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Abstract: The aim of the present study is the evaluation of established Alzheimer’s disease (AD)
cerebrospinal fluid (CSF) biomarkers in patients with idiopathic normal-pressure hydrocephalus
(iNPH), both individually and as a total profile, and the investigation of their use as potential
predictors of Tap-test responsiveness. Fifty-three patients with iNPH participated in the study.
Aβ42, Aβ40, total Tau and phospho-Tau proteins were measured in duplicate with double-sandwich
ELISA assays. Clinical evaluation involved a 10 m timed walk test before an evacuative lumbar
puncture (LP) and every 24 h for three consecutive days afterwards. Neuropsychological assessment
involved a mini-mental state examination, frontal assessment battery, 5-word test and CLOX drawing
test 1 and 2, which were also performed before and 48 h after LP. Response in the Tap-test was
defined as a 20% improvement in gait and/or a 10% improvement in neuropsychological tests. The
Aβ42/Aβ40 ratio was found to be significantly higher in Tap-test responders than non-responders.
Total Tau and phospho-Tau CSF levels also differed significantly between these two groups, with
Tap-test responders presenting with lower levels compared to non-responders. Regarding the AD
CSF biomarker profile (decreased amyloid and increased Tau proteins levels), patients with a non-AD
profile were more likely to have a positive response in the Tap-test than patients with an AD profile.

Keywords: CSF biomarkers; total Tau; phospho-Tau; Aβ42; Aβ42/Aβ40 ratio; AD; Tap-test;
idiopathic normal-pressure hydrocephalus

1. Introduction

Hydrocephalus as a term comes from the conjunction of two Greek words “hydro”
and “cephalus” which mean water and head, respectively, defining the accumulation
of cerebrospinal fluid (CSF) in the ventricular system and subarachnoid spaces of the
brain [1,2]. There are two types of hydrocephalus: non-communicating or obstructive, and
communicating [1–3].

Normal-pressure hydrocephalus (NPH) is a type of communicating hydrocephalus,
characterized by dilation of brain ventricles and normal CSF pressure more frequently
affecting elderly patients, and is distinguished into secondary NPH and idiopathic NPH
(iNPH) that has no apparent cause [2,4,5]. Clinically, iNPH is defined as a triad of
symptoms, namely gait disorder, cognitive impairment, and urinary incontinence, as has
been described by Adams and Hakim [6,7]. The main imaging characteristics of iNPH
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are ventriculomegaly (e.g., Evans index > 0.3) and lack of obstruction regarding CSF flow.
Other imaging features include dilation of temporal horns, periventricular white matter
lesions, narrow callosal angle, high tight convexity, focally enlarged sulci and dilation of
Sylvian fissures [8]. There are two separate sets of diagnostic guidelines; one Japanese
and one International. In both guidelines, iNPH diagnosis is based on the existence of
both clinical and neuroimaging characteristics, with normal CSF opening pressure and
a relatively slow progression of symptoms [9–11]. Its incidence ranges between 1.8 and
7.3/100,000 [12] and its prevalence ranges from 2.9% to 3.5% in patients with an age
greater than 65 years [13,14].

Various pathogenetic theories have been suggested, but the exact pathophysiological
mechanism remains unclear. The majority of theories converge on a vicious circle of abnor-
mal resorption of the CSF leading to an impaired CSF micro-circulation and enlargement of
the ventricles [5]. There is a scale that aims to evaluate and quantify the clinical status of
iNPH patients: the so-called iNPH grading scale. It involves three distinct subfields which
refer to gait impairment, cognitive impairment and urinary symptoms. Each subfield is
rated between 0 and 4 depending on the extent of the disturbance, and subsequently, total
scores range from 0 to 12, with higher scores relating to greater disturbances [15].

Its differential diagnosis includes a lot of entities that share some clinical and imaging
features with iNPH, including other types of hydrocephalus, neurodegenerative dementias
and vascular dementias. Due to the fact that iNPH usually affects the elderly, it is more
often found to coexist with other conditions causing dementia, rather than existing as a
pure syndrome [16].

