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Abstract: Sepsis-associated encephalopathy (SAE) is a common brain dysfunction, which results in
severe cognitive and neurological sequelae and an increased mortality rate in patients with sepsis.
Depending on the stimulus, microglia (resident macrophages in the brain that are involved in SAE
pathology and physiology) can adopt two polarization states (M1/M2), corresponding to altered
microglial morphology, gene expression, and function. We systematically described the pathogenesis,
morphology, function, and phenotype of microglial activation in SAE and demonstrated that microglia
are closely related to SAE occurrence and development, and concomitant cognitive impairment.
Finally, some potential therapeutic approaches that can prime microglia and neuroinflammation
toward the beneficial restorative microglial phenotype in SAE were outlined.

Keywords: sepsis-associated encephalopathy; microglial activation; M1/M2 microglial polarization;
cognitive impairment; therapeutic strategies

1. Introduction

Sepsis is a common cause of death among critically ill patients in intensive care units.
According to the latest global estimates of sepsis incidence and mortality, 49 million people
suffer from sepsis annually, resulting in 11 million deaths, comprising 20% of all deaths
worldwide [1,2]. Sepsis is now defined as infection with organ dysfunction as determined
using the Sequential Organ Failure Assessment (SOFA) score [3], and it was designated
as a global health priority in 2017 by the World Health Assembly and the World Health
Organization (WHO) [4]. A common complication of sepsis is diffuse brain dysfunction
and cognitive impairment caused by infection outside the central nervous system (CNS),
known as sepsis-associated encephalopathy (SAE) [5]. It frequently occurs in the absence
of an overt infection of the CNS and manifests as a mild disturbance of consciousness,
disorientation, cognitive impairment, convulsion, or deep coma [6].

While the pathogenesis of SAE is likely multifactorial and has not been fully eluci-
dated, treating and diagnosing SAE are also equally challenging tasks. During clinical
practice, the detection of abnormalities in electroencephalogram recordings and abnormal
mental statuses, along with a clinical history, physical examination, laboratory tests, and
neuroimaging evaluation, is carried out to diagnose SAE [7]. The etiology and pathogenesis
of SAE are complex, and include microglial activation, blood–brain barrier (BBB) disruption,
leukocyte infiltration, metabolic adaptations to systemic inflammation, bioenergetic shifts,
cerebral coagulopathy or ischemia, oxidative stress due to inflammation, and mitochon-
drial dysfunction [8,9]. A localized and significant increase in CD68-positive microglia is
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observed in the brains of patients who die from septic shock due to severe systemic inflam-
mation and increased microglial activity in the putamen, hippocampus, and cerebellum
of the brain [10,11]. Additionally, the activation of pro-inflammatory microglia in white
matter is observed in patients with sepsis; however, this is not as evident in gray matter.
In contrast to brain inflammatory or ischemic diseases, the anti-inflammatory microglia
markers CD163 and CD206 are not expressed in acute sepsis [12]. Microglial activation
can cause neuronal injury or apoptosis via the release of inflammatory mediators, reactive
oxygen species, neurotransmitters, and other substances. Microglia also secrete cytokines
and chemokines that protect the brain from inflammatory responses. However, because of
the regulation of white blood cell migration and neuronal repair, the long-term activation
of microglia has minimal protective effects on neurons and worsens the inflammatory
response in the brain [13]. In this review, we systematically searched common English
databases, including PubMed, Web of Science, MEDLINE, and Embase, to investigate
the critical role of microglia in SAE, and summarized the prospects of therapies targeting
microglial activation and neuroinflammation to alleviate cognitive impairment in SAE in
recent years.

2. Microglia in Homeostasis

Brain development and CNS homeostasis are normally regulated via microglia pro-
cesses, which include programmed cell death, clearing apoptotic newborn neurons, and
pruning axons and synapses that are developing. Throughout development and adulthood,
microglial processes are highly mobile, continuously surveilling their local environment,
making contact with neurons, axons, and dendritic spines [14]. Microglia modulate synap-
tic transmissions and facilitate neural circuit formation by devouring eliminated synapses
in a complement-dependent manner [15,16]. Microglia are derived from yolk-sac-derived
progenitors and constitute approximately 10% of brain cells and approximately 20% of all
glial cells, which as the primary cleaners of the brain, engage in phagocytosis to eliminate
dead neurons and minimize the accumulation of debris [17]. They are the macrophage-
like myeloid innate immune cells of the brain and spinal cord, act as the main immune
defense in the CNS, and are rapidly activated in most neurological diseases, including
traumatic brain injury, stroke, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis,
schizophrenia, etc. [18,19].

