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Abstract: The X chromosome gene PLP1 encodes myelin proteolipid protein (PLP), the most prevalent
protein in the myelin sheath surrounding the central nervous system. X-linked dysmyelinating disor-
ders such as Pelizaeus–Merzbacher disease (PMD) or spastic paraplegia type 2 (SPG2) are typically
caused by point mutations in PLP1. Nevertheless, numerous case reports have shown individuals
with PLP1 missense point mutations which also presented clinical symptoms and indications that
were consistent with the diagnostic criteria of multiple sclerosis (MS), a disabling disease of the brain
and spinal cord with no current cure. Computational structural biology methods were used to assess
the impact of these mutations on the stability and flexibility of PLP structure in order to determine the
role of PLP1 mutations in MS pathogenicity. The analysis showed that most of the variants can alter
the functionality of the protein structure such as R137W variants which results in loss of helix and
H140Y which alters the ordered protein interface. In silico genomic methods were also performed to
predict the significance of these mutations associated with impairments in protein functionality and
could suggest a better definition for therapeutic strategies and clinical application in MS patients.

Keywords: myelin proteolipid protein; protein structure prediction; functional analysis; multiple sclerosis

1. Introduction

Myelination is an important process of the CNS that provides electrical insulation to
axons and facilitates the transmission of nerve impulses. This protective layer is formed
by Schwann cells in the peripheral nervous system, while oligodendrocytes form the
sheath in the CNS [1]. The myelin sheath is a multi-layered membrane composed of
proteins and lipids (approximately 30% and 70%, respectively). The lipid composition
contains high amounts of cholesterol, phospholipids and glycolipids [2]. PLP is one of the
major myelin proteins which, together with the DM20 isoform resulting from alternative
splicing, constitutes 50% of the total protein. PLP plays a crucial role in the formation and
maintenance of proper myelin structure and stability in the CNS [3]. It is a transmembrane
and hydrophobic protein, with 48% of its sequence being non-polar or aromatic amino acids
including 14 cysteine residues, which either undergo post-translational modifications and
bind to fatty acids or are involved in intramolecular disulfide bonds. It has been observed
that patients suffering from MS have an increased population of T-cells specific for PLP
peptides and increased levels of anti- PLP181–230 specific antibodies were found in serum
levels compared to healthy individuals and patients with other neurological diseases [4].
Human and rodent PLP share several epitopes that are recognized by T cells [5]. Other main
counterparts are myelin basic protein (MBP), which constitutes 30% of the total myelin
protein in the CNS, myelin oligodendrocyte glycoprotein (MOG) and myelin-associated
glycoprotein (MAG) [6–8]. Smaller percentage is occupied by alpha-beta crystallin, a small
heat shock protein [9].

Multiple sclerosis (MS) is a chronic demyelinating inflammatory condition affecting the
human central nervous system (CNS) [10]. It is unclear whether MS begins in the periphery,
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through activation of immune cells that then penetrate the CNS and cause damage, or
within the CNS through primary damage to myelin or oligodendrocyte [11,12]. This could
be the result of mutations in molecules encoding essential myelin or oligodendrocyte
components, even though genome-wide association studies have not indicated substantial
associations with any of these in MS [13]. However, the possibility that mutations in
genes encoding these components are present in some proportions of MS patients remains
under consideration. To that end, missense mutations in PLP1 gene have been described
in patients with clinical symptoms consistent with an MS diagnosis, such as an amino
acid substitution at residue 31 of PLP (L31V) in a female patient with primary progressive
MS [14]. Mutations can largely affect protein functionality, hence analysis of potential
alterations in protein tertiary structure can reveal new evidence for their effect on phenotype.
A novel mutation in PLP1 exon 2 that changed leucine to arginine (L31R) was reported in a
mother and her son through sequencing of the PLP1 gene [15]. In a recent study, a mother
and daughter with a preliminary diagnosis of primary progressive MS carried a nonsense
mutation at codon 210 T > G [16]. Moreover, a L31P mutation was also associated with
severe PMD [17]. The transmembrane portion of PLP1/DM20 proteins could be disrupted
by both mutations, affecting intracellular trafficking. Neuroinflammation and axonal
neurodegeneration was also reported in mice carrying the R137W and L31R mutations by
one year of age [18].

