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Abstract: Neurological disorders (NDs), such as Alzheimer’s disease, have been a threat to human
health all over the world. It is of great importance to diagnose ND through combining artificial
intelligence technology and brain imaging. A graph neural network (GNN) can model and analyze
the brain, imaging from morphology, anatomical structure, function features, and other aspects,
thus becoming one of the best deep learning models in the diagnosis of ND. Some researchers have
investigated the application of GNN in the medical field, but the scope is broad, and its application
to NDs is less frequent and not detailed enough. This review focuses on the research progress of
GNNs in the diagnosis of ND. Firstly, we systematically investigated the GNN framework of ND,
including graph construction, graph convolution, graph pooling, and graph prediction. Secondly, we
investigated common NDs using the GNN diagnostic model in terms of data modality, number of
subjects, and diagnostic accuracy. Thirdly, we discussed some research challenges and future research
directions. The results of this review may be a valuable contribution to the ongoing intersection of
artificial intelligence technology and brain imaging.

Keywords: neurological disorder; deep learning; graph neural network; diagnostic model

1. Introduction

NDs, including Alzheimer’s disease, Parkinson’s disease, etc., are the leading cause
of disability and the second leading cause of death in humans [1–3]. It is important to
explore the disease mechanism and diagnose NDs at an early stage. Currently, various
imaging techniques are used to peer inside the brain, such as magnetic resonance imaging
(MRI), electroencephalogram (EEG), and positron emission computed tomography (PET).
Particularly, artificial intelligence technology combined with neuroimaging has been widely
used because of its high classification accuracy [4]. For example, the large model known
as GPT [5] has broken through the technical boundaries of artificial intelligence, and
has brought changes to many application fields. In the medical field, many researchers
are beginning to apply large models for ND diagnosis, prevention, and treatment [6].
Convolutional Neural Network (CNN) [7] and Long Short Term Memory (LSTM) [8]
have been adopted in many ND studies because of their good capability at extracting the
spatial and temporal features of the brain [9,10]. However, NDs result in alterations in
brain functional and structural connections, as well as local and global connections [11,12],
and traditional deep learning models such as CNN and LSTM are difficult to fit to the
connectivity of the brain. Therefore, researchers have modelled human brains using graph
methods to extract abnormal brain networks, subnetworks, and local connections [13–15].

A GNN combines the advantages of graph and deep learning [16]. In the analysis of
GNN models, the brain is divided into several regions. Each brain region can be represented
by a node, and the connectivity between two nodes can be represented by an edge [17,18].
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By means of spectral convolution or spatial convolution, GNN models aggregate and
transform the features of adjacent nodes on the graph to extract topological information.
During this process, abnormal brain region and connectivity will be extracted. A GNN
model of the brain is shown in Figure 1. For example, T1 weighted imaging (T1-MRI) can
be constructed as a graph of the spatial relationships of brain regions. The GNN is then
calculated on the constructed brain network.
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Figure 1. The schematic diagram of GNN modeling for the brain. (a) Brain MRI: a slice of the
brain T1-MRI. (b) GNN modeling of the brain: Nodes represent brain regions and edges represent
connections between brain regions. The connectivity features are extracted by the relation of adjacent
nodes. Inside the ring is the central node and its first-order neighbors.

Due to the superiority of the GNN, researchers have investigated GNNs in the field of
medical health. Ahmedt-Aristizabal et al. [4] widely investigated the application of GNNs
in disease diagnosis. Bessadok et al. [19] investigated GNNs in neuroscience from the
three dimensions of domain, resolution, and time. Although these investigations provide
comprehensive information, they are not detailed enough on how GNN is used in the
diagnosis of NDs. Our aim is to provide a more detailed survey of the techniques and
applications to help readers quickly understand and get started in this area of research.
Therefore, this review focuses on the combination of a GNN with brain imaging and their
application in the diagnosis of NDs. The scientific contributions of this paper include the
following:

(1) This paper systematically investigated the technological framework of a GNN and
discussed the advantages and disadvantages of different GNN models for different
neuroimaging signals.

(2) This paper investigated the applications of different GNN models in a variety of NDs,
such as Alzheimer’s disease [20], Parkinson’s disease [21]., etc. This may indicate the
potential clinical values of GNN models.

The rest of this review is organized as follows. In Section 2, the computational
framework of the GNN is introduced. In Section 3, the applications of GNNs in a variety
of NDs are investigated. In Section 4, we present some research shortages and challenges,
and summarize future research directions. Finally, we summarize the advances of GNNs
combined with brain imaging in the diagnosis of NDs in Section 5.

2. Framework of a Graph Neural Network for NDs

In this section, we systematically investigated each computing module of a GNN in
the diagnosis of ND. This includes graph construction, graph convolution, graph pooling,
and graph prediction. We would like to provide a detailed overview of GNN technology in
this field. The framework of the GNN for ND is shown in Figure 2. Taking functional MRI
(fMRI) as an example, the blood oxygen level-dependent (BOLD) signals are first extracted
from the fMRI, and then the graph is constructed for GNN calculation. Spatial convolution
and temporal convolution are used to extract spatiotemporal features. Node projection
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and graph pooling implement information filtering. Finally, diagnosis is realized through
graph classification.
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Figure 2. Framework of GNN for ND. The entire framework begins by extracting the BOLD signal
from fMRI. Next, Pearson correlation is used to construct graph. Subsequently, spatial convolution
and temporal convolution are applied to extracted spatiotemporal features. Node weights are
obtained through node projection. Finally, graph pooling is employed to achieve graph embedding
representation, which is then used for classification.

In order to further understand the diagnostic application of GNN in NDs, we briefly
introduce basic knowledge on GNNs. A graph can be represented by G = (V, E), where V
denotes a set of nodes and E denotes a set of edges. Nodes may have attributes, represented
by XV ∈ R|V|×d, and edges may also have attributes, represented by XE ∈ R|E|×b. |V|
denotes the node number and |E| denotes the edge number. d and b are the feature
dimensions of the node attributes and edge attributes, respectively. A node is represented
as vi, and an edge between two nodes is represented as eij =

(
vi, vj

)
. An adjacent node

set is denoted as N(v) = {u ∈ V|(v, u) ∈ E}. Sometimes, the adjacency relationship is
represented by an adjacency matrix A ∈ R|V|×|V| [22].

A GNN is neural model that captures the dependence relationship of topology via
message-passing between the nodes of graphs [16]. Therefore, W is used to represent the
learnable parameters of GNN, H denotes the hidden features obtained via GNN calculation,
and hv represents the hidden features of node v. The activation function is σ(·). k denotes
the index of the layer. The calculation process of GNN is shown in Figure 3.
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2.1. Graph Construction

Before applying the GNN, it is essential to organize the data into graphs. The form of
the graphs can be categorized into two types: population graphs and subject graphs. From
a macro perspective, the population graph treats each subject as a node, with demographic
information and feature similarities between subjects serving as the edges. From a micro
perspective, the subject graph divides the brain into multiple regions. Each region acts as a
node, and the functional and structural information between brain regions is utilized to
establish the edges.

In the construction graph method, there are the Pearson correlation coefficient, partial
correlation coefficient, Euclidean distance, and attention mechanism. Table 1 summarizes
the common methods used to construct the graph.

Table 1. A summary of similarity and dissimilarity methods commonly used in graph construction.

Form Methods Works

Population Graph

Hamming Distance [23]
Correlation Distance [21,24–28]
Euclidean Distance [29–31],
Pearson Correlation [32]
Cosine Similarity [33–36],
Attention Mechanism [37]

Subject Graph

Correlation Distance [38]
Pearson Correlation [39–60]
Partial Correlation [61–64],
Mutual Information [65]
Phase Lag Index [63,66]
Inner Product [67]
Attention Mechanism [68,69]

2.1.1. Population Graph

To describe the relationship between subjects, image (T1-MRI, fMRI, etc.) and non-
image information (age, gender, gene, etc.) are often used to construct the graph.