The CNS has traditionally been considered immune-privileged owing to the BBB
tight junctions between endothelial cells, the basal lamina of these endothelial cells, and
astrocytic end-feet processes, which significantly reduce the infiltration of macromolecules
and immune cells into the parenchyma. In addition, the brain lacks professional antigen-
presenting cells and expresses low levels of major histocompatibility complex class I and II
molecules [20]. Microglial activation can occur even with minimal disturbance, maintaining
the homeostasis of the local brain parenchyma. Under physiological conditions, microglial
processes are motile and exhibit a ramified morphology in the brain of healthy adults.
However, microglia become activated and transform into a hypertrophic or amoeboid shape
in neurodegenerative diseases and upon neuronal injury [21,22]. Similar to macrophages,
microglia respond to invading pathogens by sequestering and inoculating microbes and
limiting the effects of cell damage and necrosis [23,24]. These acute responses include
migration, proliferation, phagocytosis, antigen presentation, and the release of various
effector substances, including superoxide, nitric oxide, proteases, and anti-inflammatory
(such as interleukin [IL]-10 and IL-4) and pro-inflammatory (such as IL-1β and IL-6)
cytokines [25,26]. In addition to that, it has been demonstrated that microglial activation
could damage the BBB through the release of MMP-2/-9 [27].

3. M1/M2 Microglial Polarization

The activation of microglia is a complex phenomenon characterized by a series of
temporally, physiologically, and spatially regulated events that contribute to the observed
morphological and functional alterations in these reactive cells. Recent research has shown
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that microglia are most diverse in developing, aged, and injured brains via the mapping of
single cells of microglia in mice at various stages of development and after brain injury [28].
Depending on the milieu and factors that stimulate them, microglia can participate in
classical activation, alternative activation, or acquired deactivation. Under physiological
conditions, microglia are designated as “resting” while the reactive morphology is termed
“activated” (with a rounder cell body, and fewer and shorter processes or an amoeboid-
shaped cell) [29]. To model this change, typical experiments involve the exposure of
microglial cells in vitro to stimuli such as apoptotic cells, lipopolysaccharide, inflammatory
cytokines, or aggregated proteins [30]. Microglia can be phenotypically polarized to
develop either a classical (proinflammatory, M1) or an alternative (anti-inflammatory
and pro-healing, M2) phenotype (Figure 1). It should be noticed that this has only been
demonstrated under experimental conditions, whereas microglia within the organism can
adopt any phenotype from the spectrum between M1 and M2 phenotypes. During the
progression of neuroinflammatory diseases, the balance between the M1 and M2 states of
microglia is dynamic. M1 microglia dominate the injury site at the end stage of the disease
when the immune resolution and repair processes of M2 microglia are impaired [31]. M1
microglia produce cytokines and chemokines (IL-1β, IL-6, IL-12, tumor necrosis factor α
[TNF-α], and chemokine (C-C motif) ligand 2), express nicotinamide adenine dinucleotide
phosphate oxidase, and generate reactive oxygen and nitrogen species.
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Figure 1. Uncontrolled or overactivated microglia are detrimental in pathological conditions. Resting
microglia can be polarized to the pro-inflammatory phenotype M1 or anti-inflammatory phenotype
M2 by different stimulators. This original figure was created using Figdraw (www.figdraw.com).

Moreover, M1 microglia express histocompatibility complex II, CD11b, CD11c inte-
grins, CD36, CD45, and CD47 costimulatory molecules. M2 microglia are capable of re-
leasing several anti-inflammatory cytokines (IL-10; transforming growth factor β [TGF-β]),
growth factors (insulin-like growth factor, fibroblast growth factor, and colony-stimulating

www.figdraw.com
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factor 1), and neurotrophic growth factors (nerve-derived growth factor, brain-derived
neurotrophic factor, neurotrophins, and glial cell-derived neurotrophic factor) [32–34].

