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Abstract: Successfully engaging in social communication requires efficient processing of subtle socio-
communicative cues. Voices convey a wealth of social information, such as gender, identity, and the
emotional state of the speaker. We tested whether our brain can systematically and automatically
differentiate and track a periodic stream of emotional utterances among a series of neutral vocal
utterances. We recorded frequency-tagged EEG responses of 20 neurotypical male adults while
presenting streams of neutral utterances at a 4 Hz base rate, interleaved with emotional utterances
every third stimulus, hence at a 1.333 Hz oddball frequency. Four emotions (happy, sad, angry, and
fear) were presented as different conditions in different streams. To control the impact of low-level
acoustic cues, we maximized variability among the stimuli and included a control condition with
scrambled utterances. This scrambling preserves low-level acoustic characteristics but ensures that
the emotional character is no longer recognizable. Results revealed significant oddball EEG responses
for all conditions, indicating that every emotion category can be discriminated from the neutral
stimuli, and every emotional oddball response was significantly higher than the response for the
scrambled utterances. These findings demonstrate that emotion discrimination is fast, automatic, and
is not merely driven by low-level perceptual features. Eventually, here, we present a new database
for vocal emotion research with short emotional utterances (EVID) together with an innovative
frequency-tagging EEG paradigm for implicit vocal emotion discrimination.

Keywords: emotion discrimination; voice; frequency-tagging; electroencephalogram

1. Introduction

We hear sounds every day, everywhere [1]. Being able to discriminate these sounds,
contributes to a better understanding of the world around us. The human voice is by far
the most socially relevant and familiar sound category for human beings [2]. Besides the
specific linguistic content, the human voice offers a lot of socio-communicative information
about the speaker. For instance, in a wink, it gives us an idea about the gender, approximate
age, and the emotional state of the speaker [3–5]. Additionally, when listening carefully,
one may even extract more subtle speaker information, such as the speaker’s personality
(e.g., extravert versus introvert) or the speaker’s demographic origin [6,7]. Efficient pro-
cessing of all this supra-linguistic information is required to successfully engage in social
communication.

1.1. Vocal Emotion Processing as a Gateway to Social Communication

While zooming in on vocal emotional processing, speech prosody provides important
cues about the emotional state of our conversational partners. Similar to the visual face
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processing domain [8], it has been postulated that a restricted group of so-called “basic”
emotions (happy, surprise, angry, fear, sad, and disgust) can be universally recognized
across different cultures when vocally expressed, even without the presence of linguistic
meaning [9]. Supporting this idea of basic emotions, a meta-analysis on the neural cor-
relates of vocal emotion processing revealed that these basic emotions are distinct and
characterized by particular patterns of brain activity [10].

The recognition of vocally expressed emotions happens automatically [11]: we cannot
inhibit recognizing an emotion in a voice, for instance when talking to someone who
recently got fired or, in contrast, who just got a promotion, we can identify the emotional
state of this person as sad or happy within a few hundred milliseconds, even without
any linguistic context. Emotion recognition also happens extremely fast and based on
limited auditory information. An ERP study demonstrated a neural signature of implicit
emotion decoding within 200 ms after the onset of an emotional sentence [12], suggesting
that emotional voices can be differentiated from neutral voices within a 200 ms timeframe.
Explicit behavioral emotion recognition may take a bit longer, ranging from 266 to 1490 ms,
depending on the paradigm and the particular emotion [13–15]. The fast decoding of
emotion prosody is not only found in humans but is also visible in a variety of other animals,
which indicates that recognizing emotions from voices is an important evolutionary skill to
communicate with conspecific animals [16].

Gating paradigms have indicated that different vocal emotions are recognized within a
different time frame (e.g., fear recognition happens faster than happiness), thereby suggest-
ing that the fast recognition relies on emotion specific low-level auditory features [14]. Vocal
emotion categories are indeed characterized by particular auditory features. For instance,
sad speech is generally lower in pitch, and this is the case across different languages and
cultures [17]. A classical, but almost intrinsically paradoxical challenge in vocal emotional
neuroscience, is the demonstration that emotion discrimination is not purely driven by
low-level acoustic cues [18–20]. This echoes the broader attempts of demonstrating that
(emotional) voice processing and the selective neural activity in the so-called temporal voice
areas is not merely determined by particular spectro-temporal acoustic characteristics, often
accomplished by a rigorous matching of vocal versus non-vocal low-level cues [21]. Besides
determining the basic low-level acoustic cues that characterize and classify vocal emotions,
there is evidence that threat related vocal signals mostly attract our attention, even when
basic voice acoustics are comparable with non-threat related emotional vocalizations [22].
This indicates that low-level cues alone do not fully capture the experience of the vocally
expressed emotions.

The temporal voice areas are located in the middle part of the auditory brain; these
areas respond preferentially to voices compared to non-vocal environmental sounds [23].
This selective sensitivity for voices is particularly pronounced in the right hemisphere.
Moreover, these temporal voice areas respond stronger to utterances spoken in an emotional
rather than neutral tone [3,21,24,25]. The classical rightward lateralization of emotional
voice processing was challenged by Kotz et al. (2003) [26] who demonstrated that increasing
task demands also resulted in an increasing left lateralization. In terms of lateralization
of processing low-level acoustic features, pitch and slowly fluctuating signals have been
shown to be processed preferentially at the right side whereas shorter and faster temporal
information is typically processed in the left auditory cortex [27–29]. Given the critical
importance of pitch to differentiate vocal emotion categories, this might explain that the
majority of studies observe a right side lateralization for emotional voice processing [30].

As outlined above, it is evident that efficient emotion processing—including vocal
emotion processing—is crucial for social functioning. Many psychiatric disorders are
characterized by difficulties in social functioning, including emotion processing abilities,
with key examples in autism spectrum disorder, schizophrenia, and anxiety and mood
disorders (for reviews, see [31–34]). Thus, assessing individual differences and deficits
in sensitivity for socio-communicative emotional cues is central in clinical practice, but
objective and reliable diagnostic instruments are lacking, especially those tapping automatic
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emotional processing. A series of semi-standardized behavioral socio-cognitive tasks
have been developed, assessing emotion recognition abilities for vocal, facial, and bodily
expressive stimuli (e.g., [35–37]). Yet, generally, these tasks do not differentiate sensitively
between clinical and neurotypical populations, often because they allow the mobilization
of alternative compensatory perceptual and cognitive strategies [38,39].

