0.8971 144

Test
1 0.9195 0.4597 0.8454 0.5 0.9195 0.479 0.8809 149
2 0.9195 0.4597 0.8454 0.5 0.9195 0.479 0.8809 149
3 0.9195 0.4597 0.8454 0.5 0.9195 0.479 0.8809 149

CaIT_S4_AD-HCMCI

Val
1 0.8681 0.8607 0.8699 0.8666 0.8681 0.8632 0.8686 144
2 0.8958 0.8889 0.8993 0.8987 0.8958 0.8926 0.8965 144
3 0.8542 0.8482 0.8538 0.846 0.8542 0.8471 0.8539 144

Test
1 0.8523 0.8448 0.8535 0.8486 0.8523 0.8465 0.8527 149
2 0.8389 0.8307 0.8418 0.8375 0.8389 0.8335 0.8397 149
3 0.8792 0.872 0.8838 0.8825 0.8792 0.8757 0.88 149
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Table A6. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

CaIT_S4_AD-HC-MCI

Val
1 0.9097 0.6021 0.8487 0.6491 0.9097 0.6245 0.8778 144
2 0.9167 0.6069 0.8561 0.655 0.9167 0.6296 0.8848 144
3 0.8681 0.5743 0.8063 0.614 0.8681 0.5932 0.8356 144

Test
1 0.8926 0.5907 0.823 0.6441 0.8926 0.616 0.8561 149
2 0.8725 0.5769 0.8036 0.6285 0.8725 0.6015 0.8365 149
3 0.8658 0.5722 0.7953 0.6215 0.8658 0.5958 0.829 149

DeepViT_ADMCI_HC_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149

DeepViT_AD_HCMCI_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9927 0.993 0.9943 0.9931 0.9912 0.9931 144

Test
1 1 1 1 1 1 1 1 149
2 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
3 1 1 1 1 1 1 1 149

DeepViT_AD_HC_MCI_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9949 0.993 0.9957 0.9931 0.9942 0.9931 144

Test
1 1 1 1 1 1 1 1 149
2 0.9866 0.9901 0.9866 0.9901 0.9866 0.9901 0.9866 149
3 1 1 1 1 1 1 1 149

ViT44_8_ADMCI_HC_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149
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Table A6. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

ViT44_8_AD_HCMCI_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149

ViT44_8_AD_HC_MCI_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9949 0.993 0.9957 0.9931 0.9942 0.9931 144

Test
1 0.9933 0.995 0.9933 0.9958 0.9934 0.9944 0.9933 149
2 0.9866 0.9901 0.9866 0.9901 0.9866 0.9901 0.9866 149
3 1 1 1 1 1 1 1 149

ViT_vanilla_ADMCI_HC_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149

ViT_vanilla_AD_HCMCI_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9927 0.993 0.9943 0.9931 0.9912 0.9931 144

Test
1 1 1 1 1 1 1 1 149
2 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
3 1 1 1 1 1 1 1 149

ViT_vanilla_AD_HC_MCI_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9949 0.993 0.9957 0.9931 0.9942 0.9931 144

Test
1 0.9933 0.995 0.9933 0.9958 0.9934 0.9944 0.9933 149
2 0.9933 0.995 0.9933 0.9958 0.9934 0.9944 0.9933 149
3 1 1 1 1 1 1 1 149
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Table A6. Cont.

Precision Precision Recall Recall F1-Score F1-ScoreModel Dataset Repetition Accuracy macro_avg weighted_avg macro_avg weighted_avg macro_avg weighted_avg Subjects

OViTAD_ADMCI_HC_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 1 1 1 1 1 1 1 144

Test
1 1 1 1 1 1 1 1 149
2 1 1 1 1 1 1 1 149
3 1 1 1 1 1 1 1 149

OViTAD_AD_HCMCI_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9927 0.993 0.9943 0.9931 0.9912 0.9931 144

Test
1 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
2 0.9933 0.993 0.9933 0.9945 0.9934 0.9915 0.9933 149
3 1 1 1 1 1 1 1 149

OViTAD_AD_HC_MCI_S4

Val
1 1 1 1 1 1 1 1 144
2 1 1 1 1 1 1 1 144
3 0.9931 0.9949 0.993 0.9957 0.9931 0.9942 0.9931 144

