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Abstract: The investigation of the perception of others’ actions and underlying neural mechanisms
has been hampered by the lack of a comprehensive stimulus set covering the human behavioral
repertoire. To fill this void, we present a video set showing 100 human actions recorded in natural
settings, covering the human repertoire except for emotion-driven (e.g., sexual) actions and those
involving implements (e.g., tools). We validated the set using fMRI and showed that observation
of the 100 actions activated the well-established action observation network. We also quantified the
videos’ low-level visual features (luminance, optic flow, and edges). Thus, this comprehensive video
set is a valuable resource for perceptual and neuronal studies.

Keywords: vision; action observation; fMRI; action videos; naturalistic stimuli; cognitive neuroscience;
systems neuroscience

1. Introduction

One of the most important skills social organisms possess is the ability to perceive
the actions of conspecifics in their environment. This skill has a survival value since it
allows the organisms to take the appropriate action based on what they perceive. For
instance, if somebody smiles at you, you probably smile back but if that person is about to
attack you, you will probably want to flee. Therefore, the perceptual and neural mecha-
nisms of action perception have received great interest from psychologists, systems, and
cognitive neuroscientists.

Although there is a growing body of research in observed action processing [1], the
range of actions used in such empirical studies has been limited. Since the beginning of
1990s, the majority of neuroscience studies have used grasping as the exemplary action to
study action observation [1]. More recent work has extended this work by introducing
other action categories, such as locomotion actions (e.g., walking), communicative actions
(e.g., gestures), self-directed actions (e.g., scratching one’s own body), interaction actions
(e.g., hugging), vocal actions (e.g., singing), or other manipulative actions (e.g., pushing
an object) [2–5]. This body of work has demonstrated the significance of studying action
categories other than grasping as the neural activations for different actions were local-
ized in different brain regions especially at the level of parietal cortex. However, each
individual study created its own limited set of action videos, and it has been difficult
to make comparisons across studies due to variations in terms of actors, scenes, video
durations, and video quality (e.g., frame per seconds or resolution). Given the richness of
the human action repertoire, the aim of the current study is to introduce a large video set of
actions performed in natural settings, covering the entire human repertoire and make it
available to researchers working primarily in the fields of visual, cognitive neuroscience
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and psychology. We believe that such an effort is necessary and timely given recent work,
indicated above, that shows differences in neural representations of different actions [2–5],
the move to use more naturalistic stimuli in neuroscience studies [6,7], and the availability
of multivariate pattern analysis techniques to analyze experimental data that has a rich set
of conditions, i.e., a wide variety of actions [8], instead of a few of them, as is traditionally
done in previous studies. It is important to note that in creating this database, we aim to
address the shortcomings of earlier attempts, such as those that provided action stimuli
in the form of point-light displays (See Table 1 in [9], as they do not have high ecological
validity, and the ones that come from the computer vision community ([10,11]), as they are
usually unconstrained in terms of actors, context, camera angle, and movements.

The action set presented in the current paper has two major features. It represents,
as far as we know, the first attempt in visual and cognitive neuroscience to systematically
encompasses the entire human behavioral repertoire, with the exception of emotion-driven
actions (e.g., sexual) and those involving implements (e.g., using a tool or driving a car).
Second, it aims to concentrate on actions that are evolutionarily old, i.e., actions to which
the human brain would have adapted during evolution. Thus, all videos were recorded in
natural settings (beaches, parks, riverbanks) avoiding artificial structures in the background,
and using natural objects as targets of the actions (e.g., we used stones, fruits, and pieces of
wood instead of man-made items). These specifications define a homogeneous group of
action exemplars and distinguish our set from the large set of 80 atomic actions, collected
by the Google research group from the internet [12].

Crucially, the action exemplars in this set are unrelated to any a-priori categories. Such
a stimulus-driven approach, inspired by an fMRI study of voxel-level selectivity for the
meanings of words [13], can be considered complementary to the earlier studies in which
the action exemplars were selected a priori as part of a single class (e.g., dragging, grasping,
dropping, and pushing considered to be manipulative actions in earlier studies) [3,5,14].
On the other hand, it is important to note that, unlike the studies that use continuous
natural movies (e.g., [13,15]), our stimuli set includes human actions without the clutter
of other movements such as those of objects or other actors. Therefore, it constitutes a
more suitable dataset for researchers who would like to study visual action perception and
processing in humans.