The structure and function of the native protein may be significantly altered by mis-
sense mutations, particularly those in the coding area that modify the amino acid con-
figuration. In order to determine the impact of each nonsynonymous single nucleotide
polymorphism (nsSNP) in a related protein, it is common practice to functionally compare
mutant proteins with their wild-type counterparts associated with specific traits in vitro [19].
However, the experimental design for each mutational modification is time- and labor-
intensive. Thus, it is feasible and cost-effective to perform data mining for mutational
analysis and functional prediction on protein properties using computational methods [20].
The three-dimensional (3D) structure of a protein has a pivotal role in protein’s functional
characterization. There are many efficient structural biology algorithms for predicting
tertiary protein structures based on their amino acid sequences. Therefore, considering
the role of the PLP1 gene in spontaneous myelin and axonal damage, we retrieved all
mutations in the PLP1 gene related to MS. Using in silico structural and functional analyses,
this study aimed to describe potential disease-associated variants of the PLP1 gene.

2. Materials and Methods

A variety of different computational approaches was used to screen out the functional
effects of the variants in the PLP1 gene related to MS. The methodology we followed is
divided into four distinct levels, including (i) primary data collection, (ii) creation of the
3D protein structures, (iii) 3D protein structure comparison process (iv) variant functional
analysis. A baseline method raised from pure bioinformatics approaches was utilized as a
benchmark for validation.

2.1. Summary of Variants

Five variants of PLP1 gene and specifically the association of three of them with
multiple sclerosis were analyzed in our study. The transcript sequence and the protein
encoded by the PLP1 gene were retrieved from the Ensembl database [21]. Then, the
UniProt ID for the amino acid (P60201–MYPR_HUMAN) was obtained from UniProt
Protein Database.

2.2. In Silico Methods for Predicting Mutation Significance

dbNSFP database was used for functional prediction and annotation of potential
non-synonymous single-nucleotide variants (nsSNVs). The current version of this high-
performance variant annotation tool can be queried to extract prediction scores from
38 algorithms [22,23]. dbNSFP also provides conservation scores and supplementary
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data, such as allele frequencies, functional gene descriptions, gene expression and gene
interaction data, etc. MutPred2 machine learning-based approach was implemented to
predict the pathogenicity of amino acid substitutions and their molecular mechanisms [24].

Further computational tools such as ANNOVAR (https://annovar.openbioinformatics.
org/en/latest/, accessed on 16 September 2022), KGGSeq (http://pmglab.top/kggseq/,
accessed on 16 September 2022), VarSome (https://varsome.com, accessed on 16 Septem-
ber 2022), UCSC Genome Browser’s Variant Annotation Integrator (http://genome.ucsc.
edu/cgi-bin/hgVai, accessed on 19 September 2022), Ensembl Variant Effect Predictor
(http://www.ensembl.org/info/docs/tools/vep/index.html, accessed on 20 September
2022), SnpSift (https://pcingola.github.io/SnpEff/, accessed on 20 September 2022) and
HGMD (https://www.hgmd.cf.ac.uk/ac/index.php, accessed on 22 September 2022) were
used to strengthen the analysis, and the outcomes were validated using each platform
separately. The algorithms utilized in this study are publicly accessible for all academic,
non-commercial uses.

2.3. Protein Stability Correlation Analysis

The correlation between mutations and protein stability was analyzed based on a
lesser decrease in free energy (∆G or dG). Alterations in protein stability are determined by
differences in free energy (∆∆G or ddG) between wild-type and mutant proteins [25]. The
DynaMut server was used to assess the effect of a single point mutation on protein stability,
conformation, and flexibility, and to visualize protein dynamics [26]. DynaMut provides
more accurate (p-value < 0.001) assessments of the effects of single mutations on protein
stability than other well-established methods. In addition, the DynaMut server defines
∆∆G ≥ 0 as stabilizing and ∆∆G < 0 for comparison purposes. In addition, Site Directed
Mutator (SDM) server was used to estimate the change in protein stability following
mutation [27].

