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Abstract: One of the proposed neural mechanisms involved in working memory is coupling between
the theta phase and gamma amplitude. For example, evidence from intracranial recordings shows
that coupling between hippocampal theta and cortical gamma oscillations increases selectively
during working memory tasks. Theta-gamma phase-amplitude coupling can also be measured
non-invasively through scalp EEG; however, EEG can only assess coupling within cortical areas,
and it is not yet clear if this cortical-only coupling is truly memory-specific, or a more general
phenomenon. We tested this directly by measuring cortical coupling during three different conditions:
a working memory task, an attention task, and a passive perception condition. We find similar
levels of theta-gamma coupling in all three conditions, suggesting that cortical theta-gamma phase-
amplitude coupling is not a memory-specific signal, but instead reflects some other attentional or
perceptual processes. Implications for understanding the brain dynamics of visual working memory
are discussed.
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1. Introduction

Working memory, or the short-term storage of information in service of a goal, is
one of the core processes in cognition; it is responsible for representing and actively
maintaining information in a flexible manner and making it available to other central
cognitive processes [1,2]. As such, working memory is associated with multiple indicators
of overall cognitive capacity within the general population, including academic success [3]
and IQ [4,5]. Conversely, a low working memory capacity has been linked to poorer
outcomes in people with serious mental illnesses such as schizophrenia [6,7]. However,
despite the significance of working memory for both understanding general cognition
and predicting mental health outcomes, the specific brain dynamics involved have proven
elusive and remain poorly understood.

One putative mechanism of working memory that has garnered interest in recent years
is theta-gamma phase-amplitude coupling—that is, the amplitude of gamma (30–100 Hz)
oscillations is modulated by the phase of lower-frequency theta (4–8 Hz) oscillations
(see Figure 1 for a schematic representation of this effect). Under this model, information
is represented in local network gamma oscillations, and these local networks are coordi-
nated via long-distance theta oscillations. This allows multiple units of information to
be maintained concurrently by containing each unit within a particular part of the theta
cycle [8–10].

The strongest evidence for theta-gamma phase-amplitude coupling as a mechanism for
working memory comes from intracranial recordings. Evidence from both iEEG [8,11] and
electrocorticography (ECoG) [12] shows that theta-gamma phase-amplitude
coupling—especially coupling between the hippocampal theta and cortical gamma—is
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elevated during a visual working memory task. Specifically, the degree of hippocampal-to-
prefrontal cortex theta-gamma coupling is modulated by the demands on working memory,
with higher coupling being observed when participants were asked to remember more than
one item [13]. This suggests that theta-gamma coupling between subcortical and cortical
areas plays a crucial role in working memory maintenance, consistent with theoretical
conceptualizations of theta serving as a carrier for information-dense gamma activity [9,10].
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Figure 1. Schematic illustration of theta-gamma phase-amplitude coupling (A), with the gamma 
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phase-amplitude coupling observed in iEEG and ECoG, as scalp EEG can only measure 
activity originating in cortical structures, and MEG has a much lower sensitivity for activ-
ity originating from subcortical structures. Furthermore, the overall signal-to-noise ratio 
for gamma activity is much lower in EEG recordings than in intracranial recordings [16], 
adding further complications to the task of measuring theta-gamma phase-amplitude cou-
pling noninvasively. 

Nevertheless, cortical (EEG/MEG) theta-gamma phase-amplitude coupling has 
shown some promise as a marker of working memory. For example, multiple studies have 
shown elevated theta-gamma phase-amplitude coupling during the delay period or re-
sponse window for various working memory tasks (e.g., [14,17,18]); though, unlike in 
studies using iEEG and ECoG, cortical phase-amplitude coupling does not seem to be 
sensitive to the working memory load in these studies. Furthermore, patients with Alz-
heimer’s disease [19] or schizophrenia [20] who exhibit impaired working memory show 
less theta-gamma phase-amplitude coupling overall than healthy control participants at 
rest, with the degree of theta-gamma phase-amplitude coupling being related to measures 
of cognitive impairment at the group level [19,20]. Taken together, these studies suggest 
that cortical theta-gamma phase-amplitude coupling can indeed be measured in the scalp 
during working memory tasks, and disruption of these fundamental brain dynamics may 
be important for understanding cognitive impairment and patient outcomes.  

Figure 1. Schematic illustration of theta-gamma phase-amplitude coupling (A), with the gamma
amplitude being modulated by the theta phase. (B) shows the average gamma amplitude (i.e., the
average envelope amplitude) at different theta phases. Note that the peak gam.

