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Abstract: Although target detection based on electroencephalogram (EEG) signals has been exten-
sively investigated recently, EEG-based target detection under weak hidden conditions remains a
problem. In this paper, we proposed a rapid serial visual presentation (RSVP) paradigm for target
detection corresponding to five levels of weak hidden conditions quantitively based on the RGB
color space. Eighteen subjects participated in the experiment, and the neural signatures, including
P300 amplitude and latency, were investigated. Detection performance was evaluated under five
levels of weak hidden conditions using the linear discrimination analysis and support vector machine
classifiers on different channel sets. The experimental results showed that, compared with the bench-
mark condition, (1) the P300 amplitude significantly decreased (8.92 ± 1.24 µV versus 7.84 ± 1.40 µV,
p = 0.021) and latency was significantly prolonged (582.39 ± 25.02 ms versus 643.83 ± 26.16 ms,
p = 0.028) only under the weakest hidden condition, and (2) the detection accuracy decreased by
less than 2% (75.04 ± 3.24% versus 73.35 ± 3.15%, p = 0.029) with a more than 90% reduction in
channel number (62 channels versus 6 channels), determined using the proposed channel selection
method under the weakest hidden condition. Our study can provide new insights into target de-
tection under weak hidden conditions based on EEG signals with a rapid serial visual presentation
paradigm. In addition, it may expand the application of brain–computer interfaces in EEG-based
target detection areas.

Keywords: electroencephalogram; event-related potential; rapid serial visual presentation; target
detection; weak hidden conditions

1. Introduction

The brain–computer interface (BCI) can build a direct communication link between
humans and the outside world by translating complex, massive, and nonstationary brain
signals into interaction commands. This can provide an alternative or additional way for
human–machine interactions to take place [1]. Recently, due to the low cost, convenient
usability, non-invasiveness, and high time resolution of electroencephalogram (EEG) record-
ing, brain–computer interfaces (BCIs) based on EEG have been widely utilized to explore
brain-controlled applications. For disabled people, these applications include spellers [2,3],
robotic arms [4,5], robots [6,7], vehicles [8,9], and unmanned aerial vehicles (UAVs) [10].
These were developed in the disability assistance field to facilitate communication with ex-
ternal devices. For non-disabled people, these applications include secondary task assistant
systems [11,12], third arms [13], emotion recognition [14,15], concentration evaluation [16],
drowsiness detection [17], and target detection [18]. These were developed to enhance the
efficiency of operators.
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Among the various BCI applications, BCI based on rapid serial visual presentation
(RSVP) is a typical BCI for target detection. It can present an image stream and detect the
presence or absence of any interesting targets (e.g., text, a number, a human, a vehicle,
or an airplane) by collecting and analyzing EEG signals during the presentation. The
purpose of the RSVP-based BCI is to detect a target through the neural signature of the
brain pattern instead of a delayed behavioral response. The target of interest will induce
the event-related potentials (ERP) in the EEG signals while a non-target will not. The
EEG signals corresponding to a target of interest and a non-target can be collected and
analyzed. Then, new EEG signals corresponding to a picture can be classified into a
target category or non-target category using machine learning methods. We then can infer
whether this picture contains a target or not. The existing applications of RSVP-based
BCI include surveillance [19,20], face recognition [21,22], medical image analysis [23], and
RSVP spellers [24–26]. Due to its relatively high detection speed compared with manual
operation, especially for detecting targets from multiple huge images with high resolution,
RSVP-based BCI is considered to be a potential approach for enhancing the ability and
improving the efficiency of operators [27–31].