2.4. Analysis of Protein Structural Conformation and Conservation

ConSurf server (http://consurf.tau.ac.il/, accessed on 7 October 2022) was utilized to
identify highly conserved functional areas of the PLP1 gene-encoded protein [28].

2.5. Prediction of the Secondary Structure

Using the PSIPRED server (http://bioinf.cs.ucl.ac.uk/psipred/, accessed on 10 Octo-
ber 2022), the secondary structure of PLP1 was predicted [29]. It is based on a two-stage
neural network with position-specific scoring matrices derived from PSI-BLAST to predict
the available secondary structures of a protein.

2.6. Homology Modeling

SWISS-MODEL was utilized to determine the three-dimensional structure of PLP1.
The CAMEO system determines the precision of the generated model. SWISS-MODEL
is based on evolutionary information and searches a high-throughput template library
(SMTL) for the optimum sequence–template alignment to construct the model [30]. Phyre-2
server was used to predict the homology-based three-dimensional structure of the query
amino acid sequence [31]. I-TASSER was selected for protein structure prediction and
structure-based function annotation [32–34]. Initially, structural templates from the PDB
are discovered using LOMETS, a multithreaded algorithm. With the templates as guides,
full-length atomic models are then constructed using simulations of fragment assembly
iterations. The 3D models are re-run through the BioLiP database of protein functions
to gain insight into the target’s function. C-I-TASSER, an enhanced version of I-TASSER
designed to accurately predict protein structures and functions was used to generate inter-
residue contact maps beginning with a query sequence [34]. The structural templates of
the PDB are derived by the multithreaded method LOMETS, and their full-length atomic
models are constructed using contact maps and replica exchange Monte Carlo simulations.
Finally, COFACTOR uses the structural model to deduce the protein’s biological functions.

https://annovar.openbioinformatics.org/en/latest/
https://annovar.openbioinformatics.org/en/latest/
http://pmglab.top/kggseq/
https://varsome.com
http://genome.ucsc.edu/cgi-bin/hgVai
http://genome.ucsc.edu/cgi-bin/hgVai
http://www.ensembl.org/info/docs/tools/vep/index.html
https://pcingola.github.io/SnpEff/
https://www.hgmd.cf.ac.uk/ac/index.php
http://consurf.tau.ac.il/
http://bioinf.cs.ucl.ac.uk/psipred/
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C-I-TASSER produces significantly more accurate models than I-TASSER in large-scale
benchmark tests.

2.7. Mutated Structure Prediction

Once the mutations were identified, the construction protein-based structures in
PDB format were followed. I-TASSER and DynaMut servers were used to perform the
transformation of the amino acid sequences to 3D protein models. Then, for each model,
structural alignment was carried out and the structural similarity score was calculated. The
TM-align and TM-score algorithms were selected for the alignment and the similarity score
calculation, respectively [35].

2.8. Protein Three-Dimensional Model Verification

Three-dimensional structures were validated using Ramachandran plot analysis (http:
//molprobity.biochem.duke.edu, accessed on 19 October 2022). It provides the number
of residues that are located in the allowed, favored, and outlier regions. If a significant
fraction of residues resides in the allowed and favored region, it is projected that the model
is accurate [36].

3. Results
3.1. PLP1 Variants Associated with MS

PLP consists of 276 amino acid residues and four hydrophobic transmembrane do-
mains, and its expression is restricted to oligodendrocyte cells. The area of the PLP1 gene
that encodes residue 31 appears to be a hotspot for mutation, since it has been described in
MS patients (L31R and L31V mutation) [14]. In cases of severe PMD, the L31P mutation
has also been documented [14]. The idea of mutation hotspots in PLP1 has been previously
characterized in PMD patients, and numerous mutations have been detected in a number of
amino acids [37]. R137W mutation has also been described in MS patients, while the H140Y
one was selected because it is the closest known mutation to residue 137 [14]. Detailed
information about the variants analyzed in the current study is shown in Table 1.

