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Abstract: Modern computational solutions used in the reconstruction of the global neuronal network
arrangement seem to be particularly valuable for research on neuronal disconnection in schizophrenia.
However, the vast number of algorithms used in these analyses may be an uncontrolled source of
result inconsistency. Our study aimed to verify to what extent the characteristics of the global network
organization in schizophrenia depend on the inclusion of a given type of functional connectivity
measure. Resting-state EEG recordings from schizophrenia patients and healthy controls were
collected. Based on these data, two identical procedures of graph-theory-based network arrangements
were computed twice using two different functional connectivity measures (phase lag index, PLI,
and phase locking value, PLV). Two series of between-group comparisons regarding global network
parameters calculated on the basis of PLI or PLV gave contradictory results. In many cases, the values
of a given network index based on PLI were higher in the patients, and the results based on PLV were
lower in the patients than in the controls. Additionally, selected network measures were significantly
different within the patient group when calculated from PLI or PLV. Our analysis shows that the
selection of FC measures significantly affects the parameters of graph-theory-based neuronal network
organization and might be an important source of disagreement in network studies on schizophrenia.

Keywords: functional connectivity; schizophrenia; EEG; neuronal networks; PLI; PLV; MST

1. Introduction

Psychiatric diseases and milder forms of psychological health disturbances have
become one of the key social and health challenges around the world. According to
a recent report on the prevalence of mental health problems in the US (2020), in 2019
about 51.5 million American adults (20.7% of the population) suffered from some kind of
mental illness, and 13.1 million adults were diagnosed with serious mental illness (SMI),
which mainly includes severe diseases that significantly hinder or prevent independent
functioning, education, and paid work. In this context, it is of vital importance that in both
mentioned populations young adults aged 18–25 had the highest age-related prevalence
of psychological health problems [1]. Schizophrenia is one of the most burdening mental
illnesses with a clinical onset occurring in adolescence or early adulthood. The disease
development commonly has a slow and hidden course with a long-lasting increment of
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so-called negative syndromes, i.e., affective blunting, social isolation, and loss of interests
and initiative. The second phase usually relates to the exacerbation of more or less explicit
psychotic symptoms such as auditory verbal hallucinations and delusions, which might be
described as incorrect judgments of reality and other people’s behavior, i.e., in the form of
delusions of persecution or grandeur [2,3]. This well-known psychiatric psychopathology
is accompanied by the presence of cognitive dysfunctions affecting patients’ abilities to
comprehend complex language communication, maintain focused attention, plan, solve
everyday problems, and generally regulate goal-directed behaviors [4,5].

Despite the existence of numerous theoretical approaches to understanding the eti-
ology of schizophrenia, one may say that currently a substantial group of neuroscientists
acknowledge schizophrenia as a brain connectivity disorder, given the vast body of evi-
dence documenting neuronal miswiring and disturbances in the organization of functional
integration at the levels of synapses, groups of neurons, hemispheres, and the so-called
large-scale neuronal networks [6,7]. The disconnection hypothesis suggests that individual
symptoms might be explained with reference to abnormalities regarding mechanisms grant-
ing the optimal coordination of a given group of neuronal structures. On the other hand, it
enables an understanding of the complexity of the psychosis’s clinical picture as a result of
multilayered disruptions in the organization of the whole brain and not only damage or
hypofunction encompassing individual cortical areas or subcortical structures [8,9].

Undisputed progress in research on schizophrenia conducted with the application
of functional connectivity (FC) measures and network theory solutions caused a notice-
able advance in the modern comprehension of the disease as a systemic pathology of the
nervous system, but on the other hand, the rapid introduction of many computational
methods used in the reconstruction of the neural network gave rise to some methodological
confusion related to the multiplicity of mathematical algorithms of similar functions used
in parallel. This peculiar excess of algorithms and computational designs may be one of the
sources of heterogeneity in the obtained results, especially since the very process of network
reconstruction is multiphase and involves the use of various signal processing techniques
at different stages [10–12]. Finding the optimal computational tool to establish the unique
features of schizophrenia-related patterns of functional connectivity and global-scale net-
work configuration seems to be an increasingly important goal in clinical neuroscience,
especially considering the still unmet goal of elaborating differential diagnosis methods
based on objective biological markers [13].

Considering the above, our analyses aimed to verify to what extent the selection
of just two different functional connectivity indicators could affect the obtained results
regarding the comparison of the structure of the global neural network in a sample of
patients diagnosed with schizophrenia compared to a demographically similar control
group. Analyses of global neural network configuration carried out with the use of graph
theory (our analysis applied the minimum spanning tree [14]) provide many character-
istics describing the organization of brain activity, and above all they inform whether a
given network is dominated by mechanisms of integration or selection [15] and whether
a network processes information according to the principle of reduced wiring costs and
efficiency [16]. Network research in schizophrenia, including that using graph theory and
its characteristics, such as the path length, clustering coefficient, and small-worldness, is
particularly important because it captures the activity of the whole brain as an organized
or disorganized system [17]. However, we postulate that the computational complexity
of these analyses and the potentially unhampered freedom of choice regarding applied
functional connectivity measures may make them susceptible to volatility and eventually
result in low outcome reproducibility.