Brain imaging studies on the other hand show more robust group differences in vocal
emotion processing. The auditory mismatch negativity (MMN), for example, is an event
related potential component that reflects the response to an auditory deviant sound. This
component is frequently used to investigate group differences in emotion processing. For
instance, Schirmer et al. (2005) [40] demonstrated reduced MMN responses to emotionally
deviant sounds in men as compared to women, and Lindström et al. (2018) [41] suggested
that MMN components could indicate impaired emotional prosody perception in individ-
uals with autism spectrum disorder. However, MMN studies lack high signal-to-noise
ratio, thereby necessitating long recording sessions and reducing the utility to characterize
performance at the individual subject level [42]. This has clear consequences for research
with clinical populations or even infants.

Accordingly, there is a need for instruments that allow objective and robust assessment
with high signal to noise responses of automatic and implicit emotion processing abilities,
reliable at the individual subject-level, and preferably within a short timeframe. Here,
we propose that frequency-tagging EEG in combination with periodic auditory (vocal)
stimulation offers this approach, and we present evidence that the brain selectively responds
to emotional vocal cues embedded within a stream of neutral vocal utterances.

1.2. Frequency Tagging EEG to Pinpoint Differences in Socio-Communicative Abilities

Recently, it was demonstrated that fast periodic visual stimulation combined with EEG
can be used as an implicit neural index of the sensitivity for subtle socio-communicative fa-
cial cues, such as facial identity and facial expression [43,44]. Application of this innovative
approach in clinical populations (e.g., autism spectrum disorder and velocardiofacial syn-
drome), allowed pinpointing subtle but robust deficits in socio-communicative sensitivity
that otherwise remained concealed via classical behavioral face processing tasks [45–48].
A more recent pioneering study applied this same frequency-tagging EEG approach with
auditory stimulation, thereby demonstrating that voices can automatically be differentiated
from both non-vocal environmental sounds and music instruments with highly similar
low-level features [49]. Proceeding from this seminal study, here, we will extend this
frequency-tagging EEG approach and apply it for the first time to investigate vocal emo-
tion processing. In particular, we will characterrize the neural signature of automatically
detecting periodic emotional vocal utterances among a stream of neutral vocal utterances,
and we will explore to what extent this neural discrimination ability is driven by the
socio-emotional characteristics of the stimuli or by more basic low-level acoustic differences
between the stimulus categories.

To investigate if our brain can systematically track a stream of emotional vocal utter-
ances within a standard stream of neutral vocal utterances, we designed a Fast Periodic
Auditory Stimulation (FPAS) paradigm and combined it with scalp EEG recordings. The
basic principle of this frequency-tagging approach is that the periodicity of the electrophys-
iological response on the human scalp corresponds exactly with the periodicity (frequency)
of the auditory stimulation. We used an oddball paradigm where standard sounds were
presented at a base rate frequency of 4 Hz and oddball sounds were inserted periodically
into the sequence every third sound. In particular, neutral voices were presented at a 4
Hz base rate and emotional voices (angry, sad, happy, and fearful, in separate paradigms)
were presented at a 1.333 Hz oddball rate. Whenever a change (i.e., discrimination be-
tween the neutral and the emotional utterances) is perceived, in addition to the periodic
response to the base rate, a periodic response corresponding to the presentation frequency
of the emotional voices (i.e., 4/3 = 1.333 Hz) is also observed. The main advantages of
using this FPAS approach are: (a) the response can be measured implicitly, i.e., without an
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explicit behavioral task; (b) the response can be identified objectively since it occurs at a
predefined frequency; (c) it can be quantified directly by comparing the response at that
frequency (signal) with responses at neighboring frequencies (noise); and (d) the technique
is extremely robust, since it is immune to artefacts and yields high signal-to noise ratio
(SNR) responses in a short amount of time, which makes it suitable for clinical populations
(for a review, see [50]).

2. Materials and Methods
2.1. Participants

We recruited 20 male participants for this study (mean age = 25.19 years, SD = 4.08,
range = 19–34, all right-handed); the sample size was based on previous fast periodic audi-
tory stimulation studies (e.g., [49]). We only included male participants to avoid gender
effects in the recognition of vocally expressed emotions [51]. All subjects reported intact
hearing ability, which was confirmed by pure tone audiometry (average PTA hearing loss
below 25 dB HL for every participant). Subjects were Dutch native speakers and received a
monetary reward for participating. No one reported any history of psychiatric or neurolog-
ical disorders. Before the start of the experiment, all subjects signed an informed consent
form approved by the Medical Ethics Committee UZ/KU Leuven (reference S62969).

2.2. Stimuli: Design of the Emotional Voices and Identity Database (EVID)

For the FPAS trials we created a new, large, and well-controlled voice segments
database, incorporating all the stimulus features that are relevant for our research objec-
tives. We aimed for short clips with a recognizable emotional value, while also demonstrat-
ing large variability across other sound features such as pitch, harmonic ratio, phonetic
content, and speech rate. All voice segments were extracted from the Crowd Sourced
Emotional Multimodal Actors Dataset [52], which encompasses audio and video recordings
of 13 short sentences, spoken by 48 male and 43 female actors, according to six emotional
states (neutral, happy, angry, sad, fear, and disgust). We extracted 3960 short 250 ms utter-
ances from these emotionally pronounced sentences (20 actors × 33 utterances × 6 emotions).
Utterances were cut at the beginning of a randomly chosen phoneme. Thus, depending on
speech rate, word length, and phoneme position, these 250 ms utterances resulted in words
(e.g., get) and non-words (e.g., ge). Each utterance started and ended with a linear fade
in and fade out of 10 ms to avoid clipping of the sounds. All utterances were equalized
in overall energy (RMS). We validated the stimuli behaviourally in a separate sample of
40 healthy young adults (age = 18–35 years old) to examine which stimuli are categorized
best in terms of emotion, and we maintained a subset of 500 stimuli that are categorized
most consistently. The subset contains a set of 10 speakers (five female and five male
speakers), each pronouncing 10 different phonetic utterances of 250 ms with a 10 ms fade
in/out according to five emotion categories (neutral, happy, angry, sad, and fear). Note
that these utterances were not the same over all emotions as we selected the utterances
with the highest recognition rate. See Figure 1 for the confusion matrix. We refer to this
newly designed and validated emotional stimulus set as the EVID (Emotional Voices and
Identity Database), which is available upon request by the first or senior author.
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Figure 1. (A) Confusion matrix of the 500 emotional vocal stimuli. The rows indicate the presented
emotional stimulus category (correct), the columns indicate the provided response (answer). The
numbers indicate the proportional responses, averaged across the 40 participants. The diagonal
shows the proportion of correct answers for each emotion. (B) Matrix of the stimuli used for the
FPAS paradigms.