Recently, there have been numerous studies [27–31] using the RSVP-based BCI for
target detection. Manor et al. proposed an RSVP paradigm for detecting various kinds
of structures like buildings or roads [27]. These structures were artificially considered as
one type of target in this study. The images not containing these structures but containing
various patterns of ground plants or other natural items were considered non-targets.
Fernandez and Poli proposed an RSVP paradigm to detect a randomly rotated, positioned,
and superimposed airplane from aerial pictures of London [28], in which target localization
was also investigated. Wei et al. proposed an RSVP paradigm to detect pedestrians [29], in
which one or more pedestrians were considered as one type of target and the images of
the street scenes without pedestrians were considered to be non-targets, from the database
of the Massachusetts Institute of Technology, Computer Science and Artificial Intelligence
Laboratory (MIT-CSAIL). Marathe et al. chose moving or static persons and vehicles as
one type of target and open country background scenes as non-targets when proposing
an RSVP paradigm, which was presented with short video clips [30]. Unlike studies with
a single type of target, Li et al. proposed and improved an RSVP paradigm containing
two types of targets, including a human face and table [31], and various natural scenery
pictures as non-targets. Although the above studies focused on the detection of the salient
(e.g., conspicuous, outstanding, and brilliant) targets (single type or two types) from the
various interference non-targets, the detection of targets under weak hidden conditions
using the RSVP paradigm also has considerable value in medical applications. For med-
ical applications, a higher detection performance to detect a target under weak hidden
conditions will make for a lower missing error rate and the timely diagnosis of diseases.
For other applications, target detection and searching under weak hidden conditions is
helpful in the early identification of indistinct targets (e.g., humans, ground carriers and
vehicles, small UAVs in a concealed environment for aerial images, and manned aircraft in
satellite images).

Fan et al. proposed a paradigm with a slower image presentation speed called the
asynchronous visual evoked paradigm (AVEP) to detect a dim target (airplane) in satellite
images [32]. Considering the unpredictable willingness of the subject, the asynchronous
function was added to detect the dim target with a long period of paradigm presentation
time. Due to the low presentation speed, this study’s paradigm cannot technically be called
an RSVP paradigm. Moreover, “dim” was not defined, either qualitatively or quantitatively.
As a result, the different levels of dim targets were not grouped and not investigated. To
the best of our knowledge, no studies have focused on target detection under different
levels of weak hidden conditions based on the RSVP paradigm using EEG signals. During
the target detection, different levels of weak hidden conditions may lead to different EEG
responses and neural signatures, probably resulting in different detection performances
in practice.
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In this study, we defined the weak hidden conditions quantitatively based on the
RGB color space and then designed RSVP paradigms corresponding to five levels of weak
hidden conditions. Stimuli for a high level of hidden conditions were set with a lower
RGB value to make the stimuli more hidden, i.e., hard to recognize with human visual
perception. Stimuli for a low level of hidden conditions were set with a higher RGB value
to make the stimuli easier to recognize with human visual perception. The degrees of weak
hidden conditions proposed in this study can be perceived qualitatively by human vision.
But, a human cannot quantify the stimuli for different levels of weak hidden conditions. So,
we quantitively defined the weak hidden conditions based on the RGB color space for this
study. For other types of weak hidden conditions (mentioned in Section 4), it is possible that
other quantitative indicators could be used to define these conditions. EEG signals from
62 channels were collected and neural signatures, including amplitude and latency, were
explored for each paradigm under different weak hidden conditions. Then, the optimal
channel sets were determined by the channel selection method for each subject under
each weak hidden condition. Finally, detection performance, including the classification
accuracy and information transfer rate, was evaluated and compared using the linear
discrimination analysis and support vector machine classifiers under five levels of weak
hidden conditions.

The major contributions of this study are as follows:

(1) Five paradigms were proposed, corresponding to five levels of weak hidden condi-
tions, which were quantitatively defined based on the RGB color space;

(2) Neural signatures, including P300 amplitude and latency under the five levels of weak
hidden conditions, were analyzed and compared statistically;

(3) A channel selection method was proposed and different channel sets were investigated
to decode their performance.

Our study can provide a valuable reference and new insights into target detection
under weak hidden conditions based on EEG signals with a rapid serial visual presentation
paradigm. This may also expand the application of the brain–computer interface in the
EEG-based target detection field.

2. Materials and Methods

A block diagram presentation of the proposed experiment is shown in Figure 1. The
details of each part of Figure 1 are described below in Sections 2.1–2.6.
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Figure 1. The block diagram presentation of the proposed experiment.