2. Materials and Methods

In this section, we describe the stimulus set and the post-processing of the videos. The
stimulus set is freely available and can be downloaded from https://osf.io/u62bp/?view_
only=393a2924aa05461394fe9f3171863b94 (accessed on 29 December 2022). We also carried
out a validation study with fMRI to show that our stimuli drive the regions established
to be associated with the processing of actions, also known as the Action Observation
Network [1,7,8]. The fMRI data can also be downloaded from the same link above.

2.1. Stimulus Set

Actors: Four actors performed the actions (2 males, 2 females). One additional female
actor accompanied some actors in videos portraying actions that involved two individuals.
They were undergraduate students at the University of Parma. We did not choose pro-
fessional actors for two reasons. First, we wanted to record actions that were as natural
as possible, without stylized movements that could be introduced by professional actors.
Second, we wanted to have variability in the body movements which reflected individual
differences. Before the recording of each action video, all actors were directed concerning
how to perform the action and instructed to perform the action as naturally as possible
within 3 s. For each action, several recordings were taken one after the other to make sure
that the action was performed as intended in terms of timing and naturalness, and the best
recording was chosen during the post-processing of videos. The actors were paid for their
participation in the recordings and gave informed consent for their videos to be published
in scientific journals.

https://osf.io/u62bp/?view_only=393a2924aa05461394fe9f3171863b94
https://osf.io/u62bp/?view_only=393a2924aa05461394fe9f3171863b94
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Actions: One hundred different actions were recorded for several seconds (at least 3 s)
and each action was performed by 3 of the 4 actors. So, in total, we recorded 300 videos
with a fixed camera. Actions involved various effectors including the fingers, hand, arm,
foot, mouth, upper body, or full body. One or 2 actors were portrayed in each video.
When two actors were present, one could target the other with his action, or the two
could interact. The actions were recorded from a lateral viewpoint. A sample frame from
each video is presented in Figure 1. Table 1 lists the actions shown in the 100 videos
and the actors who perform each of them. The different actions are described in the
Supplementary Information.
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Figure 1. Sample frames from the stimulus set, one frame from each action exemplar. The first row
corresponds to action exemplars 1–10, the second row corresponds to action exemplars 11–20, and so
on. The action numbers refer to the numbers in Table 1.

Table 1. Number and name of action exemplars, with the actors performing them (M1: male actor 1,
M2: male actor 2, F1: female actor 1, F2: female actor 2).