2.3. Procedure and Equipment

For each of the emotions (i.e., happy, angry, sad, and fear), we created an oddball
paradigm where the emotional utterance was periodically presented in a stream of neu-
tral utterances. The 250 ms duration of the utterances naturally leads to the 4 Hz base
frequency of the sound presentation, and the emotional utterances were interleaved every
third stimulus, leading to an oddball frequency of 1.333 Hz (i.e., NNENNENNE . . . , see
Figure 2A). For every condition (i.e., emotion), we created six sequences, each uttered by
a different speaker (including three sequences with a female speaker and three with a
male speaker). For each condition we used the speakers with best recognition rate for the
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emotion in question (see Figure 1 for the confusion matrix of the used utterances in this
study). Note that in every sequence the same speaker was used for the neutral and for the
emotional utterances. The sequences were 64 s and had a linear fade in/out of 2 s.
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Figure 2. (A) Schematic representation of the paradigm. The figure shows a base rate frequency
of 4 Hz, with emotional stimuli (E) being interleaved every third stimulus, hence at 1.333 Hz.
(B) Low-level features of the vocal utterances. Low-level features are plotted for every single stim-
ulus of every emotion condition. On the left the pitch (f0, fundamental frequency) is plotted and
on the right harmonic ratio (hr in %). Note the large variability within every stimulus category (see
Supplementary Figure S1 for the scrambled stimuli). (C) Periodicity. The periodicity of the low-level
features across the entire acoustic sequence. The first box represents a symbolic preview of the first
10 s of a sequence and shows the presence of the emotional oddball stimuli in the time domain (s)
and in the frequency domain (Hz), with the clear 4 Hz peak indexing base rate and the 1.333 Hz peak
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indexing the emotional oddball stimuli (in black). Next, we plotted for all sequences of every emotion
category as well as for the scrambled control condition the variability in harmonic ratio and pitch
in the time domain and the frequency domain. This analysis reveals that, despite inducing a huge
amount of acoustic variability, for all conditions (including the scrambled one), the low-level features
are periodically preserved in the frequency domain, both at the base and at the oddball rate.

In addition to the four emotion category conditions (happy, angry, sad, and fear), we
created a scrambled control condition with similar low-level acoustic characteristics but
without the emotional content. We scrambled the sounds of the four emotion categories
and the neutral emotion category based on the method of Dormal et al. (2018) [53], which
results in sounds with equal frequency content and spectral-temporal structure as the
original sounds, but with a different harmonicity. This ensures that the emotion category
is no longer recognizable in the scrambled sounds, while the low-level acoustic cues are
largely preserved. We created six scrambled control sequences with three male and three
female speakers, covering the four emotion categories.

Figure 2B provides an overview of the acoustic characteristics of the vocal stimuli
included in the experiment, illustrating that all stimulus categories are highly heterogenous
in terms of pitch and harmonic ratio, and that the differences within an emotion category
are much larger than the average differences between the emotion categories. Pitch is
defined as the fundamental frequency (f0) of the utterance and refers to the perception
of the sound as relatively high or low (see Supplementary Figure S1 for the scrambled
stimuli). Here, it has been calculated by means of the MATLAB function pitch (audioIn,
fs). Harmonic ratio involves the ratio of the fundamental frequency’s power to the total
power in an audio fragment and refers to the degree of harmonicity contained in a signal.
Here, it has been calculated by means of the MATLAB function harmonicRatio (audioIn, fs).
Yet, as expected and despite our attempts to induce as much natural variability as possible,
neutral, and emotional utterances are not perfectly matched for low-level acoustic features.
To further investigate the impact of these low-level features on the periodic neural oddball
responses, we applied the following procedure: (a) we entered the wav-file of the entire
acoustic 6 × 64 s sequences in MATLAB and calculated the harmonic ratio using 100 ms
rectangular windows with 50 ms overlap and pitch (Normalized Correlation Function
for estimation of pitch) with a window length of 52 ms with 42 ms overlap, and (b) we
transformed the continuous temporal signal from the temporal to the frequency domain by
Fourier transformation to investigate the periodicity of these acoustic features (cf. [54]). As
displayed in Figure 2C, one can see that despite the massive variation of the heterogenous
stimuli, characteristic low-level features were still somehow periodically preserved in
the stimulation sequences. Importantly, this low-level acoustic periodicity was not only
preserved in all the vocal emotional sequences, but also in the control sequences with the
scrambled stimuli.

We used an ActiveTwo Biosemi system with 64-Ag/AgCl electrodes and two addi-
tional electrodes as reference and ground electrodes (Common Mode Sense active electrode
and Driven Right Leg passive electrode). Sound sequences were created and presented
in a random order via a custom-built MATLAB script. Sounds were presented via a cali-
brated RME Fireface UC with Etymotic Research ER-1 insert earphones to make sure all
sounds were presented at an equal intensity of 60 dB SPL. Participants listened to the sound
sequences with eyes closed.

To ensure that participants stayed focused on the sound sequences, we included an
orthogonal behavioural task, which was non-periodic and unrelated to the emotional value
of the stimuli. This task involved detecting short 500 ms silence periods in the sounds
stream, occurring randomly four times in every sequence (not in the first and last 5 s, and at
least 5 s apart from each other). Participants had to press a button whenever they detected
this silence.
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2.4. EEG Analysis
2.4.1. Pre-Processing

We used the Letswave6 Toolbox running on MATLAB 2019b (the MathWorks) for
the EEG analyses. We started with pre-processing the data by applying a fourth-order
Butterworth band-pass filter (0.1–100 Hz) on the segmented data of 68 s per segment, hence
2 s before and after sequence onset. Afterwards, we down sampled the data to 256 Hz
and re-referenced the channels to a common average of all electrodes. Note that there
was no need for eye-blink removal as the participants closed their eyes while listening to
the sounds.

2.4.2. Frequency-Domain Analysis

Next, we segmented the pre-processed data again starting after the 2 s fade-in and end-
ing right before the fade-out, at 59.27 s leading to an integer number of oddball (1.333 Hz)
cycles (15,172 time bins). We averaged the six trials per condition (Fear, Angry, Happy,
Sad, and Scrambled condition) for each participant separately in the time domain to reduce
EEG activity not in phase with the auditory stimulation (e.g., noise). We transformed these
averages into the frequency domain using a fast Fourier transformation (FFT) and the
amplitude spectrum was computed with a high spectral resolution (0.0167 Hz).