Rakhimberdina et al. [23] used the hamming distances of age, gender, acquisition
site to construct a population graph. Jiang et al. [30] took functional connection from
fMRI as the node feature and used a Gaussian kernel to compute edges between nodes.
Parisot et al. [24] integrated image features with non-image data. They calculated an
adjacency matrix for image features (functional connection, brain volume) using a Gaus-
sian kernel, and another adjacency matrix was computed for non-image information (age,
gender, acquisition site, etc.) using a thresholding method. These two adjacency matrices
were then combined through the Hadamard product to create the final adjacency ma-
trix. In studies [21,25–28,31,32], researchers have also used the same method to construct
population graphs.

Some studies construct edges based on the cosine similarity of node features. In their
study, Huang et al. [33] utilized image data for extracting node features and non-image
data for constructing edges. They derived edge weights from the non-image data through
the use of a Multilayer Perceptron (MLP) and cosine similarity. Zheng et al. [34] multiplied
the node features with the parameter matrix, and then constructed the edge between
subjects using cosine similarity. Lin et al. [35] employed an encoder to extract site-invariant
information and site-specific information from fMRI data. Subsequently, they utilized the
site-specific information and phenotypic data to construct a population graph using the
cosine similarity function. Pan et al. [36] constructed two population graphs based on
functional image features and phenotypic features, respectively. The functional graph was
constructed using cosine similarity and K-nearest neighbors (KNN), and the phenotypic
graph was constructed adaptively using a pair association encoder [33].
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In addition, Song et al. [37] employed an attention mechanism to integrate the node
features, gender, device information, multicenter information, and disease status of the
training set samples to construct a multi-center attention graph.

2.1.2. Subject Graph

In the subject graph, the brain template is used to divide the brain into regions, with
brain regions as nodes and functional and structural relationships between brain regions
as edges.

Pearson correlation and partial correlation are the most used methods of constructing
graphs. Zhao et al. [46] utilized Pearson correlation to create the adjacency matrix and
adopted partial correlation as the node feature. Nevertheless, the process of constructing
graphs inevitably introduces some noise. These unwanted noises can be effectively filtered
out through threshold processing. In works [39,40], they constructed the graph using
Pearson correlation and retained the positive coefficients as edges. Wang et al. [41] adopted
a Pearson correlation construction graph and took the correlation coefficient greater than
0.4 as the connection. In works [42–45], they established the graph using Pearson corre-
lation and then binarized the edge weights through a thresholding process. Li et al. [61]
constructed their graph using the partial correlation of BOLD signals, and took the top 10%
of positive correlations as edges to ensure that there were no isolated nodes in the graph.

Some studies employ the constructing of graphs as a method for tuning hyperpa-
rameters. Klepl et al. [65] selected eight methods for constructing functional connectivity
from EEGs, including the absolute value of Pearson correlation, mutual information, etc.
Shan et al. [66] applied six methods to construct a graph, which were Pearson correlation,
magnitude-squared coherence, imaginary part of coherence, wavelet coherence, phase lock-
ing value, and the phase lag index. Chang et al. [63] used the partial correlation coefficient
and phase lag index. Li et al. [64] calculated the Pearson correlation, partial correlation,
and geometric distance of the Region of Interest (ROI) as edges.

Given that node features are dynamic signals that change over time, several stud-
ies have explored the extraction of temporal features for the construction of graphs.
Yang et al. [67] used a Gated Recurrent Unit (GRU) [70] to extracted node features from
both the functional and structural network. They further constructed an adaptive adjacency
matrix based on the inner product of these node features. Lee et al. [38] extracted features
from BOLD signals in the brain region through CNN, and then selected the important
nodes through reinforcement learning. The correlation distance calculated the edge weights
between important nodes according to features. Likewise, Mahmood et al. [69] employed
CNN to extract the features from the BOLD signal, and then constructed directed, weighted,
functional connectivity using a multi-head self-attention mechanism.

Various construction methods encompass complementary information, prompting
some studies to simultaneously utilize multiple graphs. Yao et al. [57] employed four
templates, ranging from coarse to fine, to partition brain regions and constructed brain
networks using Pearson correlation and KNN. He et al. [71] extracted the human skeleton
from a video and proceeded to create a local information graph based on the natural
connections between joints. Following this, they designated the neck joint as the central
point and connected other nodes to it to establish a global information graph. Furthermore,
apart from constructing multigraphs in spatial dimensions, it is also feasible to create
multigraphs from time series. Wang et al. [58] divided fMRI into multiple sub-sequences
along the time axis. Pearson correlation was used in each sub-sequence, and the dynamic
functional network was obtained according to proportional threshold.

Most of the studies mentioned above are conducted within the context of homogeneous
graphs. However, in different scenarios, the nodes and edges within the graph can belong
to different types. Yao et al. [60] established heterogeneous graphs comprising two types of
nodes: functional nodes and structural nodes. They employed Pearson correlation to create
edges between functional nodes, fractional anisotropy for the edges between structural
nodes, and physical relationships for the edges connecting functional and structural nodes.
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Across various MRI techniques, it is known that fMRI reveals functional connections,
while diffusion MRI (dMRI) reveals structural connections. Consequently, some researchers
choose to construct graphs using fiber tracking algorithms grounded in Diffusion Tensor
Imaging (DTI). Huang et al. [72] used a deterministic tracking algorithm to calculate DTI
fiber bundles, and took the 10 nearest neighbor nodes to construct the graph. Liu et al. [73]
selected the features of DTI and reconstructed the topology of the structural MRI (sMRI),
and combined it with the Pearson correlation coefficient of fMRI to construct brain connec-
tivity. Subaramya et al. [74] used fiber bundles and brain regions’ volumes to construct a
weighted graph, and then obtained a binarized graph through the sign test.

2.2. Graph Convolution

Once the graph is constructed, features can be extracted through graph convolution.
Graph convolution leverages the graph’s topology to facilitate message-passing between
nodes, enabling the extraction of high-level and abstract features. Graph convolution
can be applied to both population and subject graphs. The GNN diagnostic model for
NDs typically includes fundamental graph convolution techniques, which we will briefly
introduce here.

ChebNet. Since the graph convolution kernel of the spectral network [75] is global and
computationally complex, Defferrard et al. [76] used the Chebyshev polynomial approxi-
mation to calculate graph convolution. The calculation method is shown in Equation (1).

g F x ≈∑K
k=0 wkTk

(∼
L
)

x (1)

where
∼
L = 2

λmax
L− IN is a matrix of scaled eigenvalues. λmax is the largest eigenvalue

of L. wk is the coefficient of Chebyshev. Chebyshev polynomials can be denoted as
Tk(x) = 2xTk−1(x)− Tk−2(x), with T0(x) = 1 and T1(x) = x.

GCN. Kipf et al. [77] simplified the Chebyshev graph convolution using the first order
approximation. The operation can be written as Equation (2).

H =
∼
D
−1/2∼

A
∼
D
−1/2

XW (2)

where
∼
A is the normalized adjacency matrix, and

∼
D is the degree matrix of

∼
A. X is the input

node feature, and W is the learnable parameter matrix. Finally, the extracted hidden feature
is denoted as H.

GraphSAGE. In order to adapt to the evolution of the graphs, Hamilton et al. [78]
proposed an inductive learning framework of adjacent node sampling and aggregation.
Sampling and aggregation are calculated as shown in Equation (3). hk

N(v) = aggk

({
hk−1

u , ∀u ∈ N(v)
})

hk
v = σ

(
Wk·concat

(
hk−1

v , hk
N(v)

)) (3)

aggk denotes aggregation function, such as mean aggregator, pooling aggregator, etc.
GAT. Velickovic et al. [79] introduced the self-attention mechanism into GNN, where

the weight of the edges is adaptively obtained through hidden features. The computing
method is shown in Equation (4).