Action Exemplar No Action Exemplar Name Actors

1 Measuring with fingers F1, F2, M1

2 Shouting F1, M1, M2

3 Carrying with head and hands F1, M1, M2

4 Caressing another person F1, F2, M1

5 Free style swimming F2, M1, M2
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Table 1. Cont.

Action Exemplar No Action Exemplar Name Actors

6 Kicking wood with feet F2, M1, M2

7 Dragging F1, F2, M2

8 Reaching F1, F2, M2

9 Measuring a long distance with feet F1, F2, M1

10 Crushing a leaf with fingers F1, F2, M2

11 Fanning with leaf F1, F2, M2

12 Pushing a small stone F1, F2, M2

13 Dropping a small stone F1, F2, M2

14 Ridiculing another person F1, F2, M1

15 Massaging own cheek F1, F2, M2

16 Scratching own cheek F1, F2, M2

17 Swallowing F1, F2, M1

18 Yawning with hand F1, F2, M2

19 Licking an orange F1, F2, M2

20 Gazing at an object F1, F2, M1

21 Peeling a fruit F1, F2, M1

22 Filling a hole with hand F1, F2, M1

23 Hitting own cheek F1, F2, M1

24 Swimming back style F1, M1, M2

25 Displacing wood F1, F2, M2

26 Weighing an object with one hand F1, F2, M2

27 Climbing down a tree F1, F2, M1

28 Whistling F2, M1, M2

29 Measuring with hands F1, F2, M1

30 Picking a fruit from a tree F2, M1, M2

31 Kicking horizontally F2, M1, M2

32 Kicking vertically F2, M1, M2

33 Carrying with head F1, M1, M2

34 Blowing a leaf F1, M1, M2

35 Chasing another person F1, M1, M2

36 Struggling F2, M1, M2

37 Waving goodbye F1, M1, M2

38 Beating with a piece of wood F1, M1, M2

39 Carrying with shoulder and hand F1, F2, M2

40 Reprimanding a person F2, M1, M2

41 Biting a banana F2, M1, M2

42 Fighting with another person F2, M1, M2

43 Washing own body F2, M1, M2

44 Foraging F1, M1, M2

45 Stretching own body F1, M1, M2

46 Writing with fingers F1, M1, M2
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Table 1. Cont.

Action Exemplar No Action Exemplar Name Actors

47 Charging to attack F1, F2, M1

48 Diving F2, M1, M2

49 Pointing nearby F2, M1, M2

50 Squeezing an orange F1, F2, M2

51 Forbidding with fingers F2, M1, M2

52 Wrapping a stone F1, M1, M2

53 Grasping F2, M1, M2

54 Carrying on shoulder F1, F2, M1

55 Running F1, F2, M2

56 Burying in the sand F2, M1, M2

57 Stopping a person F1, F2, M2

58 Pushing a person F1, M1, M2

59 Kissing a person F1, F2, M1

60 Throwing and catching a small piece of wood F1, M1, M2

61 Caressing own cheek F2, M1, M2

62 Overtaking an obstacle F1, F2, M1

63 Touching another person on the shoulder F1, F2, M2

64 Building pyramid from sand F1, F2, M1

65 Hiding an object behind back F2, M1, M2

66 Washing fruit F1, F2, M1

67 Carrying with hands F1, F2, M2

68 Walking F1, F2, M2

69 Marching F1, F2, M1

70 Rubbing own cheek F1, M1, M2

71 Throwing nearby F1, M1, M2

72 Masticating F2, M1, M2

73 People meeting F2, M1, M2

74 Climbing up a tree F1, F2, M2

75 Dancing with another person F2, M1, M2

76 Getting up F1, M1, M2

77 Crawling F1, M1, M2

78 Spitting a piece of banana F1, F2, M1

79 Doing gymnastics with both feet and arms F1, F2, M2

80 Pushing a large object F2, M1, M2

81 Rolling body sidewise F1, F2, M1

82 Walking on hand and knees F1, M1, M2

83 Laughing together with another person F2, M1, M2

84 Carrying with one hand F1, F2, M1

85 Singing a song F1, F2, M1

86 Weighing an object with two hands F1, M1, M2

87 Pointing distantly F1, F2, M2
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Table 1. Cont.

Action Exemplar No Action Exemplar Name Actors

88 Drinking with hands F2, M1, M2

89 Massaging another person F1, F2, M1

90 Drinking with mouth F1, F2, M2

91 Measuring height with own body F1, M1, M2

92 Pinching off piece of banana F1, F2, M1

93 Erasing F1, F2, M2

94 Hugging a person (passive) F1, M1, M2

95 Speaking with another person F1, F2, M1

96 Rotating a stone F2, M1, M2

97 Measuring a short distance with feet F1, M1, M2

98 Hugging each other F1, M1, M2

99 Digging a hole with a hand F2, M1, M2

100 Throwing far F1, F2, M1

2.2. Post-Processing of the Videos

The videos were recorded using Panasonic HCX 900 camcorders. After recording, the
videos were edited using Final Cut Pro software and 3-s clips were made. The frame rate
of these videos was 50 fps, so each video consisted of 150 frames. The size (height and
width) of the frames was set to 314 × 410 pixels. The 3-s videos were then exported in .avi
format and compressed using MPlayer’s mencoder command (http://www.mplayerhq.hu/,
accessed on 29 December 2022).

The videos portray different action exemplars in natural settings, which entails vari-
ations in low-level features such as luminance, motion, or edges. We quantified those
variables for each video. Hence, they can be used as variables of no interest in the experi-
mental designs to minimize the effects of such low-level factors.

2.3. Data Validation

We validated our stimuli set with an fMRI experiment. Four human subjects partici-
pated in our study (2 females and 2 males; Mean Age: 26.5). Ethical approval was received
from the Human Research Ethics Committee of Bilkent University.