The base rate of the voices (4 Hz) and the oddball presentation of emotions (1.333 Hz)
and their integer multiples (harmonics) are present in the EEG signal. Responses at these
frequencies and their harmonics reflect besides the response to the stimulus presentation
and the overall noise. Therefore, we used two measures to describe the response in relation
to the noise level: signal-to-noise ratio (SNR) and baseline-corrected amplitudes [43,44].
SNR was computed at each frequency bin as the amplitude value at a given bin divided
by the average amplitude of the 20 surrounding frequency bins (i.e., 12 bins on each side,
24 bins, but excluding the two directly adjacent bins and the local minimum and maximum).
Baseline-corrected amplitude was computed in a similar way, but here we subtracted the
average amplitude of the surrounding bins instead of dividing.

Z-score spectra on group-level data were computed to define the harmonics that were
significantly above noise level per stimulation frequency (Z > 1.65 or p < 0.05). The z-scores
were significant until the 2nd harmonic for the base rate (4 Hz) and until the 4th harmonic
for the oddball frequency (1.333 Hz). Those harmonics of the oddball frequency that
corresponded to the base frequency (3.999 and 7.998 Hz), were excluded thus the neural
responses for oddball stimulation were quantified by summing up the baseline-corrected
responses for three harmonics (1.333 Hz, 2.666 Hz, and 5.333 Hz). We used all conditions to
determine the number of significant harmonics.

As this is a new paradigm, we wanted to objectively select the regions of interest
(ROIs) based on the data of all the subjects. We determined the ROIs separately for the base
frequency (4 Hz) and the oddball frequency (1.333 Hz) as we expected different patterns
of activation for the different frequencies. We incorporated all conditions including the
scrambled one for the ROI delineation. Hence, we calculated the baseline-subtracted
amplitude across all subjects for each condition and each electrode, and we summed across
the significant harmonics (4 Hz and 8 Hz for the base frequency, and 1.333 Hz, 2.666 Hz,
and 5.333 Hz for the oddball frequency). All electrodes for which the baseline-subtracted
amplitude of the response was significantly higher than the mean response (Bonferroni
corrected) were retained and grouped in an ROI based on their location on the scalp. We
extended these ROIs by also including the corresponding contralateral homologue ROIs to
investigate potential hemispheric lateralization effects.

2.4.3. Statistical Analyses

Separately for the base rate and oddball responses, a series of linear repeated-measures
mixed-models (LMM) were calculated. First, we zoomed in on the contrast between
emotion conditions versus scrambled condition across all the electrodes included in the
significant core ROIs. Hence, condition (Fear, Angry, Happy, Sad, and Scrambled) and ROI
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(all core ROIs) were entered as fixed within-subject factor and participant as random factor.
Next, we investigated the lateralization of the neural responses comparing only the emotion
conditions. Thus, emotion condition (Fear, Angry, Happy, and Sad), ROI (all ROIs including
the corresponding contralateral homologue), and emotion × ROI interaction were entered
as fixed within-subject factors and participant as random factor. Post-hoc t-tests corrected
via Holms correction were calculated to assess the significance of particular contrasts.

3. Results
3.1. Orthogonal Task

We first checked if participants were able to perform the orthogonal task to make sure
they were paying attention to the sound streams. The high accuracy of 96.3% (SD = 9.7%)
indicated that the participants had no difficulty with the task. Important to note is that
there was no significant difference between the conditions in the accuracy of the implicit
task, we tested this with a LMM with condition as fixed factor and participant as random
factor (F(4,76) = 0.31, p = 0.86).

3.2. Region of Interests

The explorative investigation of regions of interests resulted in the delineation of
11 significant electrodes for the base frequency (FC6, FT8, Iz, Oz, P10, P7, P9, PO7, T8, TP7,
TP8) and 10 significant electrodes for the oddball frequency (F1, Fz, Iz, O1, O2, Oz, P7, P9,
PO7, PO8). We divided the significant electrodes in four core ROIs based on the location
of the electrodes, three for the base responses: ROI Left Parietal (LP: P7, P9, PO7, TP7),
ROI Medial Occipital (MO: O1, O2, Iz, Oz), and ROI Right Temporal (RT: T8, FC6, FT8);
and three for the oddball responses: ROI Left Parietal, ROI Medial Occipital, ROI Medial
Frontal (MF: Fz, F1). In addition, to investigate possible lateralization effects and to include
all significant electrodes, we also included the corresponding contralateral homologue
brain areas in our analyses as extended ROIs, thus ROI Right Parietal (RP: P8, P10, PO8,
TP8) and ROI Left Temporal (LT: T7, FC5, FT7). Note that O1 and O2 were not significant
for the base frequency and TP7 not for the oddball frequency and we still included these
electrodes in the ROIs to delimit the number of ROIs needed for the analyses. See Figure 3
for ROI placement for base and oddball separately with contralateral ROIs included.
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3.3. SNR and Topographies

To define the harmonics that were significantly above noise level, we computed Z-
score spectra on group-level data for each condition for the base and oddball frequency.
We averaged the FFT amplitude spectra across electrodes in the significant regions-of-
interest (ROIs) based on the ROI determination and transformed these values into Z-scores.
When we look at the signal-to-noise ratio (SNR), we see clear base responses related to the
stimulus presentation at the first and second harmonic for every condition (Z > 1.65 or
p < 0.05). At the oddball frequency, we find clear oddball responses at the first, second, and
fourth harmonic for each of the emotion conditions (Z > 1.65 or p < 0.05), but only at the
second harmonic for the scrambled control condition. See Figure 4 for the SNR spectra and
the topographies of each condition.Brain Sci. 2023, 13, x FOR PEER REVIEW 11 of 19 
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Figure 4. (A) Topographies of all conditions showing summed baseline-subtracted averages (in µV)
of the significant harmonics, being 4 Hz and 8 Hz for the baseline (BASE) and 1.333 Hz, 2.666 Hz,
and 5.333 Hz for the oddball (ODD) frequency. (B) Signal-to-noise (SNR) spectra of all conditions,
with the blue spectrum representing the responses in the base frequency ROIs (LT, MO, and RT) and
the yellow spectrum displaying responses in the oddball frequency ROIs (LP, MO, and MF).
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Based on visual inspection, for base rate synchronization, we see higher activation
at the right side of the brain for the emotion conditions but not for the scrambled control
condition. For oddball discrimination, the response was more lateralized to the left side
of the brain for the emotion conditions, but no clear response was observable for the
scrambled condition.