However, some scholars have different opinions on the dichotomic rigid categories of
M1/M2, which is inconsistent with the wide repertoire of microglial states and functions in
development, plasticity, aging, and diseases which were elucidated in recent years [35]. The
advent of single-cell technologies has provided clear evidence that microglia in the living
brain do not polarize to either of these phenotypes, often co-expressing M1 and M2 mark-
ers [36]. At the molecular level, recent single-cell transcriptome analyses have also revealed
that human microglia show multiple clusters, indicating greater heterogeneity compared
to that in other mammalian species, such as mice [37]. Hence, this viewpoint presents a
critical examination of the indispensability of M1/M2 macrophage activation classifications
in comprehending microglial function, emphasizing their inherent constraints. Inherent
in this perspective is the call for novel microglial terminology, which should be informed
by various factors, including but not limited to transcriptomic and proteomic profiles,
regional heterogeneity, sexual dimorphism, functions within the intact and healthy nervous
system throughout the lifespan, and patterns of response to various stimuli such as physical
trauma, infection, systemic inflammation, tumor, ischemia, and neurodegeneration [35,38].

4. Microglia as Key Players in SAE
4.1. Experimental Techniques

A better understanding of how microglial activation contributes to SAE may help
improve its treatment (Figure 2). Animal models of sepsis are typically categorized as
three types: intraperitoneal injection of lipopolysaccharide (LPS), cecal ligation perfora-
tion (CLP), and peritoneal contamination and infection (PCI). The CLP model has been
widely adopted as a sepsis animal model, with well-recognized reliability and clinical rele-
vance. The SAE model established using CLP can also cause microglial overactivation and
neuronal pyroptosis, aggravating brain tissue destruction and cognitive dysfunction [39].
Another systematic review with 35 animal experiments showed that microglial activation
was evident 6 h after the LPS challenge and remained for at least three days afterward [40].
However, we acknowledge that animal models of sepsis have limitations and may not
reflect the high complexity of sepsis in humans. Additionally, primary microglial cells are
the best candidates for microglial research. Expression profiling has led to the documenta-
tion of drastic differences between the microglia isolated immediately ex vivo and those
cultured in vitro, including primary microglia and widely used cell lines such as BV-2 [41].

Historically, microglial function has primarily been studied in mouse models of disease.
In order to fully understand which mouse model findings apply to humans, and whether
or not microglia-targeted therapeutic approaches can be applied to human CNS disorders,
it is essential to invest in innovative technologies, including human induced pluripotent
stem cells (iPSCs), organoids, two-photon imaging, whole-genome transcriptomic and
epigenomic analyses with complementary bioinformatics, unbiased proteomics, cytometry
via time-of-flight cytometry, and complex high-content experimental models such as slice
culture and zebrafish [42,43]. A systems biology approach considering multiple CNS
cell types and signaling networks could provide deeper insight into SAE pathogenesis.
Integrating ‘-omics’ data could help.
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Figure 2. Schematic representation of functions and mechanisms of microglia-mediated neurotoxicity
in SAE. Activated microglia mediate neural interactions and cell death in the CNS and play a crucial
role in cognitive impairment in SAE. This original figure was created using Figdraw (www.figdraw.
com). Abbreviations: SAE, sepsis-associated encephalopathy; CNS, central nervous system.

4.2. Crosstalk between Microglia, Neurons, and Astrocytes

Evidence is now accumulating that interaction between glial cells and neurons plays
an active and important role in the pathophysiology of SAE. Communication between mi-
croglia and surrounding neurons is interesting; one microglial cell can come in contact with
several neurons, and several microglia cells can reach one neuron [44]. When microglia
become activated, they respond via chemotactic responses, migrate towards damaged
neurons [45], and also release inflammatory mediators, reactive oxygen species, neuro-
transmitters, and other substances that can result in cytotoxic effects on neurons [46]. The
CLP model was observed to cause a progressive transition of 50% of surveillant microglia
towards amoeboid hypertrophic-like and gitter cell-like reactive phenotypes, characterized
by active phagocytosis and frequent interaction with damaged neurons. Furthermore,
microglia-mediated synaptic pruning, dependent on complement activation, was identified
as a significant pathomechanism contributing to the development of neuronal abnormal-
ities in SAE [47]. Notably, the administration of the anti-C1q complement antibody via
stereotactic intrahippocampal injection was found to effectively prevent the microglial
engulfment of synapses tagged with C1q [48].