Table 1. PLP1 variants. This mutation was selected as the closest mutation to residue 137 known for PLP1.

Location Codon Change Amino Acid Position Amino Acid Alteration Description 1

X:103785668 CTG/GTG 31 L/V MS- like disease mutation
X:103785669 CTG/CCG 31 L/P Severe PMD mutation
X:103785669 CTG/CGG 31 L/R MS- like disease mutation
X 103786682 CGG/TGG 137 R/W MS- like disease mutation
X 103786691 CAT/TAT 140 H/Y Mild SPG2 mutation

1 MS: multiple sclerosis; PLP: myelin proteolipid protein; PMD: Pelizaeus–Merzbacher disease; SPG2: spastic
paraplegia type 2.

3.2. Variant Functional Analysis

There are numerous assessment strategies for missense variants and recent databases
include results from a variety of techniques to assist the evaluation of the impact of vari-
ations predicted to modify the peptide sequence of a gene. Herein, using dbNSFP, we
investigated the functional consequences of missense SNPs, including whether they are
normal, disease-causing, or effective by chance. As Table 2 shows, functional analysis
revealed that R137W, L31P, L31V, L31R are damaging from the most prediction tools with a
high score, while the results for H140Y were different across the different methods.

http://molprobity.biochem.duke.edu
http://molprobity.biochem.duke.edu
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Table 2. Functional analysis of PLP variants using dbNSFP.

Variant L31P L31V L31R R137W H140Y Range (Low to
Damaging)

Polyphen2_HDIV_score 0.999 0.997 0.999 0.999 0.015 0.03061 to 0.91137
LRT_converted_rankscore 0.8433 0.8433 0.8433 0.4496 0.53742 0.00162 to 0.8433

MutationTaster_score 1 0.999999 1 0.627105 0.281663 0 to 1
MutationTaster_converted_rankscore 0.81001 0.58761 0.81001 0.81001 0.81001 0.08979 to 0.81001

MutationAssessor_score 2.71 2.36 2.71 1.24 0.69 −5.17 to 6.49
MetaLR_score 0.9794 0.9771 0.9794 0.9547 0.9047 0 to 1

MetaRNN_score 0.988245 0.946438 0.98141 0.892939 0.962404 0 to 1
MutPred_score 0.932 0.813 0.887 0.663 0.779 0 to 1

DEOGEN2_score 0.994664 0.910984 0.994756 0.707527 0.697598 0 to 1
ClinPred_score 0.996376 0.982601 0.997494 0.958003 0.509568 0 to 1

We strengthened our analysis using further computational tools such as ANNOVAR,
KGGSeq and VarSome and the outcomes were validated using each platform separately.

The results of MutPred2 demonstrated that these variants may alter the function of
protein structures (Table S1). MutPred2 provides a general score which represents the
average of all neural network scores based on a ranked list of specific molecular alterations
potentially affecting the phenotype, and therefore, this number indicates the probability
that the amino acid substitution could be harmful. A score threshold of 0.50, if considered
as a probability, could reveal pathogenicity. However, a threshold of 0.68 results in a false
positive rate (fpr) of 10%, whereas a threshold of 0.80 results in an fpr of 5%. In our case,
L31P (score 0.973), L31V (score 0.854), and L31R (score 0.972) mutations may result in an
altered transmembrane protein (Table S1). The R137W variant (score 0.684) may lead to
a loss of helix, whereas the H140Y variant (score 0.556) may result in a changed ordered
interface or transmembrane protein.