3.4. Contrasting Emotion-Specific Responses Versus Responses for the Scrambled Condition

First, we compared the emotion conditions with the scrambled condition to investigate
to what extent low-level acoustic features versus high-level emotional characteristics ex-
plained by the oddball effect. Figure 5 displays base rate and oddball rate neural responses
for the five conditions averaged across the core ROIs yielding significant responses.
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Figure 5. Comparison of the neural responses for the four conditions with emotional utterances
and for the scrambled condition. (A) Base rate responses with standard error of the mean as the
error bar. Summed baseline-corrected amplitudes (µV) at significant base rate harmonics (4 Hz
and 8 Hz) and averaged across LP, MO, and RT ROIs reveal that sequences with sad utterances
yield lower amplitudes. (B) Oddball responses with standard error of the mean as the error bar.
Summed baseline-corrected amplitudes (µV) at oddball frequencies (1.333 Hz, 2.666 Hz, and 5.333 Hz)
averaged across LP, MO, and MF ROIs reveal that fear discrimination yields the highest amplitudes,
and that automatic vocal emotion discrimination is significantly hampered by scrambling the stimuli.

An LMM on the base rate responses with condition, ROI, and their interaction as fixed
factors and participants as random factor, revealed a significant main effect of condition
(F(4,266) = 16.97, p < 0.0001, partial η2 = 0.20, 95% CI [0.13, 1]), with post-hoc paired t-
testing demonstrating significantly lower responses for the Sad condition as compared to
all other conditions (t(59) > 5.20, p < 0.0001 for all contrasts). We also found a significant
main effect of ROI (F(2,266) = 6.60, p = 0.002, partial η2 = 0.05, 95% CI [0.01, 1]) and a
significant condition by ROI interaction effect (F(8,266) = 4.52, p = 3.57 × 10−5, partial
η2 = 0.12, 95% CI [0.05, 1]). The interaction effect revealed that the amplitudes were equally
distributed over the different ROIs for fear, angry, and happy (t(19) < 2.23, p > 0.110 for all
contrasts), but that for the sad condition and the scrambled condition the pattern differed.
For the sad condition we found that ROI RT had higher responses in comparison with
ROI MO (t(19) > 3.12, p < 0.017). The scrambled condition showed a different lateralization
and we found lower responses at the right, at ROI RT in comparison with the other ROIs
(t(19) > 5.44, p < 0.0001 for both contrasts).
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A similar LMM on the oddball discrimination responses revealed an extreme main
effect of condition (F(4,266) = 41.28, p < 0.0001, partial η2 = 0.38, 95% CI [0.31, 1]), but
no effect of ROI (F(2,266) = 2.26, p = 0.106, partial η2 = 0.02, 95% CI [0, 1]) nor condition
by ROI interaction effect (F(8,266) = 0.33, p = 0.95, partial η2 = 9.84 × 10−3, 95% CI [0,
1]). Here, post-hoc testing indicated that the amplitude for the scrambled condition was
significantly lower than all emotional conditions (t(59) > 6.88, p < 0.0001 for all contrasts),
and the amplitude for the fear condition was significantly higher than all other conditions
(t(59) > 3.86, p < 0.001 for all contrasts).

3.5. Investigating Lateralisation Patterns of Emotion-Specific Responses

To investigate lateralisation patterns of emotion-specific responses, we additionally
included the contralateral homologue ROIs in our analyses. Figure 6 displays ROI-specific
base rate and oddball rate neural responses for the various emotional conditions. An LMM
on the base frequency responses with emotion condition (Fear, Angry, Happy, and Sad),
ROI (all base rate ROIs including the corresponding contralateral homologue), and emotion
condition × ROI interaction as fixed within-subject factors and participant as random factor
revealed a main effect of condition (F(3,361) = 8.44, p < 0.0001, partial η2 = 0.07, 95% CI
[0.03, 1]) and a main effect of ROI (F(4,361) = 12.45, p < 0.0001, partial η2 = 0.12, 95% CI
[0.07, 1]), but no significant condition by ROI interaction (F(12,361) = 1.55, p = 0.10, partial
η2 = 0.05, 95% CI [0, 1]). As expected, the main effect of condition was driven by the lower
amplitudes for sad as compared to all other emotions (t(99) > 3.52, p < 0.003). Post-hoc
testing for the main effect of ROI indicated that ROI LT had lower amplitudes than the
other significant ROIs (t(79) >3.96, p < 0.001 for all contrasts) and that ROI LP had higher
amplitudes than ROI MO (t(79) = 3.05, p = 0.019).
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Figure 6. Comparison of the neural responses for the four conditions with emotional utterances as a
function of spatial location with standard error of the mean as error bar (ROI). (A) Base rate synchronization.
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Summed baseline-corrected amplitudes (µV) at base rate harmonics reveal that the sad condition
yields the lowest responses, and that ROI right temporal (RT) hosts the highest responses. (B) Oddball
discrimination. Summed baseline-corrected amplitudes (µV) at oddball frequencies reveal that fear
and angry yield the highest amplitudes and that ROIs left parietal (LP) and medial occipital (MO)
show higher activation than the other ROIs.

A similar condition by ROI LMM on the oddball responses revealed a main effect
of condition (F(3,285) = 7.20, p < 0.0001, partial η2 = 0.17, 95% CI [0.11, 1]),) and a main
effect of ROI (F(3,285) = 19.62, p < 0.0001, partial η2 = 0.07, 95% CI [0.02, 1]), but no ROI
by condition interaction effect (F(9, 285) = 0.412, p = 0.92, partial η2 = 0.01, 95% CI [0, 1]).
The pairwise comparisons revealed that the amplitudes for fear were higher than any other
condition (t(79) > 4.26, p < 0.0001 for all contrasts), and angry had higher amplitudes than
sad (t(79) = 2.88, p = 0.015). Pairwise contrasts for the effect of ROI indicated that ROI LP
and ROI MO had both higher amplitudes than ROI RP and ROI MF (t(79) > 2.75, p > 0.022).