Due to the fact that it is a potentially reversible condition, when appropriately selected
patients are promptly treated with ventriculoperitoneal (VP) shunt or third ventriculostomy,
its early diagnosis is of paramount importance [4,17,18]. One of the most well-established
diagnostic tests and at the same time a prognostic factor for successful response to shunt
surgery is the “Tap-test”, that includes a lumbar puncture (LP), removing 30–50 mL CSF,
and the evaluation of possible clinical improvement afterwards. Gait disturbance seems
to be the symptom that better responds to CSF drainage. It is a test with a high positive
prognostic value, meaning that patients with a positive Tap-test response have a high
probability of a good outcome after treatment with VP placement [5,18].

Consequently, proper selection of iNPH patients that may be improved when surgi-
cally treated is of paramount importance. Alzheimer’s disease (AD) is not only included in
the differential diagnosis of iNPH [5,19], but also often coexists according to pathological
studies [20,21]. Therefore, in an era when CSF biomarkers for the in vivo diagnosis of AD
(decreased amyloid and increased Tau proteins levels) are well established, it would be
interesting if they could also prove useful in aiding the selection of proper iNPH candidates
for surgical intervention.

The purpose of the present study was the analysis of established AD CSF biomarkers
in patients with iNPH; the comparison of their values, both individually and as a com-
plete profile, between Tap-test responders and non-responders; and subsequently, their
evaluation as a possibly helpful tool in iNPH prognosis.

2. Materials and Methods
2.1. Study Population

A total of 53 subjects were included in the study. All subjects were recruited prospec-
tively during the years 2019–2021 among patients who presented to the 1st Department of
Neurology of the National and Kapodistrian University of Athens at Eginition Hospital.

In order to be included in the study, patients had to fulfill the criteria of probable or
possible iNPH according to the recent Guidelines for Management of Idiopathic Normal-
Pressure Hydrocephalus [22,23]. Patients with a medical history or clinical or laboratory
findings of other neurological or systemic disease with potential nervous system impair-
ment were excluded. Patients with a history of traumatic brain injury were also excluded.
All patients that were included in the study underwent brain MRI examination, and
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the neuroimaging data and their correlation with Tap-test response have been published
elsewhere [24].

2.2. Ethical Issues

The study was in accordance with the ethical guidelines of the Declaration of Helsinki
and had the approval of the local Ethical and Deontology committee of our hospital. All
subjects and/or relatives gave informed consent for participation in the study.

2.3. Tap-Test Evaluation

An evacuative lumbar puncture was performed once in all patients of the study after
their initial clinical and neuropsychological evaluation. Clinical evaluation included gait
assessment via the 10 m timed walk test (a measurement of the time and steps required to
walk a distance of ten meters), which was performed before and every 24 h after LP for
three consecutive days [25].

Neuropsychological evaluation was performed before and 48 h after LP using (1) The
Mini-Mental State Examination (MMSE) for global cognitive assessment [26]; (2) the Frontal
Assessment Battery (FAB) for executive functions [27]; (3) the 5-word immediate and
delayed recall (5WT) for memory [28]; and (4) the 15-point spontaneous and copy CLOX
drawing (CLOX1 and 2, respectively) for executive functions (CLOX1) and constructional
impairment (CLOX2) [29]. Clinical and cognitive evaluations were performed by the same
neurologist experienced in the specific field.

Response to the Tap-test was outlined based on the following criteria: (1) a ≥20%
improvement in gait tests and and/or (2) a ≥10% improvement in at least MMSE and
FAB. In this way, patients were separated into two groups: Tap-test responders and non-
responders [11,25].