Microglia also communicate with astrocytes and coordinate their responses to neu-
ronal damage. Liddelow et al. found that a subtype of reactive astrocytes, termed A1, is
induced by classically activated neuroinflammatory microglia via the secretion of Il-1α,
TNF, and C1q, and that these cytokines are necessary and sufficient for the activation
of A1 astrocytes [49]. A microglia–astrocyte circuit mediated by the IL-33-ST2-AKT sig-
naling axis supports microglial metabolic adaptation and phagocytic function [50]. In
the conventional perspective, it is suggested that debris from dead neurons triggers glia-
mediated neuroinflammation, leading to an elevation in neuronal death. However, the
expression of neurotoxic proteins in microglia alone is sufficient to trigger the death of
naive neurons and propagate neuronal death through the activation of naive astrocytes

www.figdraw.com
www.figdraw.com
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toward the A1 state, and the propagation of injury is largely mediated by fragmented and
dysfunctional microglial mitochondria [51]. Interferon gamma (IFNγ) remarkably increases
the LPS-mediated release of TNFα and IL-1α in microglia and consequently induces the
transformation of astrocytes to the A1 subtype, which ultimately results in neuronal dam-
age. In addition, IFN-γ promotes cognitive impairment in endotoxemia by enhancing
microglia-induced A1 astrocytes. Targeting IFN-γ is a novel strategy for preventing or
treating cognitive dysfunction in patients with SAE [52]. The activation of the NLRP3
inflammasome in microglia induces the conversion of A1 astrocytes, thereby exacerbating a
decline in neo-neurons and leading to cognitive impairment following exposure to LPS [53].
By inhibiting HMGB1/RAGE signaling, Berberine relieved sepsis-induced cognitive impair-
ment by inhibiting microglia-stressed A1 astrocytes and neuronal decline [54]. Melatonin
effectively alleviates periventricular white matter damage in septic neonatal rats, which
is most likely reduced amounts of excess IL-1α, TNF-α, and C1q produced by microglia,
and then the modulation of astrocyte phenotypic transformation from A1 to A2 via the
MT1/JAK2/STAT3 pathway [55].

4.3. Microglia Activation in Cognitive Impairment

Microglial phenotypes change according to the stages and severity of the disease,
which plays an essential role in SAE. Recent evidence indicates that many sepsis survivors
develop long-term disabilities, including functional and cognitive impairments that affect
their quality of life and ability to resume activities of daily living. Cognitive impairment is
a major post-sepsis sequela that affects 12.5–21% of sepsis survivors [56] and can be pro-
gressive and permanent, although some patients may only present with transient problems.
Memory, attention, and executive function are the cognitive domains most affected in sepsis
survivors [57,58]. In a postmortem case–control study, microglial activation was found to
be associated with delirium, and the expression of microglial markers CD68 and HLA-DR
was significantly elevated in patients with delirium compared with that in controls [59].
Septic mouse models exhibited a substantial increase in chemokine production for myeloid
cell recruitment, and increased neutrophil and CCR2+ inflammatory monocyte recruitment,
accompanied by subtle microglial activation, which was revealed via the intravital imaging
of brains [60].

Activated microglia and reactive astrogliosis, which are the hallmarks of brain injury
and may contribute to synaptic deficits, were observed in septic mice [13,57,61]. IL-1β de-
rived from activated microglia is the key molecule responsible for the hippocampal synaptic
deficits observed in sepsis [57]. Most microglia were reportedly distributed around cerebral
vessels 4 h after LPS injection. The extent of microglial activation was time-dependent, and
the highest number of microglia was observed after 8 h in all brain regions [62]. Minocy-
cline induced the downregulation, predominantly, of M1 markers [10], and high doses
of minocycline prevented long-term potentiation impairment during sepsis [63]. Ketone
body β-hydroxybutyrate (BHB) is produced in the liver and serves as an alternative energy
source for the brain, heart, and skeletal muscles in mammals in states of energy deficit.
The subcutaneous administration of BHB was found to enhance survival and body weight
recovery in sepsis mice and improved learning and memory in sepsis-surviving mice.
The improvement in learning and memory in sepsis-surviving mice was observed even
when BHB was administered at the late stage of sepsis [64]. Microglial transcriptional
profiling showed cholesterol that metabolism pathway genes exhibited reduced expression
in males [65], and that aging microglia are unable to establish effective immune responses
and sustain normal synaptic activity, directly contributing to cognitive decline [66]. As can
be seen, age, sex, and genetic factors may influence microglia function during SAE.