3.3. Conformational Analysis and Alteration of Protein Stability upon Amino Acid Substitution

DynaMut predicts the change in stability by calculating the changes in unfolding Gibbs
free energy (∆∆G), as summarized in Table 3. For comparison, ∆∆G predictions based on
protein structure were also displayed including dinstinct approaches and assumptions.
Parallel analysis was performed using Site Directed Mutator (SDM) computational methods
to verify the molecular effect of the five variants (Table S2). Three of them (L31V, L31P L31R)
revealed a diminution in stability by increasing the molecular flexibility of the wild-type
proteins (Tables 3 and S2). On the contrary, H140Y variant enhanced the stability of the
PLP1 protein. R137W variant revealed conflicting results. DynaMut demonstrated that the
amino acid changes in R137W decrease stability, while SDM exhibited elevated stability
(Table S2). ENCoM analysis was executed to calculate the vibrational entropy difference
(∆S) between wild-type and mutant structures as well as to explore protein conformational
space and the effect of mutations on protein function and stability. As Figure 1 illustrates,
the mutation causes a change in the vibrational entropy of the amino acid.

Table 3. Conformational Analysis of Protein’s Stability Change upon Amino Acid Substitution.

Variant ∆∆G
(kcal/mol) Outcome ∆∆SVibENCoM

(kcal.mol−1.K−1) Outcome 1

L31V −0.133 Destabilizing 0.083 Increase
L31P −1.011 Destabilizing 0.413 Increase
L31R −0.256 Destabilizing 0.231 Increase

R137W −0.400 Destabilizing 0.111 Increase
H140Y 0.519 Stabilizing −0.063 Decrease

1 Molecule flexibility.
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According to ConSurf analysis, the variants located at position 31 (L31V, L31P, and 

L31R) were found in a highly conserved region with a conservation score of 9 (Figure 2). 
Based on this indication, we can estimate that these nsSNPs play a functional role on the 
protein conformation. On the contrary, R137 and H140 displayed a conservation score of 
1 (Figure S1). 

Figure 1. Protein flexible conformation based on the Vibrational Entropy difference (∆∆S) between
wild-type and mutant structures on the structure of PLP1. A visual representation of the chain in
which the mutation occurs is also mapped. Amino acids colored according to the vibrational entropy
change upon mutation. Blue represents a rigidification of the structure and red represents a gain in
flexibility. (A) Normal PLP1; (B) L31P mutant; (C) L31R mutant; (D) L31V mutant; (E) R137W mutant;
(F) H140Y mutant. The image is illustrated by DynaMut. The positions of the point mutations are 31,
137 and 140. Abbreviations: L is leucine; P is proline; R is arginine; V is valine; W is tryptophan; H is
histidine; Y is tyrosine.

3.4. Analysis of the Structural Conformation and Conservation of PLP1

According to ConSurf analysis, the variants located at position 31 (L31V, L31P, and
L31R) were found in a highly conserved region with a conservation score of 9 (Figure 2).
Based on this indication, we can estimate that these nsSNPs play a functional role on the
protein conformation. On the contrary, R137 and H140 displayed a conservation score of 1
(Figure S1).
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3.5. PLP1 Protein Secondary Structure Prediction

The alpha helix, beta sheet distribution and coils for PLP1 were calculated according
to PSIPRED protein structure prediction server. Among the exposed secondary structures,
the highest in percentage was alpha helix (65%) followed by coils (30%) and no beta-sheet
(0.0%) (Figure S2).

3.6. Prediction Software Benchmarking and Creation of Tertiary Protein Structures

Using four distinct homology modeling techniques, the three-dimensional (3D) struc-
tures of the PLP1-encoded protein were reconstructed. Since only 3% of residues 45–53 is
represented on the protein data bank (https://www.ebi.ac.uk/pdbe/pdbe-kb/, accessed
on 10 October 2022), there was no known crystal data of this protein of the appropriate
length. Once the mutations were identified, the next step was to construct protein-based
structures to represent these variants. Since the 3D protein feature view was not determined
through experimental methodologies, established computational tools and databases such
as Uniprot (UniProt Consortium, London, UK, 2015), Swiss-Model, Phyre-2, I-TASSER,
C-I-Tasser, PDBeFold and Dynamut were evaluated for predicting the mutated structures
and calculated the effect of these domain mutations on the 3D protein structure.