2.4. CSF Sampling and Biomarkers’ Analysis

All patients underwent lumbar puncture in the morning, after overnight fasting,
following established procedures based on recommendations for the standardization
of pre-analytical confounding factors [30]. In brief, the CSF samples were afterwards
collected in polypropylene tubes, centrifuged at 2000 g for 10 min at room temperature.
They were immediately split into aliquots of 0.5 mL and then deep-frozen at −80 ◦C.
Finally, every aliquot was thawed once right before its analysis. The opening pressure of
CSF was measured, and patients with opening pressure higher than 20 cm H2O were
excluded from the study. CSF biomarkers beta-Amyloid 1–42 (Aβ42), beta-Amyloid
1–40 (Aβ40), total Tau, and phospho-Tau (in threonine 181) were measured in duplicate
with the use of commercially available ELISA kits from EUROIMMUN, applied in
the fully automated analyzer EUROIMMUN Analyzer I (EUROIMMUN, Medizinische
Labordiagnostika AG, Lübeck, Germany). Aβ42/Aβ40 and phospho-Tau/Aβ42 ratios
were also calculated.

2.5. Statistical Analysis

All numerical data were tested for normality and homogeneity of variances using
the Shapiro–Wilk and Brown–Forsyth tests, respectively. For the variables that did not
have normal distributions and homogenous variances, we used nonparametric tests for
statistical analysis. The Mann–Whitney U Test was used to investigate differences in the
mean values of Aβ42, Aβ40, total Tau, phospho-Tau, Aβ42/Aβ40, and phospho-Tau/Aβ42
ratios among Tap-test responders and non-responders.

Categorical data were compared between groups using the χ2-test. All tests were
performed using IBM SPSS Statistics® version 23.0.0.0 (SPSS Inc., Chicago, IL, USA, 2013).
All graphs were designed using GraphPad Prism®, version 8.43 (GraphPad Software Inc.,
La Jolla, CA, USA, 2020).
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3. Results

The group of 53 patients that participated in this study was divided into two sub-
groups, Tap-test responders and non-responders, depending on their performance in the
Tap-test based on the criteria described above. Out of 27 Tap-test responders, 17 presented
gait improvement, 4 had cognitive improvement and 6 had both.

Demographic and clinical characteristics regarding patients’ status before LP of each
subgroup are shown in Table 1.

Table 1. Demographic and clinical characteristics before LP of Tap-test responders and non-responders.

Variable Tap-Test Responders
N = 27

Tap-Test
Non-Responders

N = 26
p

Gender (F/M) 14/13 8/18 0.119 †

Age 75 (69–77) 74.5 (70.75–77.25) 0.891 ‡

iNPH Grading scale 6 (5–7) 6 (4–7) 0.839 ‡

Disease duration (months) 24 (14–48) 24 (12–48) 0.903 ‡

MMSE before LP 23 (17–26) 23.5 (20.5–28.25) 0.062 ‡

FAB before LP 9 (8–13) 12 (9.75–15) 0.184 ‡

10 m timed walk test: steps
before LP 27 (20–45) 19.5 (16–27.75) 0.04 ‡,*

10 m timed walk test: time
before LP 17 (11–36) 10.75 (9–15) 0.02 ‡,*

N = number of subjects; LP = lumbar puncture. Demographic and clinical parameters are presented as median
values (25th–75th percentile); † χ2 test; ‡ Mann–Whitney U test; statistically significant p values are marked
with *.

Clinical and neuropsychological data of responders and non-responders before and
after LP are shown in Tables 2 and 3, respectively.

Table 2. Neuropsychological and gait data of Tap-test responders before and 48 h after LP.