2.1. Subject Information

Eighteen subjects (11 males and 7 females, 26.11 ± 2.52 years) participated in the
experiment. All subjects had normal or corrected-to-normal vision and had no neural-
related diseases. The study adhered to the principles of and was conducted in accordance
with the 2013 Declaration of Helsinki, and it was approved by the Ethics Committee of
the Academy of Military Medical Sciences (protocol code AF/SC-08/02.309). All subjects
signed the informed consent form after the experiment purpose, the required tasks, and
the possible consequences were explained. Participants were paid for their participation.
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2.2. Experiment Paradigm

We designed experimental paradigms for target detection under five levels of weak
hidden conditions, with half-and-half from the benchmark condition (pure white with R:
255, G: 255, and B: 255) based on RGB color space. The reasons for quantifying the levels
using RGB color space rather than other metrics were as follows: (1) RGB color space is
considered to be the base color space for various applications [33], and it is the most widely
used color model [34] and is closest to a nature scene [35]; (2) although the RGB color space
can be transformed into a grey color space [36], the focal point of this study was not to
investigate the grey stimuli and different RGB colors that can be transformed into the same
grey color space; and (3) a comprehensive metric, e.g., root mean square clutter metric
or probability-of-edge metric [37], was not adopted because similar metric values can be
obtained by different stimuli, which may lead to different recognition performance. All
five experimental paradigms were the same, except for the RGB of the stimuli number
with a pure black background (R: 0, G: 0, B: 0). The RGB value of the stimuli number and
background and the ratio between the value and 255 are shown in Table 1.

Table 1. RGB of the stimuli and the background of the RSVP paradigms under five levels of weak
hidden conditions.

RGB Background
Condition

C1 C2 C3 C4 C5

R 0 255 127 63 31 15
G 0 255 127 63 31 15
B 0 255 127 63 31 15

Ratio with C1 0 1 0.498 0.247 0.122 0.059

The stimulus pictures used for each paradigm under different levels of weak hidden
conditions are shown in Figure 2. In total, five paradigms corresponding to five condi-
tions (C1, C2, C3, C4, and C5) were proposed. C1 was considered to be the benchmark
condition because the stimuli under this condition are most conspicuous compared with
other conditions. Each paradigm included ten numbers from 0 to 9 and a plus sign with
the same RGB value as the numbers. In each trial, after the plus sign was presented for
one second, followed by a 0.5 s gap, each number was presented for 200 milliseconds in
a pseudo-random sequence with no inter-stimulus interval. The pictures had a size of
227 pixels × 302 pixels (approximately 3:4). The experiment included 10 sessions, and each
session consisted of 150 trials (30 trials for each weak hidden condition) with a random
sequence, as shown in Figure 3.
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Figure 3. The experimental protocols.

2.3. Experimental Procedure

After providing signed informed consent prior to the experiment, the subjects sat in
front of a Samsung LED display (19 inches, refresh rate 60 Hz, resolution 1440× 900) with a
distance of approximately 50 cm. Because distance is considered to be an influencing factor,
the subject was asked to keep the distance as fixed as possible during the experiments. The
brightness and contrast ratio of the display was set to the maximum. The experimenter
explained the entire experimental procedure to the subject and carried out experimental
preparations. The impedances between the scalp and the electrodes at each channel position
were adjusted under 10 KΩ. Before the formal experiment, the subjects were instructed
and became familiar with the experimental paradigms. Once the target number (informed
beforehand) appeared, the subjects were asked to react rapidly in their brain. During the
formal experiment, when one session was completed, subjects could ask for a short break
of several minutes to relax their eyes at their discretion.

2.4. EEG Acquisition and Preprocessing

Australian commercial EEG acquisition equipment, the NeuroScan SynAmps2 system
(Compumedics Ltd., Melbourne, Australia), was used to acquire the EEG signals. The
EEG signals were collected with a sampling rate of 1000 Hz and a channel number of 62
according to the 10–10 electrode system. The reference electrode was at the vertex. The
EEG samples corresponding to each stimulus (target stimulus and non-target stimulus)
were segmented from the onset of the stimulus to 1000 milliseconds post-stimulus for each
paradigm. A total of 300 target samples and 2700 non-target samples were collected for
each subject under every condition. The original signals were then band-pass filtered from
0.3 Hz to 20 Hz and down-sampled with a factor of 8.