Based on the Hidden Markov approach, the Phyre-2 server was implemented to
predict the homology-based three-dimensional structure of the query amino acid sequence.
It incorporates five phases to construct a model: (1) collection of homologous sequences,
(2) screening of fold library, (3) modeling of loops, (4) ab initio folding simulation Poing
for multiple template modeling, and (5) placement of side chains [31]. Tertiary protein
structures were formed based on the available structure prediction tools. Out of an extensive
benchmarking of the structural predictive tools, we selected to retrieve the PLP1 target
structure from the AlphaFold database. Comparison results revealed that AlphaFold
reached the highest accuracy between predicted and experimental structure. In Figure 3,
the visualization of the predicted 3D model of PLP1 protein is presented as performed by
AlphaFold, Phyre-2, I-TASSER and C-I-Tasser, respectively, as these servers exhibited the
highest accuracy in predicting the experimental structure. The model–template alignment
by Swiss Model retrieved structures that did not include amino acids involved in the
present outcomes.
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Figure 3. Protein structure prediction models of PLP1 calculated by different computational method-
ologies. AlphaFold model presented high confidence for the residue of the protein at position 31
(pLDDT > 90), but limited confidence for the PLP1 residue at position 137 (pLDDT < 50). Model 1
showed the highest C- score (−3.95) in I-TASSER and C-I-Tasser (−3.89) servers. Phyre2 model 12
with a confidence of 16.98% was the only one that included the residues analyzed in this study.

3.7. Variant Tertiary Protein Structures

The next step in our pipeline was to construct the structures for these mutations using
I-TASSER and DynaMut [26]. The DynaMut provides a comprehensive evaluation and
visualization of protein mobility and flexibility using two independent, well-established
normal mode approaches to analyze protein dynamics by sampling conformations. In
parallel, assessment of the effect of mutations on protein dynamics and stability due

https://www.ebi.ac.uk/pdbe/pdbe-kb/
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to changes in vibrational entropy can be executed. The server combines graph-based
signatures with normal mode dynamics to predict the influence of a selected mutation on
protein stability. The predicted models were compared against the corresponding AphaFold
structure through the TM-align algorithm and a benchmarking of the structural predictive
tools was accomplished. Comparative results revealed that DynaMut reached the highest
accuracy between the predicted and experimental structure and was also used to verify the
impact of mutations on protein conformation, flexibility and stability as well as to visualize
protein dynamics. The TM-score is the metric that will lead to the selection of the ideal
approach for producing the potential tertiary structures of a protein. TM-align generates
an optimal residue-to-residue alignment based on structural similarity utilizing dynamic
programming iterations for two protein structures of uncertain equivalence [38]. TM-score
for the five mutated structures shows that they were approximately in the same fold with
the normal protein. Figure 4 presents the predicted interatomic interactions calculated for
the wild-type protein and the single point mutations. Both wild-type and mutant residues
are colored in light green and depicted as sticks, along with domains participating in any
interactions surrounding them.
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3.8. Validation of the Predicted Structures

The Ramachandran plot was used to examine the conformation of the protein’s back-
bone. It represents an x-y plot of the phi/psi dihedral angles between NC-alpha and
Calpha-C bonds. The Ramachandran plot of the wild-type protein in the AlphaFold model
revealed 259 residues (94.2%) in the favored regions, 268 (97.5%) in the allowed regions
and seven residues in the outlier region (Figure S3). The mutant protein structures ob-
tained by DynaMut demonstrated the same results with wild-type PLP1. On the contrary,
I-TASSER structure prediction models display poor Ramachandran plots compared to other
algorithms. I-TASSER generates a model by reassembling structural parts from various
templates, hence the model occasionally features unfavorable Ramachandran plot regions
(Figure S4). The homology models indicated that PLP1 protein models obtained by Dy-
naMut were accurate and they are useful for conducting additional studies and gaining a
deeper understanding of the biological activity of the studied protein.