2.3.1. fMRI Experiment

Each participant underwent two fMRI sessions, each having 8 runs. In each session,
the 100 action exemplar videos were split across odd and even runs. In each of the odd runs
(i.e., runs one, three, five, and seven), the first 50 action exemplars were shown in a random
order as mini-blocks of three video versions of the same action presented consecutively.
Each video lasted 3 s, and thus, each mini-block was shown for a total of 9 s. In each of the
even runs (i.e., runs two, four, six, and eight), the other 50 action exemplars were shown as
randomly ordered mini-blocks of three video versions as in the odd runs. So, in total, each
of the 100 action exemplars was presented 24 times across the two sessions. The order of the
mini-blocks and video versions in each mini-block was randomized across different runs.
An inter-stimulus interval ranging between 1–2 s was included in between the mini-blocks.
The total duration of each run was 553.36 s.

In order to keep their attention throughout the runs, a question was asked in each
repetition cycle about the video that was just presented (e.g., “Was it climbing up a tree?”)
with a simple yes or no button-press response time period of 3 s. The periods of question
were not included in the analysis.

http://www.mplayerhq.hu/
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2.3.2. fMRI Data Acquisition

Participants were scanned at National Magnetic Resonance Research Center (UMRAM)
in Bilkent University by using a 3T Siemens TimTrio MR scanner with a 32-channel phase
array head coil. In order to minimize head movement, relevant foam paddings were put
under their skull, around their neck, and under their legs. Stimuli were presented on an
MR-compatible LCD screen (TELEMED, 60 Hz refresh rate, 800 × 600 pixel, 32 inches) and
seen through a mirror system mounted on top of the head coil that is 168 cm away.

A high-resolution T1-weighted anatomical image covering the entire brain was acquired
before the functional scans using the following acquisition parameters: TE = 2.92 ms, TR = 2.6 s,
flip angle = 12◦, Acceleration factor = 2, 176 sagittal slices with 1 mm × 1 mm × 1 mm res-
olution). Later on, for each of the eight experimental runs, functional images were ac-
quired using echo-planar imaging (EPI) sequence (TR = 3 s, TE = 30 ms, flip angle = 90◦,
96 × 96 matrix with FOV 240, 49 horizontal slices with 2.5 mm slice thickness). Each
run started with the collection of 5 dummy scans to ensure that MR signal reached a
steady state.

2.3.3. fMRI Data Preprocessing

Results included in this paper are based on fMRI data preprocessed using fMRIPrep
20.1.1 ([9]; RRID:SCR_016216), which is based on Nipype 1.5.0 ([10]; RRID:SCR_002502).

Anatomical Data Preprocessing

A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset. All
of them were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection [16],
distributed with ANTs 2.2.0 ([17], RRID:SCR_004757). The T1w-reference was then skull-
stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from
ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white-matter (WM), and gray-matter (GM) was performed on the brain-
extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, [18]). A T1w-reference map was
computed after registration of 2 T1w images (after INU-correction) using mri_robust_template
(FreeSurfer 6.0.1, [19]). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1,
RRID:SCR_001847, [20]), and the brain mask estimated previously was refined with a
custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmen-
tations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, [21]). Volume-based
spatial normalization to one standard space (MNI152NLin2009cAsym) was performed
through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted
versions of both T1w reference and the T1w template. The following template was selected
for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c ([22],
RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym).