4. Discussion

We found clear base and oddball responses for every emotion category, indicating
that the brain is able to synchronize with the presentation rate of vocal stimuli and to
systematically detect and discriminate subtle vocal emotional utterances from neutral
utterances. To ensure that this effect was not purely driven by systematic low-level acoustic
differences, we preselected highly heterogeneous vocal stimuli with a high variability
in pitch and harmonic ratio, which are important low-level features for emotional voice
processing. Yet, despite this huge random variability, pitch and harmonic ratio still varied
in a periodic way in the neutral-emotional sound streams, as indicated in Figure 2C.
Against this background, it may have been not too surprising to also observe this same
periodicity, including the oddball responses, in the EEG spectrum. To further control the
relative importance of low-level acoustic features for automatic emotion processing, we
also included a scrambled version of the vocal sound streams. This scrambling procedure
preserved the low-level spectro-temporal acoustic structure of the sound but ensured that
stimuli were no longer recognizable as voices, let alone that the emotional content would
have been identified. Preservation of some of the acoustic structure and its periodicity along
the vocal sound stream is again demonstrated in Figure 2C. Yet crucially, and importantly,
in contrast with the emotion conditions, for the scrambled control condition we only found
an EEG base rate response and no selective oddball discrimination responses for the first
harmonic (cf. Figure 4). Accordingly, these results clearly indicate that periodicity of low-
level acoustic features by itself does not suffice to induce robust oddball EEG responses,
but meaningful high-level emotional categories are needed.

For the base rate frequency, we found a main effect of condition with reduced base
responses for the sad condition. It appears that sad utterances are confused and mis-
interpreted often with neutral utterances (16%) and it might be that habituation occurs
more pronounced in the sad condition in comparison with the other conditions due the
similarity of the neutral and sad utterances leading to lower responses in the EEG data [55].
However, regarding the confusion matrix of the used stimuli (Figure 1), happy utterances
were confused with neutral utterances as much as sad utterances (16%) but did not show re-
duced base responses in comparison with the other conditions. Happy also had the lowest
accuracy of all emotions, which is also supported by other vocal emotion studies [15].

While comparing the oddball response between the different emotions, we observed
the highest response for the detection and discrimination of fearful and angry voices. This
echoes the general observation that threat-related emotions, such as fear and anger, may
be important from an evolutionary perspective to survive unknown situations, and may,
therefore, be most easily detected and attract our attention [22]. This finding neatly aligns
with a similar observation showing the highest frequency-tagged EEG discrimination
responses for visually presented emotional expressions of fearful and angry faces in a
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continuous stream of neutral faces [47]. In this study, despite the difference in modality, a
similar pattern of emotion discrimination responses was observed, with fearful and angry
expressions eliciting the strongest response, happy expressions an intermediate response,
and sad facial expressions the lowest response.

We did not observe a condition (fear, angry, happy, and sad) by ROI interaction effect,
nor for the base rate responses nor for the oddball responses, suggesting the presence
of a similar neural activation pattern for all emotions used in the experiment. However,
note that EEG, as compared to MRI, is not the most sensitive method to detect small
spatial differences in activation patterns. For the base frequency, which indices the periodic
presentation of voices, we found a main effect of ROI, revealing a right-side lateralisation of
activity at the temporal cortex. Importantly, the scrambled condition, which involved the
presentation of non-recognizable artificial sounds, did not display this right lateralisation
at base frequency. This echoes the general literature that voice processing, and certainly
emotional voice processing, is right lateralised [23,24]. On the other hand, the absence of a
right lateralization for the 4 Hz base rate of the scrambled condition does not corroborate
the asymmetric temporal sampling in time theory of Poeppel and colleagues [27], which
postulates that slower oscillations (~200 ms) are preferentially processed by the right
auditory cortex.

In response to the oddball frequency, we found a different lateralisation pattern,
revealing higher amplitudes at the left side of the brain, in particular in the left parietal
cortex. The left lateralisation of these emotional voice discrimination responses may be
related to the higher difficulty level of the task, as differentiating emotions is harder
than simple voice processing, and studies have demonstrated more left lateralized brain
activation for tasks that are more difficult [26,56]. For both the base and the oddball
responses, we also found activation in posterior occipital regions and even some medial
frontal activation for the oddball response. This pattern may originate from activity in the
auditory cortex and posterior STS projecting towards the posterior and anterior regions
of the scalp because of the particular folding of the gyri. However, to pinpoint the exact
spatial location and source of these responses, methods with a higher spatial resolution
would be required.

We want to point out that every study has its limitations. First, EEG is not appropriate
to study the fine-grained spatial location of brain responses involved in emotion discrim-
ination, hence an MRI alternative might be more suited for an in-dept investigation of
possible lateralization effects. Next, as we only included male adults in the present study, it
is not possible to generalize the findings to the general population. In this regard, it would
be insightful to extend this study to a group of female participants. It would be particularly
interesting to directly compare neural responses of female and male participants to investi-
gate if the classical gender differences in vocal emotion recognition [51] are still present
in this implicit paradigm where explicit recognition and naming of the emotion is not
required. Furthermore, as this paradigm taps into automatic and implicit emotional pro-
cessing, it would be very well suited for applications in child and even infant populations,
to investigate developmental trajectories of vocal emotion processing. Also, exploration of
emotion processing sensitivity in populations with known socio-communicative difficulties
such as autism [57] would be highly relevant.

Another possible concern of the present study is that we did not use naturally pro-
duced vocal emotional utterances, but smaller speech segments extracted from vocal
utterances that were produced by actors who imitated a certain emotion. It can be ques-
tioned whether intentionally produced (or acted) vocal emotional utterances display similar
characteristics as naturally produced emotional utterances. This is an issue in emotion
research in general. However, whereas acted facial expressions can indeed be differentiated
from genuine facial expressions [58], research has shown that listeners are not able to
differentiate whether a vocal emotional utterance was acted or naturally produced [59].
This is important as it validates and justifies the use of acted utterances. Accordingly, due
to the lack of validated databases with naturalistic emotional utterances, thus far, we have
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to work with ‘acted’ databases. In this regard, the newly developed EVID database can
play an important role in vocal emotional research, as it strives to be as realistic as possible
and uses short clips of sentences which are still recognizable in terms of emotional valence.