4. Discussion

In this study, the majority of tools indicated that MS-associated PLP1 mutations
would have a significant impact on the protein structure, stability and function. Our
analysis employed several computational approaches to predict the effects of the PLP1
gene variants, and important results were obtained. Examination of the modified protein
structure revealed a destabilizing effect and an increase in flexibility. Loss of protein
thermodynamic stability can reduce the ability of its structure to perform normal functions.
Furthermore, precise analysis using MutPred2 revealed that these variants may affect
protein functionality and structure. We used this machine learning-based approach to
integrate data to reason probabilistically about the pathogenicity of amino acid substitutions.
The resulted predictions for L31P, L31V and L31R indicated that these mutations may lead
to an altered transmembrane protein. The R137W variant may also cause loss of helix, while
the H140Y variant may alter the ordered interface of transmembrane protein. The findings
of this study provide important insights for future investigations aimed at determining the
role of PLP1 in MS.

Missense mutations have a substantial effect on protein functionality. A comprehen-
sive computational examination of the phenotypic characteristics associated with specific
variants can reveal the vulnerabilities that interfere with the normal protein activity. This
study suggests that mutations in myelin-related genes may play a role in the development
of MS. There are two putative PLP1-related MS mechanisms: PLP1 mutations could dam-
age oligodendrocytes [39], generating an inside-out disease process, or they could cause
the expression of neoantigens that the immune system could target [14]. Both can occur
concurrently, so PLP1 should be investigated further. Previous studies showed that a wide
variety of PLP1 genetic alterations have been identified as the underlying causes of PMD
and SPG2 [40,41]. Understanding the pathophysiology of the disorders illustrated by a
genotype–phenotype correlation requires an understanding of their cellular and metabolic
impacts. The consequences of pathological modifications of PLP1 gene were better under-
stood than the physiological functions of the PLP1 protein [37]. After more than 50 years
of research, most of the intracellular mechanisms related to PLP1 functionality are still
unknown, although the remarkable level of sequence conservation suggests that many
mutations could cause severe implications, including MS [14].

In the present study, for most of the known variants, the 3D structures of the proteins
are not experimentally known, so there is a clear lack of experimental evaluations of variant
effects. Prediction methods can help close the sequence-annotation gap, but with respect
to deep annotations of function, in silico methods remain limited. These methods are
mainly oriented towards intrinsically disordered proteins and clustered data are based
on sequence identity thresholds, retaining a single representative sequence from each
group. This approach results in models that resemble having learned a concept instead of
a probability distribution. Well-defined theoretical support for this situation is an open
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problem that will formalize and improve understanding of this long-standing practice in
computational biology.

MS is a persistent autoimmune inflammatory disease of the human central nervous
system (CNS). It is characterized by loss of motor and sensory function resulting from
immune-mediated inflammation, demyelination and sequelae destruction of nerve axons.
Along the axon, there are intermittent points that are not surrounded by myelin and are
called junctions of Ranvier [42]. MS shows great diversity both at the point of disease onset
and at the stage of developmental progression. Four main types of the disease are distin-
guished: Relapsing–Remitting MS (RRMS) that is characterized by clearly defined relapses
of increased disease activity and the worsening of symptoms; Secondary Progressive MS
(SPMS), the next step of the RRMS progress for the majority of patients; Primary Progressive
MS (PPMS), presenting with symptoms that have been steadily worsening since onset of
the disease, without relapses or remissions; and finally Progressive Relapsing MS (PRMS)
that is progressive from onset with continuous worsening between relapses [43,44]. Myelin
proteins are considered potential targets of the immune system in MS, and activated T-cells
recognize specific myelin epitopes at sites of extensive demyelination. According to clinical,
pathologic, imaging and electrophysiologic studies, it is not yet understood whether MS is
beginning in the periphery, by stimulation of immune cells that thereafter penetrate the
CNS and cause damage, or within the CNS through primary myelin or oligodendrocyte
injury [45]. This could be the result of mutations in molecules encoding critical components
of myelin or oligodendrocytes despite the fact that genome-wide association studies have
not found significant links between them and multiple sclerosis. However, it remains
possible that mutations in genes encoding these components may be present in a subset of
MS patients. In this regard, missense mutations in PLP1 have been identified in patients
exhibiting clinical symptoms consistent with a diagnosis of multiple sclerosis [14].