5. Pharmacological Interventions Targeting Microglia

Sepsis survivorship is a prevalent and increasingly significant public health issue, charac-
terized by significant long-term morbidity and a considerable burden of cognitive dysfunction
and disability [67]. Currently, modern medicine lacks specific and effective management
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strategies for diagnosing and treating SAE. While early antimicrobial therapy, sufficient
tissue/organ perfusion, and prompt source control during the initial stages of sepsis are
recommended, there is currently no established method for preventing SAE or mitigating
cognitive impairment subsequent to sepsis [68]. Therefore, there exists an urgent need for
novel anti-SAE therapeutic strategies and the necessity of developing targeted treatments
to mitigate the impact of SAE on the brain. Blocking microglial activation or alleviating
neurotoxic reactions after microglial activation is an important therapeutic target in anti-SAE
therapy, and mastering the stage-specific switching of M1/M2 phenotypes in appropriate
time windows may exert therapeutic effects [69]. A summary of treatments in experimental
models of SAE targeting microglia and neuroinflammation is presented in Table 1.

Table 1. Treatments in experimental models of SAE targeting microglia and neuroinflammation.

References Species, Strain,
Sex Model Treatment and

Drug Dose
Mode of

Administration
and Duration

Simplified Treatment
Outcomes

Terrando 2010
[70]

Mouse, WT
C57BL/6 and
IL-1R-/-, ♂

LPS

IL-1 receptor
antagonist
(IL-1Ra),

100 mg/kg

Subcutaneous,
immediately
before LPS

administration

Reduced plasma cytokine levels
and hippocampal microgliosis,

and ameliorated cognitive
dysfunction

Li 2017 [71] Mouse, C57 BL/6,
♂ CLP Ginsenoside Rg1,

40 and 200 mg/kg
I.p., 1 h before the

CLP operation

Improved the survival rate;
suppressed IBA1 activation and

learning and memory
impairments

Hoshino 2017
[63] Mouse, NA CLP Minocycline,

60 mg/kg
I.p., 3 consecutive

days

Prevented impaired long-term
potentiation in the

hippocampus

Tian 2019 [72] Mouse, C57 BL/6,
♂ LPS Attractylon,

25 mg/kg
I.p., with LPS

injection

Attenuated LPS-induced
cognitive impairment, neural

apoptosis, inflammatory factors,
and microglial activation

Xu 2019 [73] Mouse, BALB/c, ♂ CLP
Caspase-1 inhibitor
VX765, 0.2 mg per

mouse

Intragastric
administration,

twice daily (10 a.m.
and 4 p.m.) until

mice were
sacrificed

Reversed cognitive dysfunction
and depressive behaviors;

reduced microglia activation
and BBB disruption and

ultrastructure damages in the
brain

Michels 2019 [10] Rat, Wistar, ♂ CLP Minocycline,
100 µg/kg

I.c.v, immediately
after CLP
operation

Induced down-regulation of M1
markers

Wang 2020 [64] Mouse, C57 BL/6,
♂ CLP

β-
hydroxybutyrate,

250 mg/kg

Subcutaneous ad-
ministration/i.c.v.,
every 6 h from the
fourth day to the
seventh day after
CLP/twice daily

for 7 days

Increased survival and body
weight recovery of sepsis mice

and improved learning and
memory; limited

neuroinflammation and
neuroplasticity damage

Heimfarth 2020
[74]

Mouse, albino
Swiss, ♂/♀ LPS

Indole-3-
guanylhydrazone

hydrochloride,
50 mg/kg

I.p., after LPS
administration and
for 5 consecutive

days

Attenuated inflammatory
reactions through the MAPK

and NFκB signaling pathways,
and microglia activation

suppression reduced
anxiety-like behavior and

cognitive impairment

Xie 2020 [75] Mouse, WT and
Nrf2 KO, ♂ CLP

MCC950/Hydrogen-
rich saline solution,
50 mg/kg/5 mL/kg

I.p., before
operation/1 h and

6 h after CLP

Alleviated inflammation,
neuronal apoptosis, and

mitochondrial dysfunction via
inhibiting Nrf2-mediated

NLRP3 pathway.

Rocha 2021 [76] Rat, Wistar, ♂ CLP
Anti-S100B
monoclonal

antibody, 10 µg/kg
I.c.v, 15 days after

CLP
Increased the time of grooming;
alleviated microglia activation
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Table 1. Cont.