Functional Data Preprocessing

For each of the 16 BOLD runs recorded per subject (across all sessions), the following
preprocessing was performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. The BOLD reference was then co-
registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-
based registration [23]. Co-registration was configured with six degrees of freedom. Head-
motion parameters with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) are estimated before any spatiotemporal
filtering using mcflirt (FSL 5.0.9, [24]). BOLD runs were slice-time corrected using 3dTshift
from AFNI 20160207 ([25], RRID:SCR_005927). The BOLD time-series were resampled to
surfaces on the following spaces: fsaverage5. The BOLD time-series (including slice-timing
correction when applied) were resampled onto their original, native space by applying
a single, composite transform to correct for head-motion and susceptibility distortions.
These resampled BOLD time-series will be referred to as preprocessed BOLD in original
space, or just preprocessed BOLD. The BOLD time-series were resampled into standard space,
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generating a preprocessed BOLD run in [‘MNI152NLin2009cAsym’] space. First, a reference
volume and its skull-stripped version were generated using a custom methodology of
fMRIPrep. Several confounding time-series were calculated based on the preprocessed BOLD:
framewise displacement (FD), DVARS and three region-wise global signals. FD and DVARS
are calculated for each functional run, both using their implementations in Nipype (following
the definitions by [26]). The three global signals are extracted within the CSF, the WM, and
the whole-brain masks. Additionally, a set of physiological regressors were extracted to
allow for component-based noise correction (CompCor, [27]). Principal components are
estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete
cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and
anatomical (aCompCor). tCompCor components are then calculated from the top 5%
variable voxels within a mask covering the subcortical regions. This subcortical mask is
obtained by heavily eroding the brain mask, which ensures it does not include cortical
GM regions. For aCompCor, components are calculated within the intersection of the
aforementioned mask and the union of CSF and WM masks calculated in T1w space, after
their projection to the native space of each functional run (using the inverse BOLD-to-T1w
transformation). Components are also calculated separately within the WM and CSF masks.
For each CompCor decomposition, the k components with the largest singular values are
retained, such that the retained components’ time series are sufficient to explain 50 percent
of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining
components are dropped from consideration. The head-motion estimates calculated in the
correction step were also placed within the corresponding confounds file. The confound
time series derived from head motion estimates and global signals were expanded with the
inclusion of temporal derivatives and quadratic terms for each [28]. Frames that exceeded
a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers.
All resamplings can be performed with a single interpolation step by composing all the
pertinent transformations (i.e., head-motion transform matrices, susceptibility distortion
correction when available, and co-registrations to anatomical and output spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured
with Lanczos interpolation to minimize the smoothing effects of other kernels [29]. Non-
gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.5.2 ([30], RRID:SCR_001362),
mostly within the functional processing workflow. For more details of the pipeline, see the
section corresponding to workflows in fMRIPrep’s documentation.

2.3.4. Activation Maps for Observed Actions

An important aim of the present study is to show that our novel stimuli set could
drive the action observation network as previously identified, and to investigate whether
it could be extended given that previous work used a limited number of actions. This is
achieved by univariate analysis, which reveals the activation map of actions.

Following pre-processing, we ran a general linear model (GLM) composed of 8 regres-
sors, including 1 regressor for all the action videos, 6 motion regressors (3 translations and
3 rotations), and a constant factor. All regressors were convolved with the default canonical
hemodynamic response function in SPM12. The activation map was generated by the beta
value corresponding to the action videos.

2.3.5. Definition of ROIs

We defined three a priori ROIs that represent the three levels of the Action Observation
Network based on previous work: Lateral occipito-temporal cortex (LOTC), posterior
parietal cortex (PPC), and premotor cortex (PMC) (Figure 2). LOTC included the regions
of the action observation network based on the activation map (threshold at p < 0.001)
of [3]. These regions included (1) the MT cluster [31,32], (2) a portion extending dorsally
from the MT cluster onto the middle temporal gyrus referred to as MTG, and (3) a portion
extending ventrally from the MT cluster onto occipital temporal sulcus that we refer to as



Brain Sci. 2023, 13, 61 9 of 16

OTS. The MTG and OTS correspond to the upper bank and lower bank of the macaque STS
anterior to the MT cluster [33], the two regions which project to the parietal level of the
action observation network in the macaque [34]. They are therefore considered to be input
regions for the next level, PPC.
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Figure 2. A priori ROIs of the Action Observation Network: LOTC (yellow line), PPC (blue line),
PMC (green line). LOTC consists of three sub-regions including the MT cluster, MTG, and OTS.
The anatomical landmarks are indicated in black: CS (Central sulcus), PreSC (Pre-central sulcus),
PostCS (Post-central sulcus), IPS (intra-parietal sulcus), POS (parieto-occipital sulcus), STS (superior
temporal sulcus), ITS (inferior temporal sulcus), OTS (occipito-temporal sulcus).

The PPC included the cyto-architectonic regions of SPL, IPS, IPL, and parietal
operculum [35–38]. Its posterior boundary coursed between V6 and V6A [39] and ex-
tended between V3D and V7 [40].

The PMC included the cyto-architectonic supplementary, dorsal, and ventral premotor
areas taken from the Anatomy software, but the ventral part was extended in the rostral
direction to include regions that are responsive to observed actions according to [41,42].