2.5. Channel Selection

Different channels at different locations provide various brain information, which may
contribute to different levels of recognition performance. Fewer channels will make for
a shorter system setup time and a lower cost, which are helpful for practical use. In this
study, we investigated six different channel sets used for detecting recognition performance.
Channel set 1 consisted of all channels, with a total number of 62. Channel set 2 and channel
set 5 consisted of 32 and 8 channels, according to [38], respectively. Channel set 3 consisted
of 16 channels, according to [39]. Channel set 4 consisted of 8 channels distributed on
the centerline of the brain topography. Channel set 6 consisted of the channels selected
by the further improved forward floating search algorithm using an adaptive principal
component analysis based on our previous study [40]. More narrowly, before each period of
calculating the within-class scatter matrix and the between-class scatter matrix, the current
features were compressed to reduce the dimensionality by an adaptive principal component
analysis to cover more than 99% of the information. We chose the first 6 channels from all
of the selected optimal channel sets. Thus, channel set 6 only consisted of 6 channels for the
different subjects under different conditions. Table 2 shows detailed information regarding
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the six channel sets. Figure 4 shows the channel layouts of different channel sets, with the
used channels marked in the blue disks.

Table 2. Detailed information regarding the six channel sets.

Channel Set Channel Number Channels

1 62 All Channels
2 [38] 32 FP1, FP2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz,

C3, C4, T7, T8, CPz, CP3, CP4, Pz, P3, P4, P7, P8,
POz, PO3, PO4, PO7, PO8, Oz, O1, O2

3 [39] 16 Fz, FC1, FC2, Cz, C3, C4, CP1, CP2, Pz, P3, P4, P7,
P8, Oz, O1, O2

4 8 FPz, Fz, FCz, Cz, CPz, Pz, POz, Oz
5 [38] 8 Fz, Cz, Pz, P3, P4, PO7, PO8, Oz

6 6 Selected channels
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2.6. Classification Algorithms

For each channel set under different conditions, the original features for classifi-
cation can be represented as X ∈ <N×C. N denotes the sample points after the EEG
signals were down-sampled, and C denotes the channel number of the channel set. Af-
ter preprocessing, the original features were compressed, and the feature dimensional-
ity was reduced using principal component analysis. The components with the high-
est P eigenvalues were chosen as feature weights and new features can be presented as
x = [x(1), x(2), . . . , x(i), . . . , x(P)]T . P was adaptively determined by the contribution
to more than 99% of the information of the original features for each subject under each
condition. Then, the linear discrimination analysis (LDA) and support vector machine
(SVM) classifiers were used for training the classification model. The classifier built by LDA
can be represented as

y = wTx (1)

where w represents the projection direction. The threshold ξ was determined by the receiver
of the curve (ROC). If the score y was larger than ξ, the sample was classified into the target
class; otherwise, the sample was classified into the non-target class. The classifier built by
the SVM with radial basis function (RBF) as the kernel function can be represented as

y =
n

∑
i=1

wi exp
(
−g‖xi − x‖2

)
+ b (2)
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where xi is the ith support vector (SV) of the classifier, wi is the weight of the ith SV of the
classifier, n is the number of the SV of the classifier, g is the width of the RBF of the classifier,
and b is the bias of the classifier. We used the LIBSVM software (Version 2.0) library
proposed by Chang and Lin to train the parameters of the SVM classifier [41]. Finally, these
models were evaluated by the test dataset. Furthermore, a 10 × 6-fold cross-validation
strategy was used to eliminate the random distortion effectiveness by grouping samples.

The information transfer rate was calculated according to that in [3] using the follow-
ing equations:

ITR =
60
T

[
log2 N + P log2 P + (1− P) log2

(
1− P
N − 1

)]
(3)

where T denotes the period for issuing one command, N represents the numbers of all
commands, and P represents the recognition accuracy.