5. Conclusions

Overall, we demonstrated that we can track the discrimination and categorization of
complex vocal emotional utterances with frequency tagging EEG and that these emotion-
selective responses are at least partially independent from low-level acoustic features
(see also [49]). This fast, straightforward, and double-objective approach offers a unique
and powerful tool to quantify the implicit sensitivity for subtle vocal emotional cues at
the individual subject-level, without any overt behavioral processing. This opens up the
way to apply this paradigm to investigate emotion processing abilities in young children
and infants that are unable to understand instructions or provide explicit responses, and
to investigate particular clinical populations that are characterized by atypical emotion
processing abilities, such as autism spectrum disorder, schizophrenia, frontotemporal de-
mentia, anxiety disorder, etc. Also, at a more fundamental level, it paves the way for
implementing other complex sound categorization frequency-tagging paradigms (pin-
pointing for instance vocal identity discrimination), thereby contributing to an advanced
understanding of human auditory categorization in general.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci13020162/s1, Figure S1: Low-level features of the vocal
utterances. Low-level features are plotted for every single scrambled stimulus of every emotion
condition. On the left the pitch (f0, fundamental frequency) is plotted and on the right harmonic ratio
(hr in %). Note the large overlap with the original stimuli.
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34. Leung, F.Y.N.; Sin, J.; Dawson, C.; Ong, J.H.; Zhao, C.; Veić, A.; Liu, F. Emotion recognition across visual and auditory modalities

in autism spectrum disorder: A systematic review and meta-analysis. Dev. Rev. 2022, 63, 101000. [CrossRef]

http://doi.org/10.1016/S0022-1031(02)00510-3
http://doi.org/10.1145/1878116.1878123
http://doi.org/10.1111/j.2044-8295.2011.02051.x
http://doi.org/10.1016/S0926-6410(03)00174-5
http://doi.org/10.1073/pnas.0908239106
http://doi.org/10.1162/jocn.2009.21366
http://doi.org/10.1016/j.specom.2008.03.006
http://doi.org/10.1016/j.bandl.2007.11.005
http://doi.org/10.1007/s11031-019-09783-9
http://doi.org/10.1016/j.cortex.2019.04.017
http://www.ncbi.nlm.nih.gov/pubmed/31151087
http://doi.org/10.1371/journal.pone.0027256
http://www.ncbi.nlm.nih.gov/pubmed/22087275
http://doi.org/10.1098/rspb.2017.2783
http://www.ncbi.nlm.nih.gov/pubmed/29491174
http://doi.org/10.1016/j.wocn.2009.07.005
http://doi.org/10.1037/a0024700
http://www.ncbi.nlm.nih.gov/pubmed/21859207
http://doi.org/10.1080/17470211003721642
http://www.ncbi.nlm.nih.gov/pubmed/20437296
http://doi.org/10.1097/01.wnr.0000199466.32036.5d
http://www.ncbi.nlm.nih.gov/pubmed/16462592
http://doi.org/10.1162/jocn_a_00214
http://doi.org/10.1093/scan/nsy100
http://doi.org/10.1038/35002078
http://www.ncbi.nlm.nih.gov/pubmed/10659849
http://doi.org/10.1093/cercor/bhj151
http://doi.org/10.1016/j.cub.2009.04.054
http://www.ncbi.nlm.nih.gov/pubmed/19446457
http://doi.org/10.1016/S0093-934X(02)00532-1
http://www.ncbi.nlm.nih.gov/pubmed/12972367
http://doi.org/10.3389/fpsyg.2012.00170
http://doi.org/10.1016/S0167-6393(02)00107-3
http://doi.org/10.1016/S1364-6613(00)01816-7
http://doi.org/10.3758/s13423-019-01701-x
http://doi.org/10.1016/S0272-7358(02)00130-7
http://doi.org/10.1080/15622975.2017.1324176
http://www.ncbi.nlm.nih.gov/pubmed/28449613
http://doi.org/10.1097/01.yco.0000191500.46411.00
http://www.ncbi.nlm.nih.gov/pubmed/16612176
http://doi.org/10.1016/j.dr.2021.101000


Brain Sci. 2023, 13, 162 17 of 17

35. Bänziger, T.; Grandjean, D.; Scherer, K.R. Emotion Recognition From Expressions in Face, Voice, and Body: The Multimodal
Emotion Recognition Test (MERT). Emotion 2009, 9, 691–704. [CrossRef] [PubMed]

36. Bänziger, T.; Mortillaro, M.; Scherer, K.R. Introducing the Geneva Multimodal expression corpus for experimental research on
emotion perception. Emotion 2012, 12, 1161–1179. [CrossRef]

37. Schlegel, K.; Scherer, K.R. Introducing a short version of the Geneva Emotion Recognition Test (GERT-S): Psychometric properties
and construct validation. Behav. Res. Methods 2016, 48, 1383–1392. [CrossRef]

38. Harms, M.B.; Martin, A.; Wallace, G.L. Facial Emotion Recognition in Autism Spectrum Disorders: A Review of Behavioral and
Neuroimaging Studies. Neuropsychol. Rev. 2010, 20, 290–322. [CrossRef]

39. Stewart, M.E.; McAdam, C.; Ota, M.; Peppé, S.; Cleland, J. Emotional recognition in autism spectrum conditions from voices and
faces. Autism 2013, 17, 6–14. [CrossRef]

40. Schirmer, A.; Striano, T.; Friederici, A.D. Sex differences in the preattentive processing of vocal emotional expressions. Neuroreport
2005, 16, 635–639. [CrossRef]

41. Lindström, R.; Lepistö-Paisley, T.; Makkonen, T.; Reinvall, O.; Nieminen-von Wendt, T.; Alén, R.; Kujala, T. Atypical perceptual
and neural processing of emotional prosodic changes in children with autism spectrum disorders. Clin. Neurophysiol. 2018, 129,
2411–2420. [CrossRef]

42. Mcgee, T.J.; King, C.; Tremblay, K.; Nicol, T.G.; Cunningham, J.; Kraus, N. Long-term habituation of the speech-elicited mismatch
negativity. Psychophysiology 2001, 38, 653–658. [CrossRef] [PubMed]

43. Dzhelyova, M.; Jacques, C.; Rossion, B. At a Single Glance: Fast Periodic Visual Stimulation Uncovers the Spatio-Temporal
Dynamics of Brief Facial Expression Changes in the Human Brain. Cereb. Cortex 2016, 27, 4106–4123. [CrossRef] [PubMed]

44. Liu-Shuang, J.; Norcia, A.M.; Rossion, B. An objective index of individual face discrimination in the right occipito-temporal cortex
by means of fast periodic oddball stimulation. Neuropsychologia 2014, 52, 57–72. [CrossRef] [PubMed]

45. Leleu, A.; Favre, E.; Yailian, A.; Fumat, H.; Klamm, J.; Amado, I.; Baudouin, J.-Y.; Franck, N.; Demily, C. An implicit and reliable
neural measure quantifying impaired visual coding of facial expression: Evidence from the 22q11.2 deletion syndrome. Transl.
Psychiatry 2019, 9, 67. [CrossRef]