Therefore, we assumed that our study could generate two main findings:

(1) Establishing whether and to what extent the graph theory network parameters
(e.g., path length) show independence from the input data (FC measures) in terms of
the range and direction of difference between patients and healthy controls regarding
a given graph parameter;
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(2) If it proved that selected graph-theory indicators are independent of the exact measure
of connectivity strength, it would be possible to determine which FC parameter used
as an element of the global network computation differentiates patients and controls
to the greatest extent. Indicating such FC measures may guide future research.

By the independence of network parameters from the input data, we mean that
the direction of differentiation between patients and controls is the same and that these
two groups can be differentiated by the same network parameters, regardless of the FC
measure used for their calculation. Moreover, the lack of significant intragroup differences
in the graph-theory-based network parameters calculated on the basis of two different
FC measures was considered an indicator of the non-susceptibility of these algorithms
to input factors. However, if graph-theory parameters, calculated on the basis of two
different FC measures, give completely different results in terms of the differences and
similarities between the two groups, this indicates that the network analysis outcomes are
more dependent on the specificity of the included FC measures and consequently that the
selection of a specific FC algorithm creates the final results regarding the specificity of the
whole-brain network architecture.

2. Materials and Methods
2.1. Participants

The study included a group of patients diagnosed with schizophrenia, according to
the DSM-5 classification, aged 20–35, with at least 10 years of education. The following
exclusion criteria were taken into account: prior diagnosis of an intellectual disability,
psychoactive substance addiction, structural abnormalities of the brain or other MRI in-
dicators of its acquired damage (e.g., post-traumatic or vascular changes), comorbidity
of neurological diagnoses, taking benzodiazepines and antiepileptic drugs, more than
three psychotic episodes requiring hospitalization, and pronounced features of metabolic
syndrome. The patients included in the study group had to be treated only with atypical
antipsychotics. The patients came from the first Psychiatry Department of the Medical
University of Lublin. After assessing the clinical group and determining its basic demo-
graphic characteristics, healthy individuals were selected to form a control group using a
pairwise selection method. The exclusion criteria in the control group were the diagnosis
of mental and neurological diseases and disorders, head injuries and concussions, and
taking medications that may affect EEG recordings (e.g., hypnotics and benzodiazepines).
Subjects did not receive remuneration for participating in the study. All participants gave
their written consent for the study, and the research project was positively assessed by the
local ethics committee.

2.2. EEG Recording Acquisition

First, for each participant, 15 min of resting-state EEG (eyes closed) data were recorded
with 19 scalp position, electro-cap (Electro-Cap International Inc., Eaton, OH, USA), and
Ag/AgCl disk electrodes. Electrodes were distributed according to the 10–20 International
system (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, A1, A2, F7, F8, T3, T4, T5, T6, Fz, Pz,
and Cz). During the acquisition, subjects sat in a well-lit and quiet room. The electrode
impedances were kept below 5 k, and the data were filtered from 0.5 Hz to 70 Hz (with
an active notch filter set to 50 Hz) when the sampling rate was 512 Hz. The data were
exported into ASCII format after recording. The post-processing procedure was made in
the EEGLAB 2021.0 [18] program, which is a Matlab 2018a toolbox. In the first step of the
post-processing procedure, the signal was filtered with a 0.5–45 Hz bandpass filter (second-
order Butterworth filter). Second, the reference was changed offline into the average one.
Third, from the processed signal, 75 eight-second-long epochs (4096 samples) without
artifacts were extracted for each patient by a clinical neurophysiologist. Lastly, the EEG
signals were divided into six frequency bands using finite impulse response filters: delta
(0.5–4 Hz), theta (4–8 Hz), low alpha (8–10 Hz), high alpha (10–12 Hz), beta (13–30 Hz), and
gamma (30–45 Hz).
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2.3. Functional Connectivity Indicators: PLI and PLV

The first measure used to compute the functional connectivity strength was the phase
lag index (PLI). The PLI is a phase synchronization metric based on the asymmetry of the
distribution of phase differences between two signals, which may be calculated using the
analytical signal based on the Hilbert transform. When compared to other synchronization
detection approaches, such as synchronization likelihood or phase coherence, the PLI is
less influenced by the shared source because zero-lag synchronization has been excluded
from the analysis. According to Stam and coworkers, “The phase lag index is based upon
the idea that the existence of consistent, nonzero phase lag between two time series cannot
be explained by volume conduction from a single strong source and therefore, renders
true interactions between the underlying systems rather likely” [19] (p. 1179). The PLI is
obtained from the phase difference (∆φ(tk), k = 1 . . . N) of the time series by means of

PLI = |〈sign[∆φ(tk)]〉|

where ∆φ is the phase difference and < . . . > denotes the average time (t). The PLI quantifies
the relative phase distribution’s asymmetry, which indicates that the likelihood that the
phase difference (∆φ) will be in the interval −π < ∆φ < 0 is different from the likelihood
that it will be in the interval 0 < ∆φ < π. The range of PLI values is between 0 and 1, where
a zero value indicates no coupling or coupling with the phase difference centered around 0
(mod π) and 1 values indicate perfect phase locking at a value of ∆φ different from 0 (mod
π). The stronger nonzero phase locking means that the PLI is larger [19].