N = 27 Neuropsychological Gait

MMSE FAB 5WT
Immediate

5WT
Delayed CLOX-1 CLOX-2

10 m
Timed Walk
Test: Steps

10 m
Timed Walk
Test: Time

Before LP 23
(17–26)

9
(8–13)

5
(5–5)

5
(4–5)

7
(4–11)

10
(8–13)

27
(20–45)

17
(11–36)

48 h after
LP

25
(20–28)

12
(9–14)

5
(5–5)

5
(4–5)

8
(6–11)

12
(8–14)

22
(17–35)

14
(9–25)

Median %
change 0.103 0.182 0.000 0.000 0.000 0.071 0.231 0.235

p <0.001 † <0.001 † NS † NS † 0.012 † 0.011 † 0.001 † <0.001 †

N: total number of subjects, LP: lumbar puncture, 5WT: 5-word test, NS: non-significant, MMSE: Mini-Mental
State Examination, FAB: Frontal Assessment Battery; Neuropsychological and gait data are presented as median
values (25th–75th percentile), as they did not have normal distributions and homogenous variances. † Wilcoxon
matched pairs test.

Aβ42/Aβ40 ratios were found to be significantly different between the two sub-groups
(p = 0.0184), with Tap test responders having a higher value of ratio than non-responders.
Total Tau and phospho-Tau CSF levels also differed significantly between these two groups
(p = 0.0409 and p = 0.0184, respectively), with Tap-test responders having lower levels than
non-responders. These results are depicted in Table 4 and Figures 1–3.
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Table 3. Neuropsychological and gait data of Tap-test non-responders before and 48 h after LP.

N = 26 Neuropsychological Gait

MMSE FAB 5WT
Immediate

5WT
Delayed CLOX-1 CLOX-2

10 m
Timed Walk
Test: Steps

10 m
Timed Walk
Test: Time

Before LP 23.5
(20.5–28.25)

12
(9.75–15)

5
(4.75–5)

4
(2–5)

9.5
(4.75–13)

12
(8–13.25)

19.5
(16–27.75)

10.75
(9–15)

48 h after
LP

24.5
(19.5–29.25)

13
(10.75–15.5)

5
(4.75–5)

4.5
(1.75–5)

10
(4–12)

11
(7.5–13)

19
(15.75–29)

11
(8.38–18)

Median %
change 0.017 0.000 0.000 0.000 0.000 0.000 0.024 0.038

p NS † 0.029 † NS † NS † NS † NS † NS † NS †

N: total number of subjects, LP: lumbar puncture, 5WT: 5-word test, NS: non-significant, MMSE: Mini-Mental
State Examination, FAB: Frontal Assessment Battery. Neuropsychological and gait data are presented as median
values (25th–75th percentile), as they did not have normal distributions and homogenous variances. † Wilcoxon
Matched Pairs Test.

Table 4. CSF biomarkers data of Tap-test responders and non-responders.

CSF Biomarker
Tap-Test

Responders
N = 27

Tap-Test
Non-Responders

N = 26
p

total Tau 194 (157–272.3) 272.2 (151.2–548.3) 0.0409 †*

phospho-Tau 26 (17.7–38) 42.5 (21.97–81.5) 0.0184 †*

Aβ42 389 (304–609.5) 406.2 (317.1–660.8) 0.5871 †

Aβ42/Aβ40 ratio 0.16 (0.1–0.2) 0.11 (0.06–0.163) 0.0184 †*

phospho-Tau/Aβ42 ratio 0.049 (0.037–0.106) 0.135 (0.036–0.211) 0.2116 †

N: number of patients. CSF biomarker data are presented as median values (25th–75th percentile). † Mann–
Whitney U test; statistically significant p values are marked with *.
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Figure 1. Aβ42/Aβ40 ratios differed significantly between Tap-test responders (depicted in circles)
and non-responders (depicted in squares) (p = 0.0184). The median values and the range of these
ratios’ values in the two groups are presented in this graph.
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Figure 3. Phospho-Tau levels differed significantly between Tap-test responders (depicted in circles)
and non-responders (depicted in squares) (p = 0.0184). The median values and the range of phospho-
Tau values in the two groups are presented in this graph.

The other two variants, namely Aβ42 and phospho-Tau/Aβ42, have not proved to
differ significantly between Tap-test responders and non-responders.