3. Results
3.1. ERP Wave Morphology under Five Levels of Weak Hidden Conditions

EEG segments were extracted from the onset of the stimulus to 1000 ms post-stimulus.
Figure 5 shows the ERP wave morphology at channel Fz elicited by targets and non-targets
under five conditions for subject 1, subject 15, and subject 18. Channel Fz was investigated
as the largest P300 amplitude was found at Channel Fz in our previous study [42]. The
horizontal axis represents the time, and the vertical axis represents the amplitude of the
EEG signals. The red line represents the ERP wave morphology corresponding to targets,
and the blue line represents the EEG wave morphology corresponding to non-targets. The
shadow around the lines represents the standard error corresponding to signal waves at
specific time points. From Figure 5, we can see that the ERP was successfully elicited by
targets for the subjects under five conditions, and the ERP wave morphology differed from
the subject, as shown by the red lines. In contrast, no ERP wave morphology was found
for non-targets under these conditions. The amplitude range of the targets differed from
the subject. The amplitude of the ERP of subjects 1, 15, and 18 ranged from −4 µV to 7 µV,
from −6 µV to 7 µV, and from −6 µV to 10 µV, respectively. The P300 amplitude presents
a decreased trend, and the P300 latency presents an extended trend from C1 to C5 for
every subject.
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3.2. P300 Amplitude under Five Levels of Weak Hidden Conditions

In this study, the P300 amplitude was defined as the maximum amplitude from 200 ms
to 900 ms (the time point at which the stimuli emerged was set at 0 ms). This is because
of the specific phenomenon of the maximal positive component being prolonged in the
ERP wave morphology (shown in Figure 5) under these proposed paradigms compared
with the typical P300 wave of the event-related potential [43]. Table 3 shows the ground
average P300 amplitude for all subjects under five conditions. From the table, we can see
that the amplitude varies under five conditions. The averaged amplitudes of all subjects
under five conditions were 8.92 ± 1.24 µV, 8.55 ± 1.27 µV, 8.51 ± 1.32 µV, 8.72 ± 1.33 µV,
and 7.84 ± 1.40 µV. We conducted a paired t-test between benchmark condition C1 and
other conditions to assess the statistically significant differences. Although the averaged
amplitude presents a decreasing trend from C1 to C5, the averaged amplitude decreased sig-
nificantly only under C5, compared with C1. Hereafter, “*” indicates a significant difference
unless noted: “*”, “**”, and “***” represent p < 0.05, p < 0.01, and p < 0.001, respectively.

Table 3. Ground average P300 amplitude (µV) and latency (ms) of all subjects under five levels of
weak hidden conditions.

Condition Amplitude (µV) Latency (ms)

C1 8.92 ± 1.24 582.39 ± 25.02
C2 8.55 ± 1.27 572.44 ± 25.72
C3 8.51 ± 1.32 575.83 ± 23.57
C4 8.72 ± 1.33 595.00 ± 21.15
C5 7.84 ± 1.40 * 643.83 ± 26.16 *

“*” indicates a significant difference between C1 and other conditions: * represents p < 0.05.

3.3. P300 Latency under Five Levels of Weak Hidden Conditions

The P300 latency was defined as the corresponding time point to the P300 amplitude.
Table 3 shows the ground average P300 latency for all subjects under five conditions and
the significant difference between C1 and other conditions. From the table, we can see that
the latency also varies between subjects given a specific condition, similar to the ampli-
tude. The averaged latencies of all subjects under five conditions were 582.39 ± 25.02 ms,
572.44 ± 25.72 ms, 575.83 ± 23.57 ms, 595.00 ± 21.15 ms, and 643.83 ± 26.16 ms. We
conducted a paired t-test between C1 and the other conditions to assess the statistically
significant differences in a similar way to the P300 amplitude. Different from the average
amplitude, the average latency presented a U-shaped trend instead of a monotonical trend,
similar to the P300 amplitude. More narrowly, the average latency shortened from condi-
tion C1 to C2 and extended from C2 to C5. Specifically, the shortest average latencies were
obtained under conditions C2 and C3. Despite the above results for all subjects under five
conditions, the average latency only changed significantly under condition C5, compared
with condition C1.

3.4. Channel Selection under Five Levels of Weak Hidden Conditions

Channel sets were selected to reduce the channel number, system setup cost, and time.
We counted the number of selected channels for all subjects under five conditions, as shown
in Figure 6. From the figure, we can see that although the distribution of the number of
selected channels differed between each condition, the main selected areas were the same.
For each condition, most channels were selected from the parietal lobe of all subjects. Many
channels were also selected from the occipital lobe for condition C1 and the right temporal
lobe for condition C5, which is consistent with the results of previous studies [44,45]. Some
channels were also selected from the left and right motor areas.
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3.5. Performance under Five Levels of Weak Hidden Conditions and Six Channel Sets