All ROIs were defined on flat maps in Caret software [43]. Only ROIs in the left
hemisphere were considered, because we now have considerable evidence that the position
of the actor in the visual field affects the lateralization of PPC activation in the action
observation paradigm [41], with the activation being contralateral to the hemifield in which
the actor is shown. In almost all videos (with only a few exceptions represented by the
2 swimming exemplars, diving, and rolling side-way), the body of the actor was either
motionless in the right visual field or remained in this field where actions (e.g., walking)
implied horizontal motion to the left, as the camera partially followed the action.

3. Results
3.1. Post-Processing of Video Stimuli

We quantified low-level visual features for each video, including luminance, motion,
and edges. These features can be used as variables of no interest in fMRI experiments
to minimize the effects of those low-level factors. The MATLAB codes that generate
these features as well as the output of these codes for each video can be downloaded
from https://osf.io/u62bp/?view_only=393a2924aa05461394fe9f3171863b94 (accessed on
29 December 2022).

https://osf.io/u62bp/?view_only=393a2924aa05461394fe9f3171863b94
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Luminance: For a given video, we first found the average of the RGB pixel values
in all 150 frames (temporal averaging), and then calculated the average of the pixels in
the averaged frame (spatial averaging). Thus, we obtained a single luminance value
characterizing each video. Figure 3A shows the histogram of the average luminance values
over the 100 action exemplars (further averaged over the three versions of an exemplar
performed by different actors), and Figure 3B shows the values for the different actions.
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Motion: We computed the mean speed in each video using an algorithm by [44]. The
local motion vector was computed for each pixel in the image on a frame-by-frame basis.
We performed temporal averaging (across frames) and spatial averaging (within a frame)
(see Luminance above) to obtain one value for each video. Figure 4A shows the histogram
of the average speed values covering the 100 action exemplars (further averaged over the
three versions of each exemplar performed by different actors), and Figure 4B shows the
values for the different actions.
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Edges (Form): We passed each video frame of each action exemplar through a set
of Gabor filters [45] to extract the edge information. We used Gabors of 5 scales and 8
orientations using the Gabor filtering algorithm described in [46]. We performed temporal
averaging (across frames) and spatial averaging (within a frame) (see Luminance above) to
obtain one output value for each video. Figure 5A shows the histogram of the average edge
information covering the 100 action exemplars (further averaged over the three versions of
an exemplar performed by different actors), and Figure 5B shows the edge information for
the different actions.
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3.2. fMRI Activation Maps

Observation of the 100 actions used in the present study activated the three levels of
the action observation network (p < 0.001 uncorrected): LOTC, PPC, and to a lesser degree
PMC in the left hemisphere, as expected (Figure 6). The LOTC level included activations
in the MT cluster as well as MTG and to some extent OTS, as previously defined (See
Section 2.3.5). The PPC level included activations in functionally defined areas DIPSM
in all participants and DIPSA in subjects 1, 2, and 4. Other PPC level activations in cyto-
architectonic areas of the inferior parietal lobule (IPL) include PFcm, PGa, and PGp in
subject 1; PFcm, PFm, PGa, and PGp in subject2; PFcm and PFt in subject 3, and finally
PFop, PGa, and PGp in subject 4. In addition, superior parietal lobule areas in dorsal
postcentral gyrus were activated in subjects 2, 3, and 4. The PMC level included areas in
the anterior part of the dorsal premotor and ventral premotor cortex in Subject 2 and the
posterior part of the ventral premotor cortex in Subject 3.

In addition to the ROIs of the action observation network, several other areas were
activated by the observation of actions. These included mainly the early visual cortex,
extending into the neighboring parieto-occipital sulcus, including V7 [47], in Subject 1.
Additional activations included a medial frontal site in Subjects 1, 2, and 3 and another
small cluster neighboring the parieto-occipital sulcus (POS) in Subjects 2 and 4.
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4. Discussion

We describe a video stimulus set that consists of 100 different natural actions covering
most of the human repertoire. Each action is performed by multiple actors. The low-
level features of the videos were quantified, allowing them to be factored out in future
experiments. Our fMRI validation study showed that the novel stimuli presented here
drove the action observation network. The weak activation of the premotor level likely
reflects a combination of two factors: a lower level of activation due to distance from
the retina [34], as documented in many studies (e.g., [2]), and an increased selectivity of
premotor voxels whereby these voxels are activated by only a small number of observed
actions, typical for the present study.