References Species, Strain,
Sex Model Treatment and

Drug Dose
Mode of

Administration
and Duration

Simplified Treatment
Outcomes

Bonfante 2021
[77] Rat, Wistar, ♂ CLP Stanniocalcin-1;

20/50/100 ng/kg

I.c.v, immediately
after the CLP

procedure

Improved hippocampal
mitochondrial function and

creatine kinase activity; reduced
oxidative stress,

neuroinflammation, and
long-term memory impairment.

Wang 2022 [78] Mouse, C57 BL/6,
♂ CLP Qiang Xin 1,

0.5/1/2 g/kg Oral, 2 h after CLP

Attenuated cognitive deficits,
emotional dysfunction, and
reduced neuroinflammatory

responses to improve survival.

Wen 2022 [79] Mouse, C57 BL/6 J,
♂ CLP Cortistatin-14,

200 µg/kg
I.p., 30 min after

CLP

Relieved anxiety-related
behaviors and the levels of

various inflammatory cytokines;
reduced BBB disruption and

microglial activation

Zhong 2022 [80] Mouse, C57 BL/6,
♂ LPS JQ-1, 50 mg/kg I.p., 1 h before LPS

Protected the hippocampal BBB
and neuronal damage and

microglia activation through the
attenuation of

neuroinflammation

Song 2022 [81] Mouse, C57 BL/6,
♂ LPS Metformin,

25 mg/kg I.p., 1 h after LPS
Blocked microglial proliferation
and production of inflammatory

factors

Zhong 2022 [82] Mouse, C57 BL/J,
♂ CLP SS-31, 5 mg/kg I.p., once daily for

1 week

Improved the survival rate and
cognitive and memory

dysfunctions in CLP mice

Yang 2022 [39] Mouse, C57 BL/6,
♂ CLP CB2R agonist

HU308, 2.5 mg/kg

I.p., three
consecutive days

after CLP

Inhibited microglia activity and
neuronal pyroptosis

Ding 2022 [83] Rat, NA, ♂ CLP Fisetin, 20 mg/kg

Intragastrical
administration,
once a day for

three consecutive
days before CLP

Blocked NLRP3 inflammasome
activation by promoting

mitophagy and ameliorating
cognitive impairment

CLP: cecal ligation and puncture; LPS: lipopolysaccharide; BBB: blood–brain barrier; NA: not announced; WT:
wild type; KO: knockout; kg: kilogram; g: gram; h: hour; d: day; i.c.v.: intracerebroventricular injection; i.p.:
intraperitoneal injection; male: ♂; female: ♀.

5.1. Blockers of Inflammatory Factors and Pyroptosis

There is a close correlation between the pathophysiology of SAE and the release of in-
flammatory factors and mediators. IL-1 receptor antagonist (IL-1Ra) significantly inhibited
plasma cytokines, hippocampal microgliosis, and cognitive dysfunction when adminis-
tered prior to symptom onset. This suggested that blocking IL-1 signaling attenuated
the inflammatory cascade in response to LPS, thereby reducing microglial activation and
preventing behavioral abnormalities [70]. It is believed that metformin may be able to
partially reverse the severe prognosis caused by sepsis by inhibiting microglial proliferation
and inflammation [81]. Cortistatin-14 is a neuropeptide structurally resembling somato-
statin, which relieves anxiety-related behaviors in CLP mice, decreases the levels of various
inflammatory cytokines, reduces sepsis-induced BBB disruption, and inhibits microglial
activation [79]. In critically ill patients, dexmedetomidine is used as a sedative due to its
ability to decrease microglial TNF-expression and alter the neuroinflammatory response
of microglia [84]. Microglia are the main cells where pattern recognition receptors are ex-
pressed and pyroptosis occurs in the brain, while pyroptosis-mediated neuroinflammation
is also a prominent pathogenesis of SAE [85].
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In response to multiple stimuli, NLRs cleave pro-caspase-1 into activated caspase-1,
and then pore-forming protein gasdermin D (GSDMD), pro-IL-1β, and pro-IL-18 were
cleaved by activated caspase-1, finally leading to pyroptosis and the secretion of IL-1β [86].