Recognition performance was evaluated by the decoding algorithms with different
channel sets for each subject under each condition. Table 4 shows the detection perfor-
mance (mean with standard error) of six channel sets under five conditions by LDA and
SVM classifiers and the significant difference between C1 and other conditions under the
same channel set. From the table, we can see that the decoding performance presents a
decreasing trend from condition C1 to C5 for each set, both for LDA and SVM. However,
the classification accuracy did not decrease by more than 5% from condition C1 to C5 for
each set, using LDA and SVM, as the channel number of the channel set decreased from
62 to 6. Comparable recognition performance between LDA and SVM was obtained. The
best performance was obtained using channels of channel set 1 under condition C1, both
for the LDA and SVM classifiers, with an accuracy of 79.65 ± 2.92% and 78.94 ± 2.83%,
respectively. For the LDA classifier, the worst performance was obtained using the chan-
nels of channel set 6 with an accuracy of 72.62 ± 3.14%, while the worst performance for
the SVM classifier was obtained using the channels of channel set 5 with an accuracy of
73.27 ± 3.14%. The interaction effect between weak hidden condition and channel set was
investigated using a two-way repeated measures ANOVA. The results showed that the
interaction effect between weak hidden condition and channel set was not significant for
either the LDA classifier (F(20, 510) = 0.029, p > 0.05) or SVM classifier (F(20, 510) = 0.018,
p > 0.05).

The information transfer rate is shown in Table 5. From the table, we can see that the
information transfer rate was higher than 50 bits/min for all channel sets under the five
conditions using the LDA and SVM classifiers. The minimum information transfer rate
was 50.07 ± 4.21 bits/min for channel set 6 under condition C5 using the LDA classifier.
The highest information transfer rate was 60.37 ± 4.34 bits/min for channel set 1 under
condition C1 using the LDA classifier. The information transfer rate presented a similar
trend to the classification accuracy.
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Table 4. Classification accuracy (mean ± standard error) for the LDA and SVM classifiers using all
channel sets under five levels of weak hidden conditions (%).

Set
LDA SVM

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

1 79.65
±2.92

78.27
±3.33 *

77.81
±3.13 *

77.66
±3.29 *

74.96
±3.42 ***

78.94
±2.83

78.05
±3.00

77.49
±3.02

78.07
±2.96

75.04
±3.24 **

2 79.24
±2.99

78.62
±3.15

77.02
±3.13 *

77.73
±3.20

74.45
±3.36 ***

78.70
±2.89

78.13
±2.86

77.11
±3.01

77.71
±2.85

74.85
±3.16 **

3 77.82
±2.95

77.56
±3.18

76.21
±3.14

75.05
±3.29 **

73.67
±3.28 **

78.04
±2.81

77.36
±2.83

77.02
±2.92

76.08
±2.96 *

73.81
±3.05 ***

4 78.15
±3.03

77.09
±3.26 *

76.46
±3.16

77.20
±2.99

74.36
±3.32 *

77.30
±2.86

77.07
±2.85

76.54
±2.99

76.94
±2.95

73.82
±3.25 *

5 78.05
±2.98

78.25
±3.23

76.34
±3.16

75.78
±3.20 **

73.41
±3.17 ***

77.73
±2.78

77.02
±2.97

76.59
±3.03

76.20
±2.88 *

73.27
±3.10 ***

6 75.20
±2.80

74.64
±3.28

73.90
±3.19

73.63
±3.15

72.62
±3.14 *

75.56
±2.89

75.54
±2.94

75.12
±3.17

74.64
±2.81

73.35
±3.15 *

*, **, and *** represent p < 0.05, p < 0.01 and p < 0.001, respectively.

Table 5. Information transfer rate (mean ± standard error) for LDA and SVM classifiers using all
channel sets under five levels of weak hidden conditions (bits/min).