αuv =
exp(σ(aT[Whu ||Whv ]))

∑
p∈N(v)

exp(σ(aT[Whp||Whv ]))

hk
v = f

(
∑

u∈N(v)
αuvWhk−1

u

) (4)

where αuv is the attention score, and f (·) represents the concatenating or averaging the
multiple attention heads.
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GIN. Inspired by the Weisfeiler-Lehman test, Xu et al. [80] proposed a graph isomor-
phism network and proved that its discriminant and representational ability is equal to the
Weisfeiler-Lehman test. The calculation is shown in Equation (5).

hk
v = MLPk

(1 + εk
)
·hk−1

v + ∑
u∈N(v)

hk−1
u

 (5)

where εk denotes a learnable parameter.
With these foundational graph convolutions, researchers can readily extract features

from brain image data. In some studies, graph convolution serves as a layer within
their models, enabling the extraction of spatial features between brain regions or elec-
trodes [73,81]. In other studies, each brain region or electrode not only exhibits spatial
correlation but also generates temporal signals, such as an EEG and fMRI. To capture
this temporal dynamic information, researchers have introduced the spatial-temporal
GNN [82,83]. Furthermore, various scales and distinct graph construction methods offer
different perspectives for expressing graph information. Consequently, some studies em-
ploy multiple graphs simultaneously and propose the multi-graph GNN model [57,84].
In terms of feature extraction, these GNN models can be categorized into spatial feature
extraction, spatial-temporal feature extraction, and multi-graph feature extraction.

A summary of commonly used graph convolutions in GNN models is provided in
Table 2. For spatial feature extraction, we listed methods based on the graph convolution
architecture above. In the context of spatial-temporal feature extraction, we included two
prevalent methods: a recurrent neural network (RNN) [85] and CNN. The multi-graph
feature extraction can be categorized into two parts: scale and construction methods.
The former employs multiple templates to construct the graph, like AAL116 (Automated
Anatomical Labelling with 116 ROIs) [86] and CC200 (Craddock with 200 ROIs) [87]. The
latter involves utilizing various construction methods, such as Pearson correlation and
mutual information.

Table 2. A summary of graph convolutions commonly used in GNN models.

Feature Extraction Convolution Works

Spatial

ChebNet-based [21,24,26,30,33,55,63,73,88–90]
GCN-based [27,32,35,37,38,44,45,48–50,54,74,81,91–97]
GraphSAGE-based [34,39,98]
GAT-based [47,51,53,60,62,68,99,100]
GIN-based [41,43,64,101]

Spatial-Temporal RNN-based [52,59,83,102,103]
CNN-based [66,71,82,104]

Multi-Graph Scale [57,105]
Construction [56,84]

2.2.1. Spatial Feature Extraction
ChebNet-Based

ChebNet [76] is the earliest GNN model widely used by researchers. Numerous studies
have built upon ChebNet to enhance its capabilities and apply it to the diagnosis of NDs.
In the context of population graphs, Parisot et al. [24] and Liu et al. [26] extracted the image
features from subjects as node features, and applied the Chebyshev graph convolution on
the population graph to predict disease in a semi-supervised manner. For subject graphs,
Liu et al. [73] and Qin et al. [55] utilized the Pearson correlation matrix as node features,
and employed two Chebyshev graph convolutions followed by a fully connected layer to
predict NDs.
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GCN-Based

A GCN [77] further simplifies the calculation process of ChebNet and is the most used
model in the diagnosis of NDs. Within population graphs, Peng et al. [27] employed a
GCN model, utilizing the Pearson correlation matrix of BOLD signals as subject features. It
is worth noting that most current GNN models tend to be shallow. However, Cao et al. [32]
introduced a 16-layer GCN model designed to extract high-level features effectively. On the
other hand, in their subject graph, Ma et al. [96] used the Pearson correlation of the BOLD
signal as a node feature and the GCN to extract graph-level features, concatenating them
with phenotypic information for prediction. Qin et al. [44] and Gu et al. [45] employed
graph theory methods for node feature extraction. Meanwhile, Wagh et al. [81] extracted
features from EEG signals in different frequency bands as initial node features.

GraphSAGE-Based

In the real-world application scenario, the structure of the graph often undergoes
changes. For instance, in the GNN diagnostic model based on a population graph, when a
new patient requires diagnosis, that new patient is incorporated into the original population
graph, thus altering its structure. Traditional models like GCN struggle to adapt to such
graph evolution. To address this issue, the GraphSAGE [78] was introduced and applied in
the context of ND diagnosis. Within population graphs, Zheng et al. [34] used the Graph-
SAGE to partition the graph into mini-batches, avoiding the limitation of calculating on
the whole graph and enabling inductive learning on the population graph. Song et al. [98]
aggregated node information based on GraphSAGE and modified the activation function.
They leveraged risk factors, cognitive test scores, and MRI as features for subject nodes. In
subject graphs, Zhu et al. [39] used GraphSAGE for spatial features extraction, while using
the Pearson correlation and coordinate position as node features.

GAT-Based

Due to the effectiveness of the attention mechanism, researchers have integrated it
into GNN, also known as GAT [79]. In the diagnosis of ND, GAT stands out for its ability
to adaptively adjust edge weights during the model’s training iterations. Given its prowess
in handling weight adaptation, GAT is frequently employed to explore brain connectivity.
Safai et al. [100] used GAT to interpret brain connections while extracting structural and
functional features from T1-MRI, dMRI, fMRI. Yang et al. [51] and Li et al. [62] used
Pearson correlations as node features and GAT to predict ND. Similarly, Yang et al. [47]
extracted seven features (number of vertices, surface area, etc.) from sMRI and four features
(mean, standard, etc.) from fMRI for each node in the graph. Additionally, Chen et al. [68]
incorporated skip connections into GAT.

GIN-Based

GIN [80] was proposed to explore the power of the GNN. Presently, most GIN-based
diagnostic models for ND operate on subject graphs. Wang et al. [41] used GIN as the main
structure of their model and applied feature alignment techniques to mitigate domain shift
between the source and target domains. Tao et al. [101] utilized the GIN to concatenate
node features from each layer, resulting in the formation of a graph embedding.

Others

In addition to the commonly used basic models above, several studies have explored
different models. In their population graphs, Rakhimberdina et al. [23] utilized functional
connections as node features, while phenotypic features were employed to construct edge
weights. They implemented a simple graph convolution method [106], which reduced the
computational time of the model. Yang et al. [31] adopted a spectral graph attention net-
work [107] and bilinear aggregator [108] to extract spatial features. Pan et al. [36] employed
a multi-scale convolution module based on a snowball GCN [109]. In terms of subject
graphs, Wang et al. [40] introduced a GNN model based on Transformer Convolution [110].
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Zhao et al. [46] proposed a dynamic graph convolution approach based on EdgeConv [111],
enabling the simultaneous aggregation of 1-hop and 2-hop features. Li et al. [61] designed
an ROI-aware graph convolutional layer using R-GCN [112] to incorporate both the topo-
logical and functional information of the brain network. Mahmood et al. [69] employed a
GNN model based on the GRU aggregation function [113].

2.2.2. Spatial-Temporal Feature Extraction
RNN-Based

Most RNN-based models [52,59,83,102] employ a sliding window to partition time
series data into multiple segments along the time axis, and use graph convolution to extract
spatial features, and thus, temporal information is learned through LSTM. For instance,
Xing et al. [83] used a sliding window approach to construct their dynamic functional
networks. Each functional network served as the graph structure, with the brain ROI
volume obtained from T1-MRI used as the node features. These features were input into at
each time step of the LSTM. Alternatively, some methods divide the time steps based on
the subject’s physical examination schedule. Kim et al. [103] used T1-MRI at multiple time
points. They selected GCN as the spatial convolution model and inputted these spatial
features into the LSTM to capture temporal information.

CNN-Based

Differing from the temporal models based on RNNs, temporal models based on CNNs
do not adhere to strict time steps. Yao et al. [104] used sliding windows to divide fMRI
into multiple segments. Within each segment, they utilized graph convolution to learn
the spatial relationship between ROIs. Subsequently, a CNN was employed to capture the
temporal relationships between adjacent segments. Zhdanov et al. [82] used a CNN to
extract EEG temporal features, followed by the utilization of a high-order GNN [114] to
extract spatial features. Shan et al. [66] introduced a spatial-temporal GNN model, where
each spatial-temporal block comprised two temporal convolution layers and one spatial
convolution layer. He et al. [71] extracted the trajectory, velocity, and acceleration features
from a video of human motion and input them into a two-branch ST-GCN [115] to extract
global and local features, respectively.