46. Van der Donck, S.; Dzhelyova, M.; Vettori, S.; Thielen, H.; Steyaert, J.; Rossion, B.; Boets, B. Fast Periodic Visual Stimulation
EEG Reveals Reduced Neural Sensitivity to Fearful Faces in Children with Autism. J. Autism Dev. Disord. 2019, 49, 4658–4673.
[CrossRef]

47. Van der Donck, S.; Dzhelyova, M.; Vettori, S.; Mahdi, S.S.; Claes, P.; Steyaert, J.; Boets, B. Rapid neural categorization of angry and
fearful faces is specifically impaired in boys with autism spectrum disorder. J. Child Psychol. Psychiatry Allied Discip. 2020, 61,
1019–1029. [CrossRef]

48. Vettori, S.; Dzhelyova, M.; Van der Donck, S.; Jacques, C.; Steyaert, J.; Rossion, B.; Boets, B. Reduced neural sensitivity to rapid
individual face discrimination in autism spectrum disorder. NeuroImage Clin. 2019, 21, 101613. [CrossRef]

49. Barbero, F.M.; Calce, R.P.; Talwar, S.; Rossion, B.; Collignon, O. Fast Periodic Auditory Stimulation Reveals a Robust Categorical
Response to Voices in the Human Brain. eNeuro 2021, 8, ENEURO.0471-20.2021. [CrossRef]

50. Norcia, A.M.; Appelbaum, L.G.; Ales, J.M.; Cottereau, B.R.; Rossion, B. The steady-state visual evoked potential in vision research:
A review. J. Vis. 2015, 15, 4. [CrossRef]

51. Lausen, A.; Schacht, A. Gender differences in the recognition of vocal emotions. Front. Psychol. 2018, 9, 882. [CrossRef]
52. Cao, H.; Cooper, D.G.; Keutmann, M.K.; Gur, R.C.; Nenkova, A.; Verma, R. CREMA-D: Crowd-sourced Emotional Multimodal

Actors Dataset. IEEE Trans. Affect. Comput. 2014, 5, 377–390. [CrossRef] [PubMed]
53. Dormal, G.; Pelland, M.; Rezk, M.; Yakobov, E.; Lepore, F.; Collignon, O. Functional Preference for Object Sounds and Voices in

the Brain of Early Blind and Sighted Individuals. J. Cogn. Neurosci. 2018, 30, 86–106. [CrossRef]
54. Van Rinsveld, A.; Guillaume, M.; Kohler, P.J.; Schiltz, C.; Gevers, W.; Content, A. The neural signature of numerosity by separating

numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proc. Natl. Acad. Sci. USA 2020, 117,
5726–5732. [CrossRef] [PubMed]

55. Polich, J. Habituation of P300 from auditory stimuli. Psychobiology 1989, 17, 19–28. [CrossRef]
56. Schirmer, A.; Kotz, S.A. Beyond the right hemisphere: Brain mechanisms mediating vocal emotional processing. Trends Cogn. Sci.

2006, 10, 24–30. [CrossRef]
57. Boraston, Z.; Blakemore, S.-J.; Chilvers, R.; Skuse, D. Impaired sadness recognition is linked to social interaction deficit in autism.

Neuropsychologia 2007, 45, 1501–1510. [CrossRef] [PubMed]
58. Namba, S.; Kabir, R.S.; Miyatani, M.; Nakao, T. Dynamic Displays Enhance the Ability to Discriminate Genuine and Posed Facial

Expressions of Emotion. Front. Psychol. 2018, 9, 672. [CrossRef]
59. Jürgens, R.; Grass, A.; Drolet, M.; Fischer, J. Effect of Acting Experience on Emotion Expression and Recognition in Voice:

Non-Actors Provide Better Stimuli than Expected. J. Nonverbal Behav. 2015, 39, 195–214. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1037/a0017088
http://www.ncbi.nlm.nih.gov/pubmed/19803591
http://doi.org/10.1037/a0025827
http://doi.org/10.3758/s13428-015-0646-4
http://doi.org/10.1007/s11065-010-9138-6
http://doi.org/10.1177/1362361311424572
http://doi.org/10.1097/00001756-200504250-00024
http://doi.org/10.1016/j.clinph.2018.08.018
http://doi.org/10.1111/1469-8986.3840653
http://www.ncbi.nlm.nih.gov/pubmed/11446578
http://doi.org/10.1093/cercor/bhw223
http://www.ncbi.nlm.nih.gov/pubmed/27578496
http://doi.org/10.1016/j.neuropsychologia.2013.10.022
http://www.ncbi.nlm.nih.gov/pubmed/24200921
http://doi.org/10.1038/s41398-019-0411-z
http://doi.org/10.1007/s10803-019-04172-0
http://doi.org/10.1111/jcpp.13201
http://doi.org/10.1016/j.nicl.2018.101613
http://doi.org/10.1523/ENEURO.0471-20.2021
http://doi.org/10.1167/15.6.4
http://doi.org/10.3389/fpsyg.2018.00882
http://doi.org/10.1109/TAFFC.2014.2336244
http://www.ncbi.nlm.nih.gov/pubmed/25653738
http://doi.org/10.1162/jocn_a_01186
http://doi.org/10.1073/pnas.1917849117
http://www.ncbi.nlm.nih.gov/pubmed/32123113
http://doi.org/10.3758/BF03337813
http://doi.org/10.1016/j.tics.2005.11.009
http://doi.org/10.1016/j.neuropsychologia.2006.11.010
http://www.ncbi.nlm.nih.gov/pubmed/17196998
http://doi.org/10.3389/fpsyg.2018.00672
http://doi.org/10.1007/s10919-015-0209-5

	Introduction 
	Vocal Emotion Processing as a Gateway to Social Communication 
	Frequency Tagging EEG to Pinpoint Differences in Socio-Communicative Abilities 

	Materials and Methods 
	Participants 
	Stimuli: Design of the Emotional Voices and Identity Database (EVID) 
	Procedure and Equipment 
	EEG Analysis 
	Pre-Processing 
	Frequency-Domain Analysis 
	Statistical Analyses 


	Results 
	Orthogonal Task 
	Region of Interests 
	SNR and Topographies 
	Contrasting Emotion-Specific Responses Versus Responses for the Scrambled Condition 
	Investigating Lateralisation Patterns of Emotion-Specific Responses 

	Discussion 
	Conclusions 
	References