The caspase-1 inhibitor VX765 inhibited caspase-1, suppressed the expression of
GSDMD and its cleavage form GSDMD-NT, reduced the pyroptosis and sepsis-induced
impairment of the blood–brain barrier and structural damage in the brain. Cognitive
impairment and depressive symptoms were also mitigated. At days 1 and 7 after sepsis,
blocking caspase-1 resulted in reduced levels of IL-1β, monocyte chemoattractant protein-1,
and TNF-α in both the bloodstream and the brain [73]. As an NLRP3 inflammasome in-
hibitor, MCC950 was found to inhibit NLRP3 expression, IL-1β and IL-18 cytokine release,
neuronal apoptosis, and mitochondrial dysfunction induced by SAE. Moreover, hydrogen
inhibited the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated NLRP3 pathway,
which alleviated inflammation, neuronal apoptosis, and mitochondrial dysfunction, as
shown in [75]. Bromo- and extra-terminal protein inhibitor JQ1 attenuated neuroinflam-
mation via the inhibition of the inflammasome-dependent canonical pyroptosis pathway
induced via LPS injection in mice, and also selectively suppressed the activation of hip-
pocampal microglia that protected the hippocampal BBB [80]. The inhibition of microglial
activity and neuronal pyroptosis was the main mechanism by which cannabinoid type 2
receptor-specific agonist HU308 protected against SAE [39].

5.2. Signaling Pathway Inhibitors

Toll-like receptor 4 (TLR4) plays an essential role in promoting M1 polarization. In
response to inflammatory signals, the TLR4 transmembrane receptor activates microglia
and upregulates proinflammatory genes [87]. TLR4-targeting natural compounds may
provide potent therapeutics for treating SAE through the TLR4/MyD88/NF-KB pathway in
microglia [88]. It has also been suggested that microglial polarization is mediated by a sig-
naling pathway linked to the mammalian target of rapamycin (mTOR) and autophagy [89],
while a mTOR-mediated reduction in microglial polarization and autophagy can alleviate
cerebral inflammation associated with SAE and other neurodegenerative diseases [90]. By
switching microglial polarization via the mTOR-autophagy signaling pathway, hydrogen
gas alleviates SAE [91].

In a study demonstrating that the IL-10 axis plays a critical role in restoring murine mi-
croglia homeostasis, neuronal impairment and fatal illness were observed in LPS-challenged
mice harboring IL-10 receptor-deficient microglia [92]. Moreover, blocking IL-1β signaling
ameliorated the inflammatory cascade in response to LPS, and behavioral abnormalities
were reduced via microglial activation [70]. Chemokine receptor 5 (CXCR5) contributed
to cognitive impairment in SAE mice via the enhancement of p38MAPK/NF-κB/STAT3
signaling, and it was found that CXCR5 knockouts restored autophagy, polarized microglia
to the M2 phenotype, and inhibited the release of proinflammatory cytokines in the hip-
pocampus by inhibiting p38MAPK and CXCR5 [93]. The aminoguanidine derivative indole-
3-guanylhydrazone hydrochloride (LQM01) has been shown to have anti-inflammatory,
antihypertensive, and antioxidant properties. Anxiety-like behavior and cognitive impair-
ment induced by LPS in adult mice were reduced via LQM01 exposure during the neonatal
period, which also attenuated inflammatory reactions and oxidative damage through the
MAPK and NF-κB signaling pathways and microglial activation suppression [74]. Overall,
these signaling pathways are critical in the progression of microglial activation through
SAE, and a potential anti-SAE treatment target is blocking the above signaling pathways.

5.3. Mitochondrial-Targeting Drugs

In recent times, there has been a significant focus on drugs that specifically target mi-
tochondria. An example of such a drug is the mitochondrial-targeting antioxidant peptide
SS-31, which has been observed to effectively mitigate inflammation and oxidative stress in
microglia stimulated with LPS through the suppression of mitochondrial fission protein
1 (Fis1) expression [94]. The administration of SS-31 among septic mice also resulted in en-
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hanced cognitive function, increased survival rates, alleviated hippocampal inflammation,
reduced reactive oxygen species production, and mitigated excessive mitochondrial fission.
Moreover, SS-31 effectively decreased the activation of the NLRP3 inflammasome, inhibited
the mitochondrial translocation of dynamin-related protein 1 (Drp1), reduced excessive
mitochondrial fission, and attenuated the recruitment of the GSDMD N-terminal to the
mitochondrial membrane in LPS-induced BV2 cell migration [82]. Recombinant human
STC-1 (rhSTC1) suppressed the production of pro-inflammatory cytokines by LPS-activated
microglia, and the injection of rhSTC1 into the cisterna magna reduced hippocampal in-
flammation and oxidative stress while increasing the activity of complex I and II of the
mitochondrial respiratory chain and creatine kinase 24 h after sepsis. This was effective
in preventing long-term cognitive impairment after CLP [77]. The effects of P110 are a
reduction in the permeability of the BBB and the loss of tight junctions after acute LPS
injury by inhibiting Drp1-Fis1 interaction [95].