The second FC measure was phase locking value (PLV) [20]. The PLV quantifies similar
synchronization tendencies in EEG signals. The advantage of PLV is that it can compute the
phase component separate from the amplitude component for a particular frequency range.
The PLV assesses the latencies at which phase synchrony or modest phase variation occur
across trials in situations with recurrent stimuli. The PLV computing process incorporates
the instantaneous phase difference between signals in the chosen frequency band in order
to establish the phase synchronization of two EEG signals. The synchronization measure
PLV, at time instant t is defined as:

PLV =
1

N

∣∣∣∣∣∑N

n−1
ej(∆φ(t,n))

∣∣∣∣∣
where N is the total number of trials and ∆φ(t,n) = φ1(t,n)−φ2(t,n) is the instantaneous
phase difference between the signals.

The PLV is used in the majority of EEG research to assess the intertrial variability in
phase at time t. The PLV is close to one if there is no substantial phase change between
trials. A PLV value of zero indicates that the phase difference between the two signals is
not synced, while a PLV value of one shows that the signals are totally synchronized [21].

2.4. Global Neuronal Network Reconstruction: Application of the Minimum Spanning Tree

The functional connectivity matrixes created by the PLI and PLV for each frequency
band were converted into graphs. Every graph consisted of nodes (i.e., EEG electrodes) and
edges (i.e., functional connectivity values between each pair of electrodes gathered from
PLI/PLV). By applying Kruskal’s algorithm to each PLI/PLV adjacency matrix, calculated
for each frequency band epoch acquired from each participant, a minimum spanning tree
(MST) graph was constructed. The first step in this process was to sort the edge weights
from smallest to largest. Once all nodes were separated, the algorithm began reconnecting
them, starting with the node that had the greatest weight. The algorithm then continued
to add the connection with the next greatest weight until all of the nodes were linked. In
contrast, if a new connection with a node during the adding method caused a cycle or loop,
the connection was refused, and the next edge was rated by the weight value [15]. Various
graph metrics could be established throughout the MST computation process. However,
in order to keep the computational methodology in line with the original MST basis, we
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generated results describing eight parameters presented in the official guide and MST
computation instructions developed by Cornelius J. Stam’s team [22]. In accordance with
the work of van Dellen and coworkers [14], the most straightforward MST parameters
are the diameter and leaf number/leaf fraction. Furthermore, these variables enable the
classification of networks as integration- or segregation-dominated. When a network
topology expresses an increased diameter and a decreased leaf number, it is a so-called
line-like network topology. The second network type has a low diameter and a high leaf
number, called a star-like network, in which integrative processes dominate [15]. The
leaf fraction can be defined as the number of nodes on a tree with degree = 1 and can be
calculated from: Lf = L/m, where L is the leaf number. The leaf number range starts from
two (typical of a line-like topology), and its maximum value is equal to m = N1 (a star-like
topology). The leaf number is associated with the tree diameter (d) parameter, which can
be defined as the largest distance between any two nodes. Additionally, apart from those
mentioned global MST metrics, one can also describe the optimal tree topology with a
function called tree hierarchy. Tree hierarchy pictures the transfer of information from one
node to another in the shortest path, assuming that there is no overload in the central node
of the tree. Additional MST metrics might be evaluated, and these are kappa, R, Teff, ASP
and the mean. Parameter R is a derivative of the Pearson correlation coefficient, indicating
the assortativity level, i.e., the feature of the network consisting of the fact that high-degree
nodes should be connected with nodes with the same magnitude. However, in more
chaotically constructed networks, high-degree nodes can be directly connected with low-
degree nodes. The assortativity ranges from −1 to +1, and negative values are more typical
in networks where the magnitudes of connected nodes are substantially different [23].
Kappa, also called the degree of divergence, measures the broadness of degree distribution.
A decreased value of kappa indicates a decreased number of highly connected nodes called
“hubs” [14,15,23]. Teff is defined as: 1 − diameter/(N − leaf number + 1). This measure
indicates how close the diameter, for a given N and leaf number, is to its lowest possible
value. Teff ranges between 0 and 1. ASP is an abbreviation meaning the average shortest
path computed for the whole MST. This is not a normalized index. Lastly, the mean of the
MST is the value of the mean weight of all the edges constituting the MST graph.