Set
LDA SVM

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

1 60.37
±4.34

58.70
±4.78

57.75
±4.57 *

57.78
±4.82 *

53.79
±4.68 ***

59.05
±4.05

57.88
±4.24

57.09
±4.33

57.93
±4.32

53.62
±4.36 ***

2 59.82
±4.44

59.02
±4.57

56.56
±4.54 *

57.76
±4.70

52.96
±4.56 ***

58.75
±4.13

57.84
±4.07

56.49
±4.29

57.26
±4.19

53.27
±4.30 **

3 57.51
±4.26

57.39
±4.53

55.35
±4.55

53.81
±4.64 **

51.73
±4.45 **

57.65
±4.03

56.63
±4.03

56.24
±4.18

54.87
±4.20 *

51.61
±4.06 ***

4 58.12
±4.37

56.77
±4.57 *

55.73
±4.50 *

56.64
±4.34

52.79
±4.54 **

56.59
±4.06

56.21
±4.03

55.64
±4.29

56.18
±4.26

51.90
±4.38 **

5 57.93
±4.34

58.52
±4.61

55.53
±4.51

54.74
±4.51 **

51.22
±4.28 ***

57.15
±4.01

56.25
±4.16

55.73
±4.33

54.97
±4.10 *

50.90
±4.11 ***

6 53.40
±3.94

53.12
±4.47

52.00
±4.46

51.60
±4.47

50.07
±4.21 *

54.04
±4.08

54.05
±4.12

53.76
±4.52

52.62
±4.00

51.14
±4.31 *

*, **, and *** represent p < 0.05, p < 0.01 and p < 0.001, respectively.

A paired t-test was conducted between C1 and the other conditions to assess the
statistically significant differences. The performance changed significantly between C1
and C5 for all channel sets by the LDA and SVM classifiers, while other channel sets
did not. With the fewest channels (i.e., channel set 6) under conditions C1 and C5, the
classification performance changed significantly from 75.20 ± 2.80% to 72.62 ± 3.14% using
the LDA classifier and from 75.56 ± 2.89% to 73.35 ± 3.15% using the SVM classifier; the
classification accuracy reductions were both less than 3%.

Figure 7 shows the violin charts of the classification accuracy and information transfer
rate of channel sets 1 and 6 for all subjects under five conditions. In addition, it shows the
significant difference between channel sets 1 and 6 for all subjects under five conditions
using the LDA and SVM classifiers. From the figure, we can see that although the classi-
fication accuracy and information transfer rate changed significantly between sets 1 and
6 under five conditions, both for the LDA and SVM classifiers, the median accuracy and
information transfer rate decreased slightly.
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4. Discussion

In this study, we defined the weak hidden conditions quantitatively based on the RGB
color space and designed RSVP paradigms corresponding to five levels of weak hidden
conditions. Neural signatures, including P300 latency and amplitude under five levels of
weak hidden conditions, were explored. The optimal channel sets were determined by
the channel selection method for each subject under each weak hidden condition. Then,
detection performance, including classification accuracy and the information transfer rate,
was investigated.

The P300 amplitude presented a decreasing trend from condition C1 to C5, while
the latency first decreased from condition C1 to C2 and then increased from C2 to C5. A
previous study demonstrated that when a subject’s attention is directed away from the task
or stimulus, P300 amplitude decreases [46]. Consequently, a reason for the P300 amplitude
change phenomenon may be that the subject missed the target stimuli in some trials because
of the high presentation speed and increasing fatigue during the experiment. It is likely to
at least be true for some subjects and the ERP was not elicited in some trials. Another reason
may be that it is really the level of a weak hidden condition that significantly influences the
P300 amplitude with a positive correlation, according to the findings of the authors in [47].
This is despite the insignificant results based on the P300 speller developed by Farewell
and Donchin in [48]. For the P300 latency change phenomenon, increasing attention should
intuitively be paid to quickly recognizing the target stimuli from conditions C1 to C5. P300
latency will be prolonged when the categorization of the stimulus becomes more difficult,
and this reflects a longer duration of mental processes [49,50]. For the above results, one
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possible reason may be that increased attention did not add too much value, i.e., it was
easy to recognize the target stimuli from condition C1 to C4, but the difficulty level then
sharply increased, i.e., it was difficult to recognize and categorize the target under condition
C5. Although the target was difficult to recognize at first sight under C5, according to the
subjects’ feedback, the P300 potential was elicited by the target successfully. One possible
reason may be that although the stimuli of the two RSVP paradigms in successive trials
may significantly change, especially from condition C1 to C5 directly, the subjects’ eyes
could quickly become used to the weak hidden condition from the previous trial to the
current trial when the current plus sign occurred. Thus, the subject could perceive the
target stimulus, and the ERP wave was elicited successfully during the stimuli presentation.