Mitochondrial-targeting antioxidants may also serve as novel agents to overcome
septic complications [96]. Mdivi-1, a Drp1 inhibitor, safeguarded the hippocampus against
oxidative pressures and decreased the number of TUNEL-positive cells in this brain re-
gion [97]. By increasing JC-1 aggregates, antioxidant enzymes, and adenosine triphosphate
levels, and decreasing ROS accumulation, Malvidin protected the cerebrum from LPS-
induced mitochondrial dysfunction [98].

5.4. Traditional Chinese Medicine

Traditional Chinese medicine (TCM) places emphasis on the holistic treatment of
individuals, while Chinese herbal medicine is distinguished by its utilization of various
herbs believed to possess synergistic properties or minimize adverse effects, known as the
characteristic of “Jun Chen Zuo Shi” within TCM formulations [99].

Ginsenoside Rg1 (Rg1), a prominent constituent of ginseng, exhibited enhanced post-
operative survival rates and provided protection against cognitive impairments in SAE
(evaluated through the Morris water maze test). Furthermore, Rg1 mitigated cerebral
histopathological alterations (visualized via hematoxylin and eosin staining), suppressed
IBA1 activation, and reduced the expression of inflammatory cytokines [71]. Atractylon
(Atr), a prominent sesquiterpene compound found in the Asteraceae family, has demon-
strated the ability to mitigate cognitive impairment, neural apoptosis, inflammatory factors,
and microglial activation induced by LPS. Additionally, Atr has been observed to induce
the expression of silent information regulator 1, thereby facilitating the transition of BV2
cells from a LPS-induced M1 phenotype to an M2 phenotype in vitro [72].

Qiang Xin 1 (QX1) exhibited a significant inhibition of excessive pro-inflammatory
cytokine production in both peripheral and central regions, resulting in reduced microglial
activation in septic mice. Furthermore, QX1 downregulated the expression of M1 phe-
notype microglia gene markers, such as CD32, Socs3, and CD68, while upregulating M2
phenotype marker genes, including Myc, Arg-1, and CD206 [78]. Fisetin, a constituent of
the traditional Chinese medicine Cotinus coggygria, exhibits notable efficacy. Its neuro-
protective properties are likely attributed to its ability to suppress neuroinflammation, as
evidenced via the downregulation of IL-1 receptor, pNF-κB, TNF-α, and inducible nitric
oxide synthase in microglia. Additionally, fisetin facilitates mitophagy, thereby impeding
the activation of the NLRP3 inflammasome and subsequently reducing the release of IL-1β
into the central nervous system. Consequently, fisetin holds promise for ameliorating
cognitive impairment [83].

The above pharmacological intervention confers significant neuroprotection by inhibit-
ing the inflammatory response in microglia and protecting against SAE, which may provide
novel directions for reducing morbidity and ameliorating the neurological outcomes of SAE.
Nevertheless, several limitations are important to note: microglia have beneficial house-
keeping functions, and blocking microglia activation may have unintended consequences.
Microglia depletion by colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX3397
aggravated locomotor impairment and dopaminergic neuron loss [100]. Furthermore, the



Brain Sci. 2023, 13, 1453 11 of 15

above therapies targeting microglia are in early preclinical stages, and the discussion of
clinical trials on humans is limited.

6. Conclusions

Microglia perform several critical functions in the pathological and physiological
processes of brain injury, and microglial M1 polarization is a potentially harmful mechanism
in terms of neurological damage during sepsis. Modulating microglial polarization to an
anti-inflammatory phenotype may serves as a potential therapeutic strategy for managing
SAE to reduce morbidity and ameliorate neurological outcomes. Although several intensive
studies have been conducted, the exact mechanisms and functional aspects of microglial
activation remain unclear and require further exploration to reach a clear conclusion.
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