Then, in order to classify patients into two distinct biomarker profiles, CSF biomarkers
were transformed into binary variables (normal or abnormal) based on cut-off values of
the Unit of Neurochemistry and Biomarkers (Aβ42 < 480 pg/mL; total Tau > 400 pg/mL
and phospho-Tau > 60 pg/mL), as previously described [31]. Patients with abnormal
Aβ42, and/or Aβ42/Aβ40, total Tau and phospho-Tau were considered to have concomi-
tant underlying AD pathology according to the BIOMARKAPD/ABSI criteria, and were
classified in the group of patients with an AD profile [32,33]. All the rest were classified
as having a non-AD profile. The demographic and clinical characteristics of these two



Brain Sci. 2023, 13, 1593 7 of 11

groups are presented in Table 5. There is no significant difference between these two groups
regarding gender, age, disease duration and pre-Tap-test clinical and neuropsychological
status. Patients with an AD profile of CSF biomarkers have proved less likely to have a
positive response to the Tap-test than patients with a non-AD profile (χ2 = 9.729, p < 0.01),
as depicted in Figure 4.

Table 5. Demographic and clinical characteristics before LP of patients with an AD CSF biomarker
profile and non-AD profile.

Variable
iNPH Patients with

AD Profile
N = 11

iNPH Patients with
Non-AD Profile

N = 42
p

Gender (F/M) 5/6 17/25 0.765 †

Age 76 (66–82) 74.5 (70–77) 0.668 ‡

iNPH Grading scale 6 (4–7) 6 (5–7) 0.984 ‡

Disease duration (months) 24 (15–74.5) 24 (13–48) 0.960 ‡

MMSE before LP 23 (11–29) 24 (18.75–27) 0.252 ‡

FAB before LP 11 (5–14) 11.5 (9–13) 0.640 ‡

10 m timed walk test: steps
before LP 22 (15–31) 25 (18.5–33) 0.199 ‡

10 m timed walk test: time
before LP 14 (8–15) 14.25 (10–24) 0.640 ‡

N = number of subjects; LP = lumbar puncture. Demographic parameters are presented as median values
(25th–75th percentile); † χ2 test; ‡ Mann–Whitney U test.
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4. Discussion

In the present study, we aimed to quantify established CSF biomarkers for AD indicat-
ing underlying AD pathology in patients with iNPH, and to explore their potential role of
favorable prognosis with regard to shunting.

According to our results, no significant correlation was drawn between Aβ42 and
Tap-test responsiveness. Findings on Aβ42 and its correlation with iNPH prognosis are
controversial, with Kang et al. (2014) suggesting that lower Aβ42 levels are associated
with worse cognitive outcomes, although they did not differ significantly between Tap-test
responders and non-responders. However, Santangelo et al. (2017) found that there was
no statistically significant difference in cognitive or gait/balance performance during CSF
removal in line with Aβ42 levels [34,35]. On the other hand, Aβ42/Aβ40 ratios were found
to be higher in Tap-test responders, which is in accordance with the findings of Kanemoto
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et al. (2021), who suggested that low values of CSF Aβ42/40 ratio are correlated with a
poorer Tap-test outcome, especially in the cognitive field [36].

Aβ is fundamentally associated with the amyloid hypothesis of AD. Our current
hypothesis considers that neurodegeneration is caused by an imbalance between the
production of Aβ and its clearance within the brain, resulting in accumulation, plaque
formation, and finally, cognitive decline [37]. AD and iNPH share pathophysiological
mechanisms, and in the latter, CSF concentrations of both Aβ and soluble amyloid precursor
protein (sAPP) fragments (with a probable trophic role for neurons) have been found
decreased. These findings do not support a specific amyloid cascade mechanism, and are
thought to be the result of a downregulation of sAPP in periventricular areas of the brain,
which may be the result of impaired amyloid metabolism or reduced extracellular fluid
clearance towards CSF [38]. Aβ42, although a specific biomarker for AD, has also been
found to be decreased in other neurodegenerative and non-neurodegenerative diseases
as well [39–41]. Thus, the Aβ42/Aβ40 ratio has been introduced, which is considered to
correct for inter-individual variability in the overall Aβ production, possibly reflecting
more accurately individual amyloid burden [42].