2.2.3. Multi-Graph Feature Extraction

Graphs derived from different scales or construction methods represent the informa-
tion from varying perspectives. Consequently, multiple graphs require multiple graph
convolution operations to be computed. In the case of multi-scale graphs, Yao et al. [105]
used three brain templates to establish multi-scale functional connections. Each template
corresponded to a branch of the graph convolution, facilitating the learning of the brain
networks at different scales. Similarly, Yao et al. [57] used four templates to create four
graphs, each corresponding to a graph convolutional network. For multi-construction
graphs, Wu et al. [84] generated three graphs using a phase locking value, phase lag in-
dex and Pearson correlation coefficient, respectively. They subsequently utilized spatial-
temporal graph convolution to extract EEG features in three branches. In another approach,
Yu et al. [56] constructed four graphs based on node features using KNN and percentage
thresholding methods. Then, GAT was employed to extract spatial features from these
four graphs.

2.3. Graph Pooling

Following feature extraction through graph convolution, graph pooling is employed
to select the most distinctive and robust features. This process aims to obtain the most
informative graph embedding from the node embeddings. While some studies refer to
the transition from node embedding to graph embedding as the readout layer or func-
tion [53,116,117], there exists no distinct boundary between the graph pooling layer and
graph readout layer. Therefore, this review consistently refers to them as graph pooling.
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Commonly utilized pooling methods include global pooling and hierarchical pooling. A
summary of frequently used graph pooling methods is presented in Table 3.

Table 3. A summary of graph pooling commonly used in GNN models.

Pooling Methods Works

Global Pooling
Average Pooling [44,55,62,71,81,99,103]
Maximum Pooling [25,38,46,65,69,74,82]
Summation Pooling [21,28,118]

Hierarchical Pooling

TopK Pooling [37,43,61,63,64,119]
SAG Pooling [95,96,120]
Diff Pooling [39,47,49]
Eigen Pooling [30,54]

Global pooling methods directly transform node embeddings into graph embeddings.
For example, the calculation of summation pooling [28] is shown in Equation (6).

H f = ∑l wl ⊙Hl (6)

where, Hl is the hidden feature output of each graph convolutional layer, and wl is the
adaptive weight of each layer. H f represents the final feature, which can be entered into
the fully connected layer and the softmax layer for classification.

Hierarchical pooling gradually reduces the size of the graph layer by layer until the
node embeddings ultimately become the graph embeddings. This is one type of hierarchical
pooling [61], as depicted in Equation (7). Initially, node features are scored and normalized
through vector mapping to obtain sl . Then, the top k nodes with the highest scores, as
determined by sl , are selected. Finally, weights are assigned to the node features, resulting
in hidden features with reduced dimensionality.

sl =
∼
H

l+1
Wl/

∣∣∣∣∣∣∣∣Wl
∣∣∣∣|2

∼
s

l
=

sl−µ(sl)
σ(sl)

i = topk
(
∼
s

l
, k
)

Hl+1 =

(∼
H

l+1 ⊙
sigmoid

(
∼
s

l
)
)i, :

(7)

2.3.1. Global Pooling

These methods encompass average pooling, maximum pooling, and summation pool-
ing. Graph average pooling involves calculating the average of node embeddings along a
specific dimension to derive a graph embedding. Wagh et al. [81] conducted the average
pooling of node embeddings following graph convolution to acquire a graph level repre-
sentation. Similar approaches are observed in other works, such as [44,55,62,71,99,103].

Graph maximum pooling involves selecting the maximum values from node embed-
dings along a specific dimension, as demonstrated in works like [65,82]. Additionally,
some studies combine maximum pooling with other pooling methods. For example,
Lee et al. [38] concatenated the output of summation pooling and maximum pooling to
form a graph embedding. Zhao et al. [46] obtained the representation of the whole graph by
concatenating the mean and maximum value of node embeddings. Kazi et al. [25] utilized
both concatenation and maximum pooling to merge the output of each graph convolution.
Subaramya et al. [74] sorted features and extracted significant features with maximum
pooling. Mahmood et al. [69] simultaneously used maximum pooling, average pooling,
and attention-based pooling [121].
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Graph summation pooling is the summing of node embeddings, such as [118]. How-
ever, simple graph average and summation pooling may not effectively emphasize crucial
node features. Consequently, Kazi et al. [21] employed a weighted summation method
based on attention scores to combine each modal feature and generate a representation
vector for each subject. Zhang et al. [28] fused the output from each graph convolutional
layer using a learnable weighted summation method to produce the final embedding.

2.3.2. Hierarchical Pooling

The aforementioned pooling methods have the potential to introduce noise from less
relevant brain regions or overlook the community characteristics of the brain. In contrast,
hierarchical pooling progressively reduces the number of nodes layer by layer, which
can help eliminate noise disturbance while preserving community attributes. Among the
frequently utilized types of hierarchical pooling are TopK pooling [122], SAG pooling [123],
and Diff pooling [124].

In studies such as [43,63,119], TopK pooling was used to coarsen the graph. Li et al. [61]
used two layers of hierarchical pooling based on TopK pooling, with each reducing the
number of nodes by half. The remaining node embeddings take the mean and maximum
pooling as the graph-level representation. Likewise, Li et al. [64] utilized TopK pooling
and calculated the mean and maximum values of node embeddings to derive a graph
representation. Song et al. [37] defined the similarity matrix and calculated the similarity
score for each class, and then carried out pooling calculation according to the similarity
score and top-K selection.

To solve the problems of isolated nodes and information loss existing in the traditional
TopK pooling, Chen at al. [120] proposed a SAG pooling method, performing pooling
calculations on both local and global graphs. Ma et al. [96] and Zhang et al. [95] also
adopted SAG pooling to reduce the number of nodes in their respective studies.

Given the community properties inherent in brain networks, Yang et al. [47] and
Mei et al. [49] employed the Diff pooling method to reduce the number of nodes while
preserving subnetworks. Zhu et al. [39] proposed a pooling method including three scales:
the global scale, community scale [124], and ROI scale [122]. These scales were utilized to
capture the topology of functional networks at multiple levels.

Furthermore, various other graph pooling methods exist. Jiang et al. [30] used Eigen
pooling [125] to obtain subgraph features, and then used global average pooling to obtain
graph-level features. Kumar et al. [54] followed a similar approach to Jiang et al. [30].
Kong et al. [59] conducted pooling across three scales of brain parcellations.

2.4. Graph Prediction

Following feature extraction via graph convolution and feature selection through
graph pooling, we obtain node embeddings or graph embeddings. These embeddings
serve as the foundation for making predictions at both the node and the whole-graph
levels. For node-level predictions, the majority of studies use the population graph for node
prediction, because each node on the population graph represents a subject. For graph-level
prediction, most studies use the subject graph for graph prediction, since the subject graph
extracts features from all brain regions or electrodes to form the representation of subject.

Given the node embedding or graph embedding obtained via graph convolution and
graph pooling, we cloud train the GNN model from the perspective of the population graph
and subject graph, respectively. Ultimately, this allows us to achieve the goal of graph
prediction. Taking the most commonly used cross-entropy loss function as an example, the
loss functions of node classification and whole graph classification are shown in Equations
(8) and (9), respectively. Y represents the one-hot label. Feature H passes through the fully
connected layer and softmax to obtain the final prediction probability Z. C is the number
of categories.

Lnode = −∑p∈YL ∑C
c=1 Ypclog

(
Zpc
)

(8)
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Lgraph = −∑C
c=1 Yclog(Zc) (9)

In the loss of node classification, YL is the set of node indexes that have subject labels.
In other words, the model is trained in a semi-supervised manner, and the labeled nodes are
used to update the model parameters. The whole graph classification loss is a conventional
cross-entropy.

In addition to node classification and graph classification, we further divide the types
of supervision to include supervised learning, semi-supervised learning, and unsupervised
learning. A summary of the graph prediction commonly used in GNN models is shown in
Table 4.

Table 4. A summary of graph prediction level in GNN models.