The classification performance was investigated for all subjects under five conditions
using LDA and SVM classifiers. The classification performance showed a similar trend with
the P300 amplitude under five conditions for the same channel set and same classifier de-
spite the different trend with the P300 latency. This indicated that a higher P300 amplitude
would lead to better classification performance [51]. The performance did not differ greatly
between LDA and SVM with the same experimental factors (e.g., classification feature,
channel number, and condition). The best performance was observed under condition C1.
For each channel set, although the classification accuracy showed a decreasing trend from
condition C1 to C5, the accuracy reductions were less than 5%. Specifically, the accuracy
reductions were less than 3% for channel set 6 both for LDA and SVM from conditions C1
to C5.

For each condition, the channels from the parietal lobe were selected frequently from
the subject, which reflected the vast difference between the brain patterns in the parietal
lobe elicited by target stimuli and non-target stimuli. Many channels were also selected
from the occipital lobe for condition C1. One possible reason for this phenomenon may
be that the stimuli for condition C1 were the most conspicuous, which the subjects were
sensitive to, and they could easily activate the subjects’ visual area. From channel set 1
to channel set 6, the classification accuracy decreased by less than 5%. Compared with
channel set 1, i.e., the total channels, the classification accuracy only decreased by less than
2% (from 75.04% to 73.35%) with the SVM classifier under condition C5. In contrast, the
channel number decreased by over 90%, which may sharply reduce the system setup time
and cost.

There are some limitations of this study. This study only focused on the weak hidden
conditions related to the grayscale pattern targets. Nevertheless, there are also other types
of weak hidden conditions pertaining to factors such as the target category (e.g., letters,
human faces, human contours, medical images, and aerial-related images), target size,
target shape, target color (e.g., pure or complex), the distance between the subject and the
target, and so on. Targets that are less interesting and those that are a smaller size, a more
similar shape, a more similar color, and at a further distance will result in a higher level
of weak hidden conditions, which is worthwhile to investigate. Furthermore, pure and
monotonous backgrounds were investigated in this study, while complex and cluttered
backgrounds should also be taken into consideration.

Environmental illumination is another factor. In this study, we only experimented in
a room lit by fluorescent lamps to simulate daytime environment conditions. But, in the
experiment setup, we found that the recognizability (human visual perception) of the targets
under weak hidden conditions can be influenced by environmental illumination. The
subjects could hardly recognize the number in conditions C4 and C5 when the fluorescent
lamp was off during the experiment at a distance of 50 cm. High environmental illumination
is helpful for target detection under weak hidden conditions, while low environmental
illumination is not. This difference will probably result in different detection performances.

The classification performance is perhaps not high enough for efficient detection in
practice. Other channel selection methods [39,52], machine learning algorithms, and deep
learning neural networks, such as EEGNet [53], spatial–temporal neural networks [54],
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and other deep neural networks [31,32,55,56], can be explored to improve the recognition
performance for practical applications.

5. Conclusions

In this study, we proposed rapid serial visual presentation (RSVP) paradigms for target
detection corresponding to five levels of weak hidden conditions quantitively based on the
RGB color space. Eighteen subjects participated in the experiment, and neural signatures,
including P300 amplitude and latency, were investigated. Detection performance was eval-
uated under five levels of weak hidden conditions using the linear discrimination analysis
and support vector machine classifiers on different channel sets. The experimental results
showed that, compared with the benchmark condition, (1) the P300 amplitude decreased
and latency was prolonged significantly only under the weakest hidden condition, and
(2) the detection accuracy decreased by less than 2% with more than a 90% reduction in
channel number (62 channels versus 6 channels), determined using the proposed channel
selection method under the weakest hidden condition. Our study can provide new insights
into target detection under weak hidden conditions based on EEG signals with a rapid
serial visual presentation paradigm, and it may expand the application of brain–computer
interfaces in EEG-based target detection areas.

Our future work aims to improve recognition performance using deep learning methods;
explore neural signatures under other types of weak hidden conditions, including different
stimulus sizes, shapes, environmental conditions, and cluttered backgrounds; and explore the
effects of environmental illumination on neural signatures and recognition performance.
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