2.5. Statistical Analyses

Demographic variables were compared between groups with Student’s t-test, and
nominal variables (e.g., sex) were compared with the χ2 test. Due to the fact that the subjects
from the two groups were matched in pairs and the potential differences in variables such as
age, gender, and education were controlled, the comparison of MST parameters calculated
on the basis of both the PLI and PLV between the two groups was carried out using a two-
tailed t-test. Cohen’s d was applied as an effect size indicator. In the intragroup analysis
of SCH patients, a within-subjects ANOVA was used, where the above parameters were
summarized in two different versions, one based on the PLI and the other based on the
PLV. The partial eta square (ηp

2) was used as an indicator of the effect size.

3. Results
3.1. Demographic and Clinical Characteristics of the Studied Groups

After applying inclusion and exclusion criteria, the collected groups consisted of
20 patients with first-episode schizophrenia, including 10 women and 10 men with an
average age of 20.20 years. The healthy control groups also consisted of 10 men and 10
women with an average age of 20.10 years. As shown in Table 1, the groups did not differ
in terms of age, sex, or education.
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Table 1. Demographic and clinical characteristics of the studied groups.

HC n = 20
M (SD)

SCH n = 20
M (SD) p

Age (years) 21.10 (1.80) 21.20 (1.96) 0.867 a

Male/female 10/10 10/10 0.999 b

Education (years) 13.10 (1.29) 12.90 (1.16) 0.610 a

Duration of illness (months) 19.50 (4.96)

Duration of untreated psychosis (months) 5.60 (3.10)

Risperidone equivalents 4.82 (0.93)

PANSS c positive subscale 14.20 (3.52)

PANSS negative subscale 17.40 (4.89)

PANSS general subscale 32.60 (10.93)

PANSS total 64.20 (10.18)

Note. a two-tailed t test, b χ2 test (df = 1), c Positive and Negative Syndrome Scale [24].

All SCH patients were treated with atypical antipsychotics, the majority of them
(60%) with Olanzapine; the average dose expressed in risperidone equivalents reached
4.82 ± 0.93 units. According to the exclusion criteria, none of the patients were taking
benzodiazepines or anticonvulsants. Four patients (20%) were additionally treated with
SSRI antidepressants (sertraline), and nine (45%) were taking chlorprothixene for sporadic
insomnia at a single dose not exceeding 30 mg. The duration of illness in the clinical group
was about 11 months, and the duration of untreated psychosis was about 4 months.

3.2. Between-Group Comparison of MST Outcomes Calculated on the Basis of PLI and PLV

Since SCH patients and individuals from the HC group did not differ in terms of
demographic variables, comparisons of MST-related network measures based on PLI or
PLV indicators of functional connectivity were computed directly with the application of
a two-tailed Student’s t test. Table A1 in Appendix A presents all detailed results of this
comparisons with Cohen’s d used as an effect size indicator.

Overall, in the case of 23 variables, the between-group difference reached the threshold
of p < 0.05. Figure 1 presents distribution plots of all statistically significant results that
survived FDR correction for repeated testing. Among these variables, 15 were based on
the PLV and 8 were based on the PLI. Considering the effect size variable, the “Mean”
differentiated the groups to the greatest extent. The largest intergroup differences concerned
the following variables: the PLV-based mean MST in the delta frequency (d = 4.69), the
PLV-based mean in gamma frequency (d = 4.13), the PLV-based mean in the beta frequency
(d = 3.33), the PLV-based mean in the low-alpha frequency (d = 2.83), the PLV-based mean in
the high-alpha frequency (d = 2.78), and the PLI-based mean in gamma frequency (d = 2.35).
It is worth noting that in some pairs of MST results the values based on the PLV were
significantly higher in SCH patients than in controls, while the same MST variables based
on the PLI in the same frequency presented the opposite difference, i.e., values were lower
in SCH patients than in controls. For example, in the gamma band, the mean MST values
based on the PLI in groups (SCH vs. HC) were 0.144 vs. 0.221, while the values for the
PLV-based measure were 0.842 vs. 0.553. Besides the MST mean, the other network metrics
that differentiated the groups the most (with d > 1) were the PLI-based ASP (d = 1.28), the
PLI-based diameter (d = 1.20), and the PLI-based leaf (1.19)—all in the gamma band—and
the PLV-based kappa in the low-alpha band (d = 1.11). As in the case of the MST mean,
for some of these variables the opposite directions of difference in measures could also be
observed based on the PLI and PLV indicators (e.g., the ASP in the gamma band).
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3.3. Within-Group Comparisons of PLI and PLV-Based MST Indicators