Prediction Level Supervision Type Works

Node Classification
Supervised Learning [98]
Semi-supervised Learning [24,26,32–34,36]
Unsupervised Learning [27,29,88]

Graph Classification
Supervised Learning [38,45,48,52,73,89]
Semi-supervised Learning [50]
Unsupervised Learning [41,43]

2.4.1. Node Classification

Many node classification studies rely on semi-supervised learning, where both the
training set and the test set samples are treated as nodes within the graph. During the
training phase, only the node labels for the training set are provided, while the labels
for the test set remain unknown. For instance, Parisot et al. [24] conducted node feature
extraction on the population graph using graph convolution and employed softmax for
classification. Cao et al. [32] proposed a deep GNN model to extract advanced node
features and introduced a residual structure to avoid gradient vanishing or explosion. They
employed cross-entropy to supervise the nodes within the training set. In order to avoid
the inconvenience caused by transductive learning on the graph, Song et al. [98] proposed
a sampling strategy based on meta-learning. This strategy involved creating a subgraph
through sampling from the population graph, effectively transforming semi-supervised
learning into supervised learning. Additionally, there are unsupervised learning methods
available for node-level classification. These methods leverage unsupervised learning to
extract additional information, thereby enhancing the model’s generalization performance.
Peng et al. [27] adopted self-supervised learning to extract the features of the fMRI data
itself. Wang et al. [29] utilized the contrastive learning method to ensure the features from
the same subjects were close to each other, while those from different subjects were distant.

2.4.2. Graph Classification

In the context of graph-level supervised learning, Shan et al. [66] flattened all node
features following the convolution calculations. Subsequently, they employed a fully
connected layer for classification. Lee et al. [38] used an end-to-end approach to optimize
the network; a supervised learning-optimized temporal embedding network, regional
relation representation network, and classifier. And reinforcement learning optimized the
ROI selection network. Finally, individual networks were classified. Zhu et al. [117] used
contrastive learning to combine structural and functional information to form a graph-level
embedding, and employed both cross-entropy and contrastive loss to jointly optimize the
model. Li et al. [62] utilized an MLP as a classifier, combined with cross-entropy loss,
distance loss, and group-level consistency loss, to classify the subject graph. Yao et al. [57]
implemented a mutual learning strategy based on KL divergence to fuse four graph
convolution branches. For semi-supervised and unsupervised learning, Kong et al. [50]
made use of prior information from labeled samples through semi-supervised learning.
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Wang et al. [41] proposed a domain-adaptive approach based on the feature alignment
strategy for ND classification. Zhao et al. [43] pre-trained an encoder via self-supervision,
and subsequently conducted ND classification through an MLP.

2.4.3. Explainability and Interpretability

The model’s explainability and interpretability play a crucial role in extracting biomark-
ers and investigating important brain regions and connections in the brain. GNN-based
ND diagnosis primarily leverages the attention mechanism, class activation mapping
(CAM) [126,127], and pooling score.

For the attention mechanism, Zhang et al. [95] utilized fMRI data for classifying
subjective cognitive decline via the GCN model. They employed the attention mechanism
to identify important brain regions. Wang et al. [40] designed a graph convolution model
based on the attention mechanism for ND diagnosis and the extraction of image biomarkers.
Additionally, they conducted an analysis of the correlation between image biomarkers and
genes. Zhang et al. [28] proposed the local-to-global GNN. They modeled a local graph
based on individual-level functional connection and a global graph based on population-
level non-image information to capture both local and global features. Significant brain
regions were extracted through self-attention scores.

In the context of CAM methods, Lei et al. [128] employed a GNN model for ND
diagnosis and identified salient brain regions using CAM. They also used ComBat [129]
to mitigate cross-site effects. Qin et al. [55] validated the classification results of a graph
convolution model using large-scale and multi-site data. They extracted significant brain
regions in conjunction with CAM and calculated metrics such as degree, betweenness, and
efficiency for these salient brain regions. Zhou et al. [92] proposed an interpretable method
based on GradCAM [130] to find salient brain regions and classify NDs through a GCN
model combined with multi-modal data.

During the graph dimensionality reduction process, pooling scores serve as indicators
of node importance, and some studies employ these scores as biomarkers. For instance,
Li et al. [61] proposed the BrainGNN model, incorporating ROI-aware graph convolutional
layers and the ROI-selection pooling layers. They made modifications to TopK pooling and
used the projection of node embeddings as the scores of salient brain regions. Zhu et al. [39]
proposed a GNN model based on triple pooling, aimed at learning multi-scale topologies
within functional networks. They employed various pooling methods to extract significant
brain regions as biomarkers.

Other explainability and interpretability methods used shared weights [131] and re-
inforcement learning [38]. Cui et al. [131] proposed an interpretable GNN model called
IBGNN, which achieved the extraction of significant brain regions and important connec-
tions at the group level through weight sharing. Additionally, Cui et al. [118] proposed the
BrainNNExplainer model, building upon the BrainNN [117] framework, and employed
a shared mask as an interpretation generator to highlight the meaningful connectivity
within disease-specific brain networks. Lee et al. [38] combined reinforcement learning
with a GNN to select individualized important nodes. Gu et al. [45] utilized a GCN to
assess the impact of node removal on experimental results, aiding in the identification of
important nodes.

3. Graph Neural Network Application in ND Diagnosis

In this section, we broadly investigated common NDs diagnosed using a GNN. At the
same time, we investigated the data modality, number of subjects, and diagnostic accuracy,
etc. A summary of the GNN diagnosis of NDs as shown in Table 5. We provided more
details in the Appendix A. The diagnostic information of AD, PD, ASD, SZ, MDD, BP, EP
and ADHD can be obtained in Tables A1–A8 respectively.
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Table 5. Summary of GNN diagnosis of NDs.

Disease Dataset Modality Number of Subjects ACC Works

AD
ADNI [132], OASIS [133], TADPOLE [134],
Blackburn et al. [135], In-house

EEG 39–40 91.1–92.0% [65,66]

T1-MRI 2442 85.8% [136]

dMRI 162–367 86.0–97% [57,74]

fMRI 91–1326 73.37–99.16% [38,44,45,49,54,137,138]

Multimodal 114–1615 75.6–96.0% [21,25,26,28,30,31,33,34,37,67,83,91,
92,98,139–141]

PD PPMI [142], Xuanwu [143], Parkinson Speech [144],
In-house

dMRI 194–754 79.82–95.5% [72,131]

Video 191 84.1% [71]

Multimodal 68–324 72.8–94.6% [21,29,67,99,100]

ASD Biopoint Autism Study Dataset [145], ABIDE [146],
In-house

EEG 96 93.78% [93]

fMRI 118–1112 66.03–79.8% [39,40,48,51–53,58,61,62,64,102]

Multimodal 866–1029 63.7–89.77% [23–25,27,28,30,32–36,68,91,96,140]

SZ COBRE 1, CHUV [147], In-house

EEG 81 61% [82]

fMRI 125–1412 85.8–90.48% [56,128]

Multimodal 54–145 80.6–98.3% [23,63,67]

MDD
MODMA [148], REST-meta-MDD [149],
DAIC-WOZ [150], In-house

EEG 53 84.91% [120]

fMRI 84–2361 63.6–93% [42,43,50,55,58,59,104,151]

Multimodal 226–533 89.13–99.24% [36,152]

BP Cao et al. [153], In-house

fMRI 97 75.56% [118]

dMRI 97 76.33% [131]

Multimodal 97–106 73.64–82% [47,117]

EP TUH [154], CHB-MIT [155], Max Planck Institute
Leipzig Mind-Brain-Body [156], Freiburg iEEG [157] EEG 9–6746 85–96.2% [81,90,94,101,158]

ADHD ADHD-200 [159], In-house
fMRI 520–627 67.00–72.0% [46,53,57,88]

Multimodal 187–714 70.1–74.35% [23,60]
1 COBRE: The Center for Biomedical Research Excellence, http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html (accessed on 1 September 2023).