Although the pathogenesis of MS remains unclear, multiple genes, generally of poor
penetrance, have been related to MS susceptibility, and their nature suggests autoimmu-
nity causes disease development in most cases [46]. MS is a serious autoimmune disease,
unfortunately without a cure; however, over the last three decades, there has been a rapid
expansion of therapeutic approaches for the disorder including immunoprotective strate-
gies, shingosine-1-phoshate receptor modulators and cell-based therapies [47]. Emphasis
should be placed on early identification of risk factors for early therapeutic interventions.
The disease has a different pathogenetic factor in each patient. PLP1 mutations L31V,
L31R and R137W could impair PLP trafficking out of the ER and induce the unfolded
protein response (UPR). The data imply that PLP1 mutations could have a harmful effect on
oligodendrocyte functionality and consequently cause MS [14]. This is confirmed by recent
finding in mice carrying the L31R and R137W mutations: they showed neuroinflammation,
axonal degeneration, neuronal loss, and brain shrinkage by one year [18]. The same muta-
tions and the loss of function of glial PLP1 gene indicated a clinical scenario similar to MS
in humans. The area of PLP1 gene encoding residue 31 appears to be a hotspot for mutation
as L31P has been linked to severe PMD. The L31V mutation shows the least effects on
PLP expression, trafficking, or UPR induction is a conservative mutation, as we already
stressed [14]. It is not expected to have a significant impact on the hydrophobicity of the first
transmembrane region in which it is located, as L and V are hydrophobic amino acids with
similar structures and neutral side chains. An L31R mutation in the first transmembrane
domain of PLP could affect the overall charge, hydrophobicity, and/or secondary structure
of the transmembrane helix, disrupting PLP structure. The L31P mutation would force a
stiff bend on the polypeptide and damage the transmembrane helix. R137W occurs in exon
3B, which is deleted in PLP DM20. DM20 is expressed before PLP during ontogenesis and
may play a role in the development of new oligodendrocytes [48]. Several L31V-mutated
peptides were expected to bind with higher affinity to some of the patient’s HLA molecules
than the native peptide, producing de novo epitopes and potentially inducing/activating
a new group of autoreactive T cells [14,49]. Such responses depend on the presence of
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proteases that can digest peptides and T cells that can recognize novel epitopes in the
patient’s T cell repertoire.

5. Conclusions

PLP1 plays an important role in myelin structure and stability, an insulating lipoprotein
which helps transmit nerve impulses. Numerous computational tools were utilized in the
present in silico analysis, which demonstrated that the amino acid changes L31V, L31R,
and R137W of the PLP1 protein are functionally detrimental. The L31V and L31R variants
of PLP1 reside in the conserved domain of the protein. To examine the stability of mutant
and wild-type PLP1 proteins, we also calculated the changes in their free energies. Our
findings provide evidence for the functional role of these three variations, which facilitates
the establishment of accurate insights for drug targeting and future clinical application
in patients with multiple sclerosis. Alteration of overall cellular activity often arises as
a consequence of altered function of one or more individual proteins. Identification of
more variants as specific targets may provide a better understanding of conformational
dynamics for future studies, while molecular recognition specific to mutated proteins will
play an important role in broadening the scope of intracellular mechanisms involved in
inflammatory demyelinating diseases.

Key Points

1. The majority of computational tools indicated that MS-associated PLP1 mutations
would have a significant impact on the protein structure, stability and function.

2. Loss of protein thermodynamic stability can reduce the ability of its structure to
perform normal functions.

3. The resulted predictions for L31P, L31V and L31R indicated that these mutations may
lead to an altered transmembrane protein.

4. The R137W variant may also cause loss of helix, while the H140Y variant may alter
the ordered interface of transmembrane protein.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci13010042/s1, Table S1: Prediction of pathogenicity of
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