Another step of the analysis considered within-group evaluations regarding possible
discrepancies between MST variables based on the PLI and PLV indexes of connectivity
strength in SCH patients. We performed within-group ANOVAs separately for each
frequency (MST indicators as dependent variables and PLI vs. PLV as an independent
variable) with Bonferroni post hoc test significance level corrections for multiple testing.
According to the diagrams displayed in Figure 2, in the majority of cases MST indicators
such as the kappa, ASP, and mean were significantly different depending on whether
they were calculated on the basis of PLI or PLV markers, although all came from the
same SCH individuals. The mentioned differences reached the level of significance after
correction for the number of tests. The interaction effects (FC indicator x MST value) at
all analyzed frequencies were also significant (p < 0.0001, ηp

2 > 0.4) after correction for
multiple comparisons. In detail, within the SCH group, there were significant differences at
all six analyzed frequencies regarding the mentioned indicators. Additionally, in the delta
band, the R was also significantly different for computations based on the PLI or PLV (post
hoc p < 0.0001). At all included frequencies, the values of kappa were higher for the PLI
compared with the PLV, while the values of ASP and mean were significantly higher for
the PLV compared with the PLI. Except for in the delta band, the values of R, diameter, leaf,
hierarchy, and Teff in all other bands had analogous ranges (all post hoc p > 0.05) whether
they were computed with an application of the PLI or PLV. As shown in Figure 3, also
within the HC group, there were significant differences regarding the kappa, ASP, and
mean, depending on whether they were calculated based on the PLI or PLV parameters. All
interaction effects (FC indicator ×MST value) at the analyzed frequencies were significant
at p < 0.0001 and ηp

2 > 0.2 after correction for multiple testing.
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4. Discussion

The disconnection theory of schizophrenia, assuming that the disease’s etiopathogene-
sis is grounded in abnormal patterns of synchronizations between a given set of brain areas,
is one of the major research trends in neuroscientific studies on this illness [25]. On the other
hand, this conceptual orientation is strongly associated with rapidly developing method-
ological and computational advancements of functional connectivity (FC) and neuronal
network analysis research paradigms. Although the vast majority of FC research uses fMRI
and assesses levels of BOLD co-activation between brain regions occurring in common
time intervals [26], the number of FC studies using EEG and MEG is still growing [27].
EEG-related FC measures can be, with some simplification allowed, divided into those
based on the amplitude of the signal and those based on the phase of oscillatory activity.
In general, amplitude correlations give FC arrangements similar to those obtained from
fMRI; however, these indexes suffer from susceptibility to volume conduction disturbances.
One way to circumvent this limitation is to design FC indicators that rely on correlations
between the ongoing voltage fluctuations with time delay [28]. Due to problems related to
the influence of volume conduction and signal noise on FC parameters, more and more
computational methods were developed to estimate the strengths of the relationships
between distinct aspects of the EEG signals and the interactions between the reconstructed
signal sources. For example, Wang and coworkers [29] indicated that there are about 42
methods, while Bakhshayesh et al. [30] showed that 26 types of FC algorithms might be
applied to analyze synchronizations between non-stationary, non-linear signals, such as
the signal coming from EEG recordings. Unfortunately, only recently have research and
computational analyses begun to evaluate which of these methods give rise to relatively



Brain Sci. 2023, 13, 138 10 of 16

repetitive connection patterns, closely related to phenotypic characteristics, that show
significant interindividual and modest intraindividual variance [28,31,32].

Despite some advances in assessing FC measures in terms of their validity and repro-
ducibility, according to our knowledge, the recognition of how different FC indexes may
affect the scope and direction of differences between schizophrenia patients and healthy
controls regarding the parameters of the global neuronal network configuration described
in the language of graph theory had not yet been carried out. The answer to this question
seems important, taking into account the significant range of study outcomes regarding
the specificity of the organization of neural networks in schizophrenia and the observed
heterogeneity of results in this area [7]. This heterogeneity was even observed within a
set of studies using the same computational solutions to obtain global neural network
arrangement typology, such as a minimum spanning tree [15]. In an extensive review that
aimed to find a repeatable constellation of graph-theory network reconstructions based
on MST, the authors indicated that, regarding the adult psychiatric population, especially
those suffering from schizophrenia, the results are indisputably conflicting. However,
the problem of using FC input gained from different connectivity computations was not
considered as a possible important source of inconsistency [33]. To verify if two different
types of FC indicators might generate different or even contradictory results for the extent
that the global neural networks of schizophrenia patients differ from healthy controls, we
conducted two identical computational analyses, one with the PLI as a synchronization
measure and another with the PLV.