Regarding Tau proteins, we found that the concentrations of both total Tau and
phospho-Tau were lower in patients with a positive response to the Tap-test. High concen-
trations of phospho-Tau have also been suggested as a possible marker of poor cognitive
and overall outcomes after shunt surgery by Akiba et al. (2018) [43]. Total Tau is considered
to be an unspecific marker of degeneration or axonal damage [37,44]. Phospho-Tau, on the
other hand, is considered a biomarker with molecular specificity for AD, reflecting neurofib-
rillary tangle formation, and it is usually normal in other neurological diseases [39,40,45],
including pure iNPH [46]. Increased CSF phospho-Tau concentration possibly reflects AD
coexistence [47], while total Tau is a non-specific marker of neurodegeneration like many
other molecules, such as 14-3-3 protein and NFs [48].

No significant correlation between the phospho-Tau/Aβ42 ratio and the Tap-test
responder status has been found in the present study. Ray et al. (2011) and Patel et al.
(2012) have correlated high values of this ratio with the possibility of developing a neu-
rodegenerative dementia, mostly AD, and a worse outcome after shunt surgery [49,50]. On
the contrary, Kang et al. (2014) suggested that higher values of phospho-Tau/Aβ42 were
associated with a positive response to the Tap-test [34].

Regarding the full AD CSF profile, in the present study, it has been found that iNPH
patients with an AD profile are less likely to have a positive response to the Tap-test than
those with a non-AD profile. An earlier study by Golomb et al. (2000) had suggested that an
AD profile in iNPH patients has little effect on the possibility of shunt responsiveness [13].
Another study by Lim et al. in 2014 concluded that iNPH patients with an AD profile were
less likely to have a good response either to Tap-test or to shunt placement [51]. On the other
hand, Müller-Schmitz et al. (2020) suggested that iNPH patients with an AD profile had
better outcomes after CSF evacuation than those with a non-AD profile [52]. Nevertheless,
our results seem to be in accordance with a recent meta-analysis, which concluded that
elevated CSF phospho-Tau concentration is correlated with worse post-shunt outcomes [53].

Our study has certain limitations too. Patients included have no pathologic confir-
mation, an inherent disadvantage in the majority of relevant studies; there are also no
established pathologic data for iNPH. Therefore, we used solid criteria based on the latest
iNPH guidelines for the patients’ inclusion or exclusion in the study, as described above.
Regarding concerns about the possible learning effect that could disturb the value of at
least 10% simultaneous improvement in MMSE and FAB, Solana et al. (2010) have shown
that iNPH patients do not have better performance in a setting of repeated cognitive tests
when no other intervention is applied, unlike non-iNPH subjects [54]. Additionally, we
have neither information about patients that were surgically treated nor post-shunt data.
Another limitation is the relatively small number of patients, resulting from the fact that
this is a one-center study. However, this might be a strength of the study too, as in this
way, inter-rater variability regarding clinical and neuropsychological evaluation is avoided.
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Nevertheless, several statistically significant results have been drawn. Despite that, due
to the small number of patients, differences regarding single biomarkers would not be
retained if a post hoc analysis was applied. Further, multicenter well-conducted studies
with larger patient cohorts and ideally post-surgical data are required in the future in order
to validate or confute our results.

5. Conclusions

In conclusion, the results of the present study show that CSF biomarkers established
for AD can be useful in iNPH patients too. Higher CSF levels of total Tau and phospho-Tau
and lower values of Aβ42/Aβ40 ratio, as long as a total CSF biomarker profile indicative
of AD pathology, seem to make a positive Tap-test response less likely. Future studies that
will include post-surgical data are required in order to ascertain these results.
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