To the best of our knowledge, this is the largest action database to be made available
for use in psychology and cognitive neuroscience research. Earlier work used grasping as
the exemplary action for a long-time in action observation research [1]. More recent work
has introduced different action categories such as locomotion, communicative, self-directed,
interaction, and vocal actions [2–5]. However, each study was constrained by a small set
of action videos that was created for the purposes of that study and this made it difficult
to compare the results across different studies due to variations in actors, scenes, video
durations, and video quality. There are video databases that display actions in the form of
point-light displays (See the list in [9]) to overcome the visual differences in the stimuli, but
the shortcoming of these databases is that the stimuli are not naturalistic enough and lack
ecological validity. There are some action databases with naturalistic actions, such as [48],
but it focuses on actions that have emotional content. There are yet other naturalistic action
databases, such as UCF50 [10] or HMDB51 [11], but their target is usually the computer
vision community. Computer vision research has different constraints such as multiple
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cameras, camera motion, or clutter in the videos. Therefore, the databases have been
created in accordance with the problems needing to be solved from a computer-vision
perspective. Given that we are at the early stages of understanding the perceptual and
neural mechanisms processing observed actions, it is necessary to initiate such studies using
a stimulus set that is natural yet simple and sufficiently controlled to facilitate interpretation.
In this respect, they differ from the set of 80 atomic actions [12].

We believe that our database will prove useful for researchers who intend to study the
perceptual and neural differences between observing action exemplars such as locomotion
or communicative actions, as well as interactions between two individuals, extending
ongoing fMRI work in passive subjects with different action classes [2–5]. Our stimulus
set can, however, be used in a much wider set of behavioral and neuroimaging studies,
allowing some generic plausible models to be built for action perception. Indeed, our
stimulus set can be used in an array of visual tasks. A first set are discrimination tasks,
probing the identity of the observed actions, such as identification or same–different
tasks [49,50]. If, as has been proposed [51], observed actions of different classes, such as
manipulation or locomotion, are processed in different PPC regions, one would expect
action discriminability, whether measured perceptually or in neural activity, to depend on
the classes involved. A second set of tasks are classification studies probing the semantic
categories of observed actions. The classification of static images has received a lot of
attention comparing human and deep network performance, in an effort to model object
processing in the ventral pathway [52]. This can be extended to the classification of videos
to model observed action processing in the dorsal pathway. Yet another set of studies are
similarity studies. Subjects have to rate how close two actions are, allowing to derive the
distances between observed actions in perceptual space, which can be compared using RSA
to the distance between these actions in a neural space derived from single cell recordings or
fMRI activations. Such perceptual and neuronal studies would stimulate the computational
modelling of observed actions. There have been a few modelling attempts to explain the
neural mechanisms of observed actions [53–56], but so far these have been limited to only a
few action exemplars such as locomotion or grasping and such modelling efforts would
benefit from testing a larger set of actions. It is noteworthy that in the present stimulus set
the actions were performed by several actors, which makes it easy to design control tasks,
requiring subjects to discriminate or classify actors. Extending this further, the video set
can also be used in studies for person or gender identification from body movements as we
have multiple actors performing the same action with the same background.

A limitation of our stimuli set is that all actions take place in an outdoor scene.
Therefore, researchers who are interested in contextual effects, such as the scene in which
the action takes place, may not find sufficient variability in the stimulus set, although some
actions were set on a beach, or in a lake, in addition to the grassy landscape. However,
many of these actions can be performed indoors as well, and hence from an action-identity
point of view, many of them can still be used in behavioral and neuroimaging experiments
probing action observation.

Another limitation of the stimuli set is that we do not systematically control the
emotional content of the actions. Most actions can be considered as neutral, such as
locomotion, but some of them have an inherently positive valence, such as laughing, or
negative valence, such as signing “no”. Therefore, the set may not be optimal for studies
aiming to systematically investigate the emotional content of the actions.

5. Conclusions

In summary, we believe that our stimuli set will be beneficial to the scientific com-
munity studying action perception from behavioral, neuro-scientific, and computational
perspectives, particularly those who wish to move away from mere grasping and reaching
as prototypical actions. As the stimulus set can be combined not only with fMRI, but also
MEG, EEG, and stereo-EEG, it should find a wide range of applications from the bedside to
the laboratory.
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