These two algorithms belong to the same group of methods assessing FC strength, i.e.,
those based on phase lag. According to Li et al. [34], the PLV is not fully resistant to the
volume conduction problem, leading to an increased number of spurious synchronizations
coded as genuine connections, while PLI, although alleviating this limitation by excluding
zero-phase diversity, is less effective in managing resistance against noise. On the other
hand, Rizkallah with coworkers [35] documented that the network created on the basis
of the PLV used as an FC measure applied to EEG recordings was more similar to the
fMRI network arrangement compared to a PLI-based network. Our results indicated
that MST measures based on PLV indexes of synchronization differentiated schizophrenia
patients from controls almost twice as often as in the case of the PLI. The power of group
differentiation applied primarily to the index ‘Mean’ based on the PLV. Consequently, at all
frequencies, this value was higher in patients, which suggests that their network is built
with edges of higher overall weight, sometimes interpreted as the cost (e.g., the “energy”)
needed to transfer the information between nodes or the length of the average edge [22].

In our opinion, the most important result of the current study is that if the groups were
significantly differentiated by the same MST parameter calculated on the basis of PLI and
PLV, then the result of this comparison was the opposite, i.e., the given MST parameter was
higher in the clinical group compared to the healthy controls and, in the case of calculating
the network marker with another FC index, was lower in the clinical group. Such results
apply to global network parameters in the gamma band, especially with regard to the
kappa, diameter, ASP, and mean. This seems to suggest that the outcomes of whole-brain
network analyses in schizophrenia are susceptible to applied FC indicators, and depending
on the applied synchronization measures, completely different values can be obtained,
informing about the extent to which the organization of the neural network of schizophrenia
patients differs from that of controls. None of the MST indicators showed consistently
similar differences between patients and controls, whether they were calculated using
connectivity strength values computed using the PLI or PLV. The inconsistency of some
MST indicators, understood here as their dependence on the included FC measures, was
also seen regarding intrasubject comparisons. In detail, it appeared that indexes such as the
kappa, ASP, and mean were significantly different within the patient and control groups,
depending on whether they were computed using the PLI or PLV indexes of functional
connectivity. It is worth noting that the mean and kappa were also inconsistent regarding
intergroup comparisons.
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In summary, our results indicate that MST-based measures of whole-brain network
arrangement encapsulated in the language of graph-theory are susceptible to the entered
indexes of functional connectivity, and at least in the case of comparing patients and
controls, contradictory MST values might be obtained, depending on the exact FC algorithm
that is used. The above finding seems to be particularly important for schizophrenia
research, on one hand because the network and connectivity analyses fit into the current
understanding of the disease as a consequence of neuronal disconnection. On the other
hand, the majority of already classic, yet still valid conceptual propositions suggested
that schizophrenia is a disorder resulting not from pathology limited to narrowed, strictly
localized cerebral dysfunction but from a general, systemic brain disorder that to varying
degrees affects various areas and mechanisms, granting their mutual modulations [36,37].

Despite these important settlements, some limitations of our study and a proposal
for further investigations should be addressed. First of all, it might be tentatively stated
that the outcomes presented are specific to schizophrenia. It is possible that the majority
of the detailed results are secondary to applied computational solutions and the analyzed
discrepancies regarding MST results dependent on the included FC indexes would also
appear when another clinical group is compared with healthy controls. Secondly, our study
did not allow us to recognize whether MST graph-theory network characteristics are more
or less susceptible to various FC measures compared with more conventional approaches
analyzing such network features as small-worldness and the clustering coefficient [15,38].
Therefore, our analysis should not be considered as a clear indication of what type of
network organization measures to choose in future research but rather as a study showing
that the results of graph-theory network analyses depend on the built-in FC parameters.
Nevertheless, some clear conclusions seemed to emerge. We postulate that it is necessary
to critically evaluate these network arrangement computational indicators, which show
marked intrasubject variability or are prone to exhibit such variability when even modest
input design conditions are entered. The mathematically correct development of a given al-
gorithm does not necessarily mean that it accurately depicts some aspect of the functioning
of the living brain. Additionally, it seems indispensable to conduct a large-scale analysis
of many FC and neuronal network indicators with various mathematical and theoretical
backgrounds and verify which of them bring similar results, e.g., in the form of between-
group differences, and which simultaneously have minimized intrasubject variance. It may
also result that future research on disruptions in whole-brain organization in diseases such
as schizophrenia will gain a greater level of reproducibility and consistency when more
effort is invested in the critical analysis and selection of the already available computational
possibilities in terms of their accuracy and reliability than on the further multiplication
of mathematical solutions without verifying their compliance with the specificity of the
activity of the brain.

5. Conclusions

The conducted analyzes showed that the selection of functional connectivity measures
has a fundamental impact on the final results of global neural network modeling. These
conclusions should be taken into account when planning research using computational
analyzes of whole-brain neural networks.
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Appendix A

Table A1. Comparisons of the studied groups regarding MST-related network measures based on
PLI or PLV indexes of functional connectivity at all included frequencies.