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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The feature extraction of the ND diagnosis is shown in Figure 4. We can observe
from the figure that most research is on extracting spatial features, while the research on
extracting multi-graph features is less prevalent. For the models of feature extraction,
ChebNet and GCN are the most researched, which were the first proposed. The accuracy of
the ND diagnosis is shown in Figure 5. As can be seen from the figure, the mean accuracy
of AD, PD, ASD, SZ, MDD, BP, EP, and ADHD diagnosis is about 87%, 85%, 75%, 85%, 81%,
77%, 92%, and 71%, respectively.
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3.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease that destroys
memory and cognition [160]. A GNN can be used to classify subjects into healthy control
(HC), mild cognitive impairment (MCI), and AD.

In the studies of diagnosis using unimodal data, Mei et al. [49] proposed a hierarchical
GNN model for MCI diagnosis based on fMRI. They implemented limited messaging across
different hierarchical levels to prevent over-smoothing and employed clustering-based
hierarchical pooling to extract graph representations. Wang et al. [137] sampled fMRI in
adjacent spaces and adjacent times to learn the spatial-temporal features. In addition to
using MRI data, Klepl et al. [65] used EEG data to classify AD patients. They employed
eight functional connectivity measures to estimate the brain graph. And in work [66],
the spatial-temporal GCN could jointly learn cross-channel topological information and
channel-specific temporal information.

In the studies of diagnosis using multimodal data, Choi et al. [139] proposed an
adaptive scale aggregation of adjacent node features to diagnose AD based on dMRI and
PET. More studies combined image and non-image data, Xing et al. [83] took demographic
information prediction as the auxiliary task and used T1-MRI and fMRI to predict MCI.
Jiang et al. [30] developed a hierarchical GCN model that combined individual brain
networks and global population networks to better learn graph embedding. Kazi et al. [25]
presented the InceptionGCN model based on multi-kernel graph convolution for AD
classification. This multi-kernel graph convolution approach was designed to capture
graph structural heterogeneity. Liu et al. [26] extracted features such as gray matter volume
and shortest path length from subjects using T1-MRI and fMRI, and they employed a
multi-task selection method to obtain effective features for MCI diagnosis. Song et al. [37]
integrated fMRI and dMRI through a multi-center and multi-channel pooling for early
AD diagnosis. Zheng et al. [34] proposed a multi-modal graph learning framework that
incorporated a modality-aware representation learning module to extract multi-modal
correlation and complementary information. Yang et al. [31] introduced a multimodal
adaptive fusion graph network, consisting of a spectral graph attention module, bilinear
aggregation module, and adaptive fusion module.

Other studies have focused on predicting the conversion of MCI to AD [24,28,33,34,
98,103,136]. Wee et al. [136] employed the Chebyshev graph convolution to predict MCI
conversion outcomes. Huang et al. [33] constructed a population graph based on MRI, PET,
and non-image information and made predictions. Song et al. [98] used meta-learning to
address the challenge of inductive learning on the population graph. They achieved this by
constructing subgraph and aggregation node information, effectively transferring known
node information to the nodes being predicted. Kim et al. [103] proposed a temporal GNN
model for the prognosis of MCI and utilized GNNExplainer [161] to extract important
brain regions.

3.2. Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disease that presents with motor and
non-motor symptoms, including tremor, sleep disturbances, and dementia [162].

In the studies involving diagnosis using unimodal data, Huang et al. [72] proposed a
multi-task graph representation learning framework based on node clustering. The model
not only diagnosed early PD, but also output clinical scores. In addition to using medical
imaging data, He et al. [71] introduced an asymmetric dual-branch spatiotemporal graph
convolutional network. This network was designed to learn global and local information
from a human skeleton video to predict PD.

In the studies focusing on multimodal data, Zhang et al. [99] proposed a classification
model that facilitated cross-modal learning between structural and functional networks
for PD diagnosis. The loss function employed not only cross-entropy, but also the local
and global decoding loss of edge reconstruction. Safai et al. [100] extracted multimodal
features from T1-MRI, dMRI, and fMRI, and used GAT to diagnose PD. Kazi et al. [21] used
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non-image data to construct multiple graphs. The GCN model was then employed to learn
the topological relationship within each graph. Additionally, they utilized an LSTM-based
attention mechanism to fuse multimodal information.

3.3. Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
social communication deficits and repetitive behaviors [163].

In the studies focusing on the use of unimodal data for diagnosis, fMRI is the most
commonly employed modality. Ktena et al. [89] introduced metric learning within a
Siamese GCN to learn the graph similarity. They also introduced a constrained variance
loss function to enhance the model’s ability to predict ASD. Li et al. [61] proposed the
BrainGNN model in which they designed the ROI-aware graph convolutional layers and the
ROI-selection pooling layers. To enhance ROI selection and align individual-level patterns
with group-level patterns, they proposed three regularization terms: unit loss, TopK pooling
loss, and group-level consistency loss. Noman et al. [102] proposed a graph autoencoder to
learn the dynamic brain network. Cao et al. [52] developed a graph structure-aware model
for learning the dynamic brain network. They split fMRI into multiple segments using a
sliding window and coarsened the graph through graph clustering. Cao et al. [48] proposed
a three-stage GNN-based framework for ASD diagnosis. The framework included graph
structure learning, graph generation learning, and graph embedding learning.

In the studies of diagnosis using multimodal data, Chen et al. [68] introduced a graph
attention neural network that leveraged adversarial learning, utilizing both T1-MRI and
fMRI. Lin et al. [35] constructed a robust population graph and employed a message-
passing approach to eliminate noise and adapt to heterogeneous data from multiple sites.
Cao et al. [32] proposed a 16-layer GCN model for the extraction of high-level features.
In order to avoid gradient vanishing, over-fitting, and over-smoothing, they integrated
ResNet [164] and DropEdge [165] strategies into the model.

3.4. Schizophrenia

Schizophrenia (SZ) is a neurodevelopmental disorder characterized by paranoid delu-
sions and auditory hallucinations [166].

In studies involving diagnosis using unimodal data, Yu et al. [56] introduced a multi-
graph attention graph convolutional network and bilinear convolution network, and used
fMRI to diagnose SZ. Mahmood et al. [69] employed multi-head self-attention to learn
functional connections. Zhdanov et al. [82] proposed a spatial-temporal graph convolution
model based on a high-order GNN [114]. The GNNExplainer [161] was used to calculate
the importance score for each node, each edge, and each time point.

In the studies on diagnosis using multimodal data, Chang et al. [63] predicted first-
episode SZ, chronic SZ, and HC based on EEG and demographic information. Yang
et al. [67] used GRU to extract node features from functional and structural networks. They
constructed an adjacency matrix based on the inner product of these node features and
applied bilateral graph convolution for the diagnosis of SZ.

3.5. Major Depressive Disorder

Major depressive disorder (MDD) is characterized by sadness or irritability, accompa-
nied by psychophysiological changes such as sleep disturbance, loss of ability to enjoy life
at work and with friends, crying, and suicidal thoughts [167].

The diagnosis of MDD mainly uses EEG and fMRI; Kong et al. [59] proposed a spa-
tiotemporal graph convolutional network for MMD diagnosis. They constructed a dynamic
functional connection matrix using a sliding window, applied spatial graph attention con-
volution to learn important brain regions, and obtained the graph representation through
hierarchical pooling. Finally, the temporal fusion module learned the dependence of
multiple time steps based on fMRI. Wang et al. [58] employed the topological features
of brain regions through an attention-enhanced graph convolutional network based on
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Transformer [168]. Kong et al. [50] proposed a multi-stage graph fusion model based on
the functional connectivity between gray matter and white matter. In studies involving
EEG data, Chen et al. [120] proposed a self-attention graph pooling model, with the loss
function incorporating both the clinical scale and ground-truth as the supervision item.

In addition, there are multimodal studies; Pan et al. [36] proposed a comprehensive
GNN model that combines functional image features and phenotypic features for MDD
diagnosis. Chen et al. [152] presented a modal-shared modal-specific GNN, which aimed
to capture the heterogeneity or homogeneity within multimodal data and explore potential
relationships between subjects. The model was verified using EEG and audio data.

3.6. Bipolar Disorder

Bipolar disorder (BP) is a recurrent chronic disorder characterized by mood and energy
fluctuations. It leads to cognitive and functional impairments and increases mortality,
especially by suicide [169].