Test
1 1 1 1 1 1 1 1 149
2 0.9866 0.9901 0.9866 0.9901 0.9866 0.9901 0.9866 149
3 1 1 1 1 1 1 1 149

OViTAD_AD_HC_S4

Val
1 1 1 1 1 1 1 1 67
2 1 1 1 1 1 1 1 67
3 1 1 1 1 1 1 1 67

Test
1 1 1 1 1 1 1 1 71
2 1 1 1 1 1 1 1 71
3 1 1 1 1 1 1 1 71

OViTAD_HC_MCI_S4

Val
1 1 1 1 1 1 1 1 87
2 1 1 1 1 1 1 1 87
3 1 1 1 1 1 1 1 87

Test
1 1 1 1 1 1 1 1 90
2 1 1 1 1 1 1 1 90
3 1 1 1 1 1 1 1 90
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Table A7. The summary of highlights for each method.

Reference Highlights

Lin et al. 2018 [100]
* MCIc vs MCInc 68.68%
* FreeSurfer-based Features + 3-layer CNN

Dimitriadis et al. 2018 [101]
* Random Forest Feature Selection + SVM
* Model interpretability

Kruthika et al. 2019 [102]
* FreeSurfer-based Features + Multistage Classifier
* Further non-ML optimization (PSO) 96.31%

Spasov et al. 2019 [103]
* 3D Images + 3D CNN + Statistical Model
* sMCI vs pMCI trained by AD, HC, MCI

Basaia et al. 2019 [104]
* ADNI + non-ADNI data
* c-MCI vs s-MCI 75.1%

Abrol et al. 2020 [105]
* 3D Adopted ResNet
* Standard 4-way AD, HC, sMCI, pMCI

Shao et al. 2020 [106] * Hypergraph + Multi-task Feature Selection + SVM

Alinsaif et al. 2021 [107]
* HC + sMCI vs pMCI + AD dataset
* 3D Shearlet technique + SVM

Alinsaif et al. 2021 [107]
* HC + sMCI vs pMCI + AD
* MobileNet fine-tuned

Ramzan et al. 2019 [63] * ResNet18 fine-tuned

Hojjati et al. 2018 [108]
* functional connectivity + cortical thickness
* SVM

Cui et al. 2019 [109] * 3D CNN features + RNN

Amoroso et al. 2018 [110] * Random Forest Feature Selection + Deep Neural Network

Buvaneswari et al. 2021 [111]
* Hippocampal visual features
* PCA-SVR

Duc et al. 2019 [61] * 3D CNN + MMSE Regression

OViTAD - fMRI
* First Vision Transformer for Alzheimer’s prediction using rs-fMRI
* Aggressive fMRI preprocessing + 4D data decomposition to 2D
* postprocessing to retrieve subject-level prediction

OViTAD - MRI (Sigma = 3,4)
* First Vision Transformer for Alzheimer’s prediction using MRI
* Aggressive fMRI preprocessing + 3D data decomposition to 2D
* postprocessing to retrieve subject-level prediction
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Figure A1. The attention maps for a random AD fMRI slice from the testing set in AD vs. HC vs.
MCI in OViTAD with head = 8 and depth = 6, input dimension = 56.
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Figure A2. The attention maps for a random AD structural MRI slice from the testing set in AD vs.
HC vs. MCI in OViTAD with head = 8 and depth = 6, input dimension = 112.
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Figure A3. The global attention feature map was obtained by multiplying the FC layer vector by
each pixel in the structural MRI brain slices and measuring the sum of the multiplication per pixel.
Next, we normalized the feature map to (0,255) and visualized the maps using the CIVIDIS color
map. Finally, we selected the first slice of each time-course to demonstrate various brain morphology
across the MRI data acquisition.
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Figure A4. The performance of best-performing models for fMRI, MRI-S3, and MRI-S4 in a multiple
classification experiment to predict AD vs. HC vs. MCI includes the training loss and accuracy
rates and loss scores for training and validations sets. The modeling was conducted using 2D
images, and the metrics shown across represent the slice-level performance used to extract the
subject-level metrics.
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Figure A5. The summary of fMRI models’ performance using averaged F1-scores for three testing
sets.

Figure A6. The summary of sMRI models’ performance (S3,S4) using averaged F1-scores for three
testing sets.
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