Frequency Network
Measure PLI/PLV

HC SCH
t p d

M SD M SD

Delta

Kappa
PLI 2.819 0.394 2.902 0.382 −0.677 0.502 0.21

PLV 2.294 0.134 2.216 0.076 2.244 0.030 0.71

R
PLI −0.321 0.225 −0.349 0.147 0.454 0.652 0.15

PLV −0.174 0.211 −0.072 0.146 −1.780 0.082 0.56

Diameter
PLI 0.422 0.077 0.410 0.077 0.455 0.651 0.16

PLV 0.563 0.085 0.575 0.060 −0.483 0.631 0.16

Leaf
PLI 0.558 0.102 0.583 0.077 −0.867 0.391 0.28

PLV 0.394 0.071 0.361 0.052 1.677 0.101 0.53

Hierarchy
PLI 0.385 0.072 0.396 0.049 −0.546 0.587 0.18

PLV 0.298 0.054 0.276 0.042 1.417 0.164 0.45

Teff
PLI 0.229 0.095 0.219 0.104 0.297 0.767 0.10

PLV 0.212 0.091 0.232 0.075 −0.740 0.463 0.24

ASP
PLI 3.591 0.424 3.517 0.399 0.568 0.572 0.18

PLV 4.412 0.383 4.469 0.237 −0.562 0.576 0.18

Mean
PLI 0.272 0.045 0.253 0.059 1.157 0.254 0.36

PLV 0.639 0.046 0.823 0.031 −14.650 <0.0001 4.69

Theta

Kappa
PLI 3.055 0.765 3.319 1.068 −0.897 0.375 0.28

PLV 2.336 0.150 2.247 0.105 2.162 0.036 0.69

R
PLI −0.438 0.154 −0.459 0.164 0.414 0.681 0.13

PLV −0.273 0.191 −0.152 0.178 −2.081 0.044 0.66

Diameter
PLI 0.424 0.117 0.405 0.098 0.566 0.574 0.18

PLV 0.591 0.118 0.594 0.074 −0.091 0.927 0.03

Leaf
PLI 0.586 0.119 0.616 0.118 −0.816 0.419 0.25

PLV 0.405 0.076 0.374 0.059 1.409 0.166 0.46

Hierarchy
PLI 0.398 0.067 0.404 0.065 −0.275 0.784 0.09

PLV 0.309 0.050 0.297 0.047 0.769 0.446 0.25

Teff
PLI 0.189 0.111 0.173 0.112 0.457 0.650 0.14

PLV 0.165 0.109 0.193 0.065 −0.994 0.326 0.31

ASP
PLI 3.602 0.640 3.467 0.617 0.679 0.500 0.21

PLV 4.522 0.596 4.556 0.424 −0.211 0.833 0.07

Mean
PLI 0.341 0.113 0.339 0.125 0.031 0.974 0.02

PLV 0.721 0.093 0.824 0.037 −4.571 <0.0001 1.46
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Table A1. Cont.