Yang et al. [47] combined T1-MRI and fMRI to classify BP through a cerebral cortex
analysis method based on GAT. Zhu et al. [117] proposed a BrainNN method that fused
fMRI and dMRI using contrastive learning and aggregated node features via MLP. To learn
the potential correlation information of their multi-view graph, Zhao et al. [170] introduced
a multi-view graph representation learning framework. Within this framework, a bridge
module utilized a tensor decomposition algorithm to extract latent correlation information
from multiple views.

3.7. Epilepsy

Epilepsy (EP) is one of the most common brain conditions, characterized by a distur-
bance of electrical activity, as well as repeated and unpredictable seizures [171].

Most epilepsy diagnosis studies use EEG data. Li et al. [158] proposed a structure-
generated GNN model for learning the spatial-temporal dynamic features of EEG signals.
Tao et al. [101] constructed dynamic brain networks from EEG and used a GIN model to
predict seizure. Zeng et al. [94] presented a hierarchy GNN combined with tree classification
for epileptic detection. In addition, Dissanayake et al. [172] utilized the individualized
graph to predict seizures one hour before they happened based on the CHB-MIT [155] and
Siena EEG [173] datasets.

3.8. Attention Deficit Hyperactivity Disorder

Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous and multifac-
torial disorder characterized by behavioral symptoms of inattention, hyperactivity, and
impulsivity [174].

In studies using fMRI data, Ji et al. [53] proposed a hypergraph attention network to
learn higher-order structural information and diagnose ADHD. Yao et al. [57] introduced a
multi-scale graph convolution model, which used triplet loss to learn similarities among
subjects and mutual learning strategies to capture the complementary information of
different scale graphs. Zhao et al. [46] proposed a dynamic GNN that simultaneously
aggregated the features of first-order and second-order neighborhood nodes. In studies
involving multimodal data, Rakhimberdina et al. [23] leveraged phenotypic information
and fMRI data to construct a population graph and employed a simple graph convolution
model for ADHD diagnosis. Yao et al. [60] applied a heterogeneous graph network to
diagnose ADHD.

4. Challenges and Outlook

In this section, we summarize the current research challenges and future research
directions for GNN models, including graph representation, individual heterogeneity, small
sample sizes, domain generalization, and multimodality.
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4.1. Graph Representation

The graph representation affects the feature extraction of GNN models. Each graph
representation method [175–178] has its own advantages and disadvantages. Recently,
predefined methods based on prior knowledge have been widely used, but the classi-
fication results were influenced by different datasets. In addition, predefined methods
may be affected by factors unrelated to the diagnostic prediction task, such as gender.
Adaptive methods may be suitable alternatives because they can optimize the graph
through the iteration of the model in the training process and reduce the workload of
hyperparameter tuning.

4.2. Individual Heterogeneity

Each subject’s brain has individual heterogeneity. Suppressing individual heterogene-
ity can reveal commonalities of diseases, which further helps researchers and physicians
understand the mechanisms involved and diagnose diseases [179,180]. There are two
directions which may be useful to suppress individual heterogeneity in GNN models:

(1) Node constraint. Projection methods can be used to obtain the weight of the node,
and the weight can be constrained by the group-level consistency loss, so that the
weight distribution in the same group tends to be consistent [61].

(2) Edge constraint. The intra-group similarity and inter-group difference in functional
connections can be reduced by adding variance loss and 2-norm loss [181].

4.3. Small Sample Sizes

Compared with computer vision and natural language processing, medical data
collection is more resource-intensive, so the amount of medical data is often small. The
traditional method to solve above problem is to augment the data. However, it is not
enough to solve the over-fit problem of the GNN models [61]. Therefore, combining data
augmentation with self-supervised learning may be a direction to pursue [27,29,43,88,138].

Self-supervised learning can use the information contained in the data itself to improve
the performance of the model. For example, the GNN models can be pretrained using the
self-supervised loss function, and then be fine-tuned and used for downstream tasks.

4.4. Domain Generalization

Domain generalization is affected by different acquisition protocols, imaging equip-
ment, imaging parameters, inclusion criteria, and other factors; the data collected by differ-
ent centers often have distribution bias. This results in the generalization problem of GNN
models. Domain generalization and domain adaptation, as two kinds of transfer learn-
ing, may be future research directions for GNN model optimization [41,54,136,140,182].
For instance, domain adaptation can be used to train GNN models on cross-site and
cross-disease datasets.

4.5. Multimodality

With the popularization and upgrading of neuroimaging equipment, it is possible for
patients to perform multiple imaging examinations at the same time. Different images can
reflect different pathological information. T1-MRI studies the brain morphologically. fMRI
reflects the spatial and temporal associations of the brain. DTI reflects white matter fiber
bundle connections. Multimodal images together provide complementary information,
which can depict the patient’s state more comprehensively. However, it is a challenge to
combine multimodal information using GNN models [83,92,139]. The idea of multiple
graphs may be a research direction to pursue. The multiple graph techniques can filter out
redundant information and fuse the information from different modes effectively.

5. Conclusions

It is of great importance to diagnose NDs by combining GNN technology and brain
imaging. In this study, we provided an overview and outlook on GNN applications in the
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diagnosis of ND. Firstly, different modules of GNNs, including graph construction, graph
convolution, graph pooling, and graph prediction were systematically introduced; secondly,
we compared different GNN applications in terms of data modality, number of subjects, and
diagnostic accuracy; finally, we discussed challenges in GNNs, including optimizations for
graph representation, individual heterogeneity, small sample sizes, domain generalization,
and multimodality. The results of this review may be a valuable contribution to the ongoing
intersection of artificial intelligence technology and brain imaging.
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Appendix A

The details of the diagnosis of ND based on GNNs are shown in Tables A1–A8. In the
‘Feature’ column of these tables, S represents spatial features, T denotes temporal features,
and MG represents multi-graph features. The ‘-’ is followed by the model’s name. Column
‘ACC’ represents accuracy with mean (standard deviation). ‘MMSE’ denotes Mini-Mental
State Examination, ‘FDG-PET’ denotes 18F-fluorodeoxyglucose PET, ‘AV45-PET’ denotes
18F-florbetapir PET, ‘Amyloid-PET’ denotes amyloid PET, ‘ApoE’ denotes apolipoprotein
E, and ‘CSF’ denotes cerebro-spinal fluid.

Table A1. Diagnosis of AD.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Klepl et al. [65] EEG Blackburn et al. [135] 40 91.9 (0.4) S-Other

Shan et al. [66] EEG In-house 39 91.1 ST-CNN

Wee et al. [136] T1-MRI ADNI, In-house 2442 85.8 (0.8) S-ChebNet

Subaramya et al. [74] dMRI ADNI 162 97.0 S-GCN

Yao et al. [57] dMRI ADNI 367 86.0 (1.3) MG-Scale

Gu et al. [45] fMRI ADNI 311 94.7 S-GCN

Lee et al. [38] fMRI ADNI 101 74.4 (1.8) S-GCN

Qin et al. [44] fMRI ADNI 91 83.3 S-GCN

Kumar et al. [54] fMRI ADNI 189 81.8 S-GCN

Wang et al. [137] fMRI OASIS 1000 99.1 ST-Other

Tang et al. [138] fMRI OASIS 1326 77.5 (1.8) S-GCN

Mei et al. [49] fMRI ADNI 483 73.3 S-GCN

Liu et al. [26] T1-MRI, fMRI, gender,
age, MMSE ADNI 210 84.1 S-ChebNet

Xing et al. [83] T1-MRI, fMRI, demographic
information ADNI 368 79.7 ST-RNN

Zhou et al. [92] T1-MRI, FDG-PET, AV45-PET ADNI 755 81.8 (3.1) S-GCN

Song et al. [37] fMRI, DTI, gender, device
information, site ADNI, In-house 459 95.7 S-GCN
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Table A1. Cont.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Song et al. [98] age, gender, ApoE, T1-MRI, etc. TADPOLE 1615 94.4 S-GraphSAGE