Frequency Network
Measure PLI/PLV

HC SCH
t p d

M SD M SD

Low
Alpha

Kappa
PLI 2.886 0.479 3.066 0.820 −0.849 0.401 0.27

PLV 2.333 0.115 2.222 0.082 3.503 0.001 1.11

R
PLI −0.342 0.187 −0.431 0.162 1.602 0.117 0.51

PLV −0.344 0.153 −0.143 0.242 −3.127 0.003 0.99

Diameter
PLI 0.466 0.081 0.441 0.104 0.840 0.406 0.27

PLV 0.580 0.107 0.600 0.077 −0.658 0.514 0.21

Leaf
PLI 0.538 0.067 0.597 0.110 −2.009 0.051 0.65

PLV 0.422 0.075 0.358 0.055 3.058 0.004 0.97

Hierarchy
PLI 0.360 0.058 0.405 0.061 −2.381 0.022 0.76

PLV 0.321 0.062 0.281 0.047 2.278 0.028 0.73

Teff
PLI 0.184 0.104 0.136 0.115 1.380 0.175 0.44

PLV 0.160 0.097 0.202 0.089 −1.392 0.171 0.45

ASP
PLI 3.705 0.443 3.602 0.525 0.673 0.504 0.21

PLV 4.443 0.466 4.638 0.360 −1.472 0.149 0.47

Mean
PLI 0.308 0.033 0.326 0.077 −0.938 0.354 0.30

PLV 0.623 0.079 0.801 0.041 −8.937 <0.0001 2.83

High
Alpha

Kappa
PLI 2.741 0.518 2.949 0.638 −1.132 0.264 0.36

PLV 2.341 0.144 2.241 0.111 2.450 0.018 0.78

R
PLI −0.341 0.154 −0.392 0.146 1.062 0.294 0.34

PLV −0.261 0.236 −0.231 0.135 −0.487 0.628 0.16

Diameter
PLI 0.458 0.078 0.422 0.088 1.363 0.180 0.43

PLV 0.561 0.082 0.616 0.101 −1.896 0.065 0.60

Leaf
PLI 0.533 0.083 0.588 0.108 −1.808 0.078 0.57

PLV 0.419 0.083 0.374 0.076 1.767 0.085 0.57

Hierarchy
PLI 0.370 0.056 0.402 0.074 −1.545 0.130 0.49

PLV 0.324 0.066 0.293 0.065 1.527 0.134 0.47

Teff
PLI 0.205 0.079 0.187 0.095 0.627 0.534 0.21

PLV 0.185 0.101 0.161 0.113 0.716 0.477 0.22

ASP
PLI 3.800 0.426 3.556 0.478 1.695 0.098 0.54

PLV 4.400 0.408 4.713 0.461 −2.276 0.028 0.72

Mean
PLI 0.321 0.051 0.316 0.054 0.328 0.744 0.10

PLV 0.607 0.074 0.788 0.055 −8.664 <0.0001 2.78

Beta

Kappa
PLI 2.616 0.313 2.841 0.512 −1.674 0.102 0.53

PLV 2.352 0.130 2.299 0.120 1.331 0.190 0.42

R
PLI −0.308 0.167 −0.363 0.172 1.021 0.313 0.32

PLV −0.238 0.195 −0.191 0.210 −0.720 0.475 0.23

Diameter
PLI 0.469 0.073 0.438 0.067 1.372 0.177 0.44

PLV 0.536 0.104 0.550 0.053 −0.533 0.596 0.17
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Table A1. Cont.

Frequency Network
Measure PLI/PLV

HC SCH
t p d

M SD M SD

Beta

Leaf
PLI 0.525 0.075 0.555 0.069 −1.327 0.192 0.42

PLV 0.424 0.065 0.413 0.079 0.480 0.633 0.15

Hierarchy
PLI 0.369 0.047 0.377 0.051 −0.531 0.598 0.16

PLV 0.313 0.055 0.324 0.069 −0.540 0.591 0.18

Teff
PLI 0.200 0.052 0.207 0.096 −0.271 0.787 0.09

PLV 0.220 0.121 0.205 0.087 0.435 0.665 0.14

ASP
PLI 3.857 0.441 3.624 0.393 1.765 0.085 0.56

PLV 4.284 0.504 4.369 0.302 −0.645 0.522 0.20

Mean
PLI 0.188 0.034 0.161 0.039 2.270 0.028 0.74

PLV 0.542 0.081 0.781 0.061 −10.429 <0.0001 3.33

Gamma

Kappa
PLI 2.686 0.402 3.755 1.652 −2.812 0.007 0.89

PLV 2.366 0.137 2.261 0.136 2.435 0.019 0.77

R
PLI −0.320 0.226 −0.491 0.180 2.646 0.011 0.84

PLV −0.276 0.196 −0.222 0.155 −0.958 0.344 0.31

Diameter
PLI 0.477 0.085 0.366 0.099 3.797 0.001 1.20

PLV 0.527 0.089 0.619 0.127 −2.627 0.012 0.84

Leaf
PLI 0.533 0.089 0.663 0.127 −3.743 0.001 1.19

PLV 0.433 0.075 0.380 0.090 2.001 0.052 0.64

Hierarchy
PLI 0.384 0.061 0.430 0.063 −2.287 0.027 0.74

PLV 0.313 0.057 0.296 0.059 0.931 0.357 0.29

Teff
PLI 0.171 0.096 0.167 0.104 0.127 0.899 0.04

PLV 0.220 0.114 0.157 0.099 1.857 0.070 0.59

ASP
PLI 3.864 0.441 3.199 0.591 4.030 0.0001 1.28

PLV 4.260 0.441 4.663 0.657 −2.273 0.028 0.72

Mean
PLI 0.221 0.037 0.144 0.028 7.321 <0.0001 2.35

PLV 0.553 0.081 0.842 0.057 −12.936 <0.0001 4.13

Note. Bold font indicates statistically significant between-group differences at the level of p < 0.05.
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38. Krukow, P.; Jonak, K.; Karpiński, R.; Karakuła-Juchnowicz, H. Abnormalities in hubs location and nodes centrality predict
cognitive slowing and increased performance variability in first-episode schizophrenia patients. Sci. Rep. 2019, 9, 9594. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1093/schbul/sbv174
http://www.ncbi.nlm.nih.gov/pubmed/27460615
http://doi.org/10.1038/s41598-019-46111-0

	Introduction 
	Materials and Methods 
	Participants 
	EEG Recording Acquisition 
	Functional Connectivity Indicators: PLI and PLV 
	Global Neuronal Network Reconstruction: Application of the Minimum Spanning Tree 
	Statistical Analyses 

	Results 
	Demographic and Clinical Characteristics of the Studied Groups 
	Between-Group Comparison of MST Outcomes Calculated on the Basis of PLI and PLV 
	Within-Group Comparisons of PLI and PLV-Based MST Indicators 

	Discussion 
	Conclusions 
	Appendix A
	References