Choi et al. [139] DTI, Amyloid-PET, FDG-PET ADNI 401 96.0 (2.8) S-Other

Yang et al. [31] T1-MRI, gender, etc. TADPOLE 557 92.8 S-Other

Huang et al. [33] Phenotypic data, MRI, ApoE,
FDG-PET, etc. TADPOLE 557 87.8 S-ChebNet

Zheng et al. [34]
MRI, PET, cognitive tests,
CSF, risk factors, demographic
information

TADPOLE 603 92.3 (1.7) S-GraphSAGE

Kazi et al. [25] PET, CSF, etc. TADPOLE 557 88.5 (3.3) S-ChebNet

Zhang et al. [28] fMRI, age, gender, site ADNI 134 82.1 (1.4) S-GCN

Peng et al. [91] fMRI, T1-MRI, age, etc. ADNI 911 75.8 (0.7) S-GCN

Jiang et al. [30] fMRI, age, gender, site ADNI 133 75.6 (0.2) S-ChebNet

Li et al. [140] fMRI, gender, etc. ADNI 133 89.4 (0.4) S-GCN

Kazi et al. [21] PET, CSF, etc. TADPOLE 564 83.3 (3.9) S-ChebNet

Yang et al. [67] fMRI, DTI ADNI 114 90.4 (2.4) S-Other

Zhu et al. [141] fMRI, age, etc. ADNI 291 88.18 ST-Other

Table A2. Diagnosis of PD.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Huang et al. [72] DTI PPMI 194 95.5 S-Other

Cui et al. [131] DTI PPMI 754 79.8 (1.4) S-Other

He et al. [71] Video In-house 191 84.1 ST-CNN

Zhang et al. [99] fMRI, dMRI PPMI 323 72.8 S-GAT

Kazi et al. [21] T1-MRI, demographic
information, etc. PPMI 324 91.0 (4.6) S-ChebNet

Safai et al. [100] T1-MRI, dMRI, fMRI In-house 109 73.0 S-GAT

Yang et al. [67] fMRI, DTI Xuanwu [143] 155 85.9 (4.5) S-Other

Zhang et al. [29] voice, gender, etc. Parkinson Speech,
PPMI 68 94.6 (1.4) ST-Other

Table A3. Diagnosis of ASD.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Wadhera et al. [93] EEG In-house 96 93.7 S-GCN

Li et al. [61] fMRI Biopoint Autism
Study Dataset 118 79.8 (3.6) S-Other

Li et al. [64] fMRI Biopoint Autism
Study Dataset 118 76.0 (6.0) S-GIN

Li et al. [62] fMRI Biopoint Autism
Study Dataset 118 79.7 (5.1) S-GAT

Cao et al. [48] fMRI ABIDE 1112 72.8 (0.8) S-GCN

Zhu et al. [39] fMRI ABIDE 1112 72.4 (3.6) S-GraphSAGE

Yang et al. [51] fMRI ABIDE 871 67.2 S-GAT

Wang et al. [40] fMRI ABIDE 884 79.7 S-Other

Noman et al. [102] fMRI ABIDE 144 66.0 (7.1) ST-RNN

Wang et al. [58] fMRI ABIDE 629 66.9 (0.9) ST-Other
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Table A3. Cont.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Ji et al. [53] fMRI ABIDE 1096 70.9 S-GAT

Cao et al. [52] fMRI ABIDE 871 68.4 ST-RNN

Ma et al. [96] fMRI, phenotypic information ABIDE 988 78.10 S-GCN

Zheng et al. [34] fMRI, phenotypic information ABIDE 871 89.7 (2.7) S-GraphSAGE

Kazi et al. [25] fMRI, phenotypic information, etc. ABIDE 871 69.2 (6.6) S-ChebNet

Peng et al. [27] fMRI, phenotypic information ABIDE 1029 63.7 (1.8) S-GCN

Chen et al. [68] T1-MRI, fMRI ABIDE 1007 74.7 S-GAT

Zhang et al. [28] fMRI, age, gender, site ABIDE 871 81.7 (1.1) S-GCN

Peng et al. [91] fMRI, T1-MRI, age, etc. ABIDE 1029 66.7 (0.6) S-GCN

Jiang et al. [30] fMRI, age, gender, site ABIDE 866 67.2 (0.3) S-ChebNet

Li et al. [140] fMRI, gender, etc. ABIDE 871 76.5 (0.3) S-GCN

Cao et al. [32] fMRI, gender, etc. ABIDE 871 73.7 S-GCN

Huang et al. [33] Phenotypic information, T1-MRI,
ApoE, FDG-PET, etc. ABIDE 871 81.0 (4.8) S-ChebNet

Parisot et al. [24] fMRI, T1-MRI, site, gender, age, etc. ABIDE 871 70.4 S-ChebNet

Rakhimberdina et al. [23] fMRI, non-image ABIDE 871 68.5 (4.3) S-Other

Pan et al. [36] fMRI, site, gender, etc. ABIDE 871 97.6 S-Other

Lin et al. [35] fMRI, gender, etc. ABIDE 871 80.7 S-GCN

Table A4. Diagnosis of SZ.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Zhdanov et al. [82] EEG In-house 81 61.0 (1.5) ST-CNN

Yu et al. [56] fMRI COBRE 125 90.4 (1.4) MG-Construction

Lei et al. [128] fMRI In-house 1412 85.8 S-Other

Rakhimberdina et al. [23] fMRI, non-image COBRE 145 80.5 (10.8) S-Other

Chang et al. [63] EEG, demographic information In-house 120 93.3 S-ChebNet

Yang et al. [67] fMRI, DTI CHUV 54 98.3 (5.0) S-Other

Table A5. Diagnosis of MDD.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Chen et al. [120] EEG MODMA 53 84.9 S-Other

Yao et al. [104] fMRI REST-meta-MDD 533 73.8 (4.8) ST-CNN

Kong et al. [59] fMRI In-house 277 84.1 ST-RNN

Qin et al. [55] fMRI In-house 1586 81.5 S-ChebNet

Wang et al. [58] fMRI In-house 145 83.2 (1.2) ST-Other

Pitsik et al. [42] fMRI In-house 84 93.0 S-Other

Wang et al. [151] fMRI REST-meta-MDD 533 63.6 S-Other

Zhao et al. [43] fMRI REST-meta-MDD 2361 64.8 S-GIN

Kong et al. [50] fMRI In-house 218 70.9 S-GCN

Pan et al. [36] fMRI, site, gender, etc. REST-meta-MDD 533 99.2 S-Other

Chen et al. [152] EEG, audio DAIC-WOZ, MODMA 226 89.1 ST-RNN
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Table A6. Diagnosis of BP.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Cui et al. [118] fMRI Cao et al. [153] 97 75.5 S-Other

Cui et al. [131] DTI Cao et al. [153] 97 76.3 (13.0) S-Other

Yang et al. [47] T1-MRI, fMRI In-house 106 82.0 (3.8) S-GAT

Zhu et al. [117] fMRI, DTI Cao et al. [153] 97 73.6 S-Other

Table A7. Diagnosis of EP.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Li et al. [158] EEG TUH 307 91.0 ST-Other

Tao et al. [101] EEG CHB-MIT 22 96.2 S-GIN

Wagh et al. [81] EEG TUH, Max Planck Institute
Leipzig Mind-Brain-Body 1593 85.0 (4.0) S-GCN

Lian et al. [90] EEG Freiburg iEEG 9 95.6 (0.3) S-ChebNet

Zeng et al. [94] EEG CHB-MIT, TUH 6746 93.7 S-GCN

Table A8. Diagnosis of ADHD.

Authors Modality Dataset Number of Subjects ACC (%) Feature

Zhao et al. [46] fMRI ADHD-200 603 72.0 (1.8) S-Other

Yao et al. [57] fMRI ADHD-200 627 71.8 (1.5) MG-Scale

Ji et al. [53] fMRI ADHD-200 520 69.2 S-GAT

Wang et al. [88] fMRI ADHD-200 596 67.0 (3.7) S-ChebNet

Yao et al. [60] fMRI, dMRI In-house 187 70.1 (3.5) S-GAT

Rakhimberdina et al. [23] fMRI, non-image ADHD-200 714 74.3 (4.7) S-Other
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