Although intracranial recordings provide strong evidence for the functional role
of theta-gamma phase-amplitude coupling, the invasive nature of the technique means
that the available data are limited to certain patient populations or animal studies, and
sample sizes are often quite small. As such, interest has grown in the measurement of
theta-gamma phase-amplitude coupling through the use of noninvasive techniques such
as electroencephalography (EEG) e.g., [14] or magnetoencephalography (MEG) e.g., [15].
Importantly, this is conceptually different from the hippocampus-driven theta-gamma
phase-amplitude coupling observed in iEEG and ECoG, as scalp EEG can only measure
activity originating in cortical structures, and MEG has a much lower sensitivity for activity
originating from subcortical structures. Furthermore, the overall signal-to-noise ratio for
gamma activity is much lower in EEG recordings than in intracranial recordings [16],
adding further complications to the task of measuring theta-gamma phase-amplitude
coupling noninvasively.

Nevertheless, cortical (EEG/MEG) theta-gamma phase-amplitude coupling has shown
some promise as a marker of working memory. For example, multiple studies have shown
elevated theta-gamma phase-amplitude coupling during the delay period or response
window for various working memory tasks (e.g., [14,17,18]); though, unlike in studies
using iEEG and ECoG, cortical phase-amplitude coupling does not seem to be sensitive
to the working memory load in these studies. Furthermore, patients with Alzheimer’s
disease [19] or schizophrenia [20] who exhibit impaired working memory show less theta-
gamma phase-amplitude coupling overall than healthy control participants at rest, with the
degree of theta-gamma phase-amplitude coupling being related to measures of cognitive
impairment at the group level [19,20]. Taken together, these studies suggest that cortical
theta-gamma phase-amplitude coupling can indeed be measured in the scalp during
working memory tasks, and disruption of these fundamental brain dynamics may be
important for understanding cognitive impairment and patient outcomes.

Despite the above observations, the specificity of the relationship between coupling
and working memory has not yet been established. For example, the available studies
only include comparisons between the baseline (where no stimulus is present) and the
delay period (after the presentation of items to be stored in memory); therefore, it is unclear
whether theta-gamma synchronization reflects a memory-specific process, as opposed to
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sensory or perceptual processes, attentional allocation, and/or other factors. In fact, it has
been suggested that at least some of the observed theta-gamma coupling reflects sensory-
related phase resetting that occurs following the onset of a visual stimulus (see [21] for
a discussion). Furthermore, unlike hippocampus-based coupling, there has not been a clear
association between cortical theta-gamma coupling and behavioral performance [17,21].

In this study we investigated the degree to which cortical theta-gamma phase-amplitude
coupling is specific to working memory by measuring coupling during three tasks:
a change-detection task (that requires working memory maintenance), a visual attention
task (that requires central processes but not the maintenance of information), and a passive
viewing task (where the stimuli were completely task-irrelevant). Crucially, the stimulus
sequence in each of the three tasks was nearly identical, permitting the dissociation of
activity related directly to working memory from that related to other non-memory-related
processes. If cortical theta-gamma coupling is truly memory-specific, then we would expect
that the working memory task would yield significantly elevated coupling compared to
the other two tasks. Conversely, if theta-gamma coupling is related to some more general
process—e.g., if it is a result of spatial attention [15] or perhaps sensory processing [22]
—then we would expect to see similar levels of coupling across all three tasks.

2. Methods

This study constitutes a reanalysis of data previously reported by Erickson et al.
2019 [23] as well as a new second sample that allowed us to test the replicability of our
effects. A full description of the paradigm, stimuli, and methods can be found in the
original publication, although we will describe the task briefly here.

2.1. Participants

A total of 66 participants were recruited from Rutgers University and the surrounding
community. Following artifact rejection, 6 participants were rejected from the analysis, so
the final sample consisted of 60 participants (36 female). All participants were between
the ages of 18 and 60 (M = 35.85, SD = 13.58) and self-reported no history of mental illness.
They also reported that they had no first-degree relatives with a psychotic disorder, had
normal or corrected-to-normal vision, and were free from a history of developmental and
neurological disorders. All participants had normal or corrected-to-normal vision.

Additionally, a second sample of 20 participants (11 female) was recruited from
the University of Chicago to examine the replicability of the observed effects from the
primary sample. All participants in this replication sample were between the ages of
18 and 65 (M = 36.82, SD = 9.31) with no history of mental illness, neurological disorders,
or developmental disorders. This participant group also had no first-degree relatives with
a psychotic disorder and exhibited normal or corrected-to-normal vision. Participants
from both samples were reimbursed for their time, and informed consent was obtained
prior to their participation in the experiment. All recruiting and experiment procedures
were approved by the Rutgers University Institutional Review Board and the University of
Chicago Institutional Review Board, respectively.

2.2. Experimental Paradigm

Each participant completed three task variants using similar stimulus sequences. The
first task (Active WM+; Figure 2A) was a change-detection task designed to assess visual
working memory capacity [24,25]. On each trial, a sample array consisting of two, four, or
six colored squares was presented around a central fixation cross for 200 ms. The sample
array was followed by a 2000 ms delay period during which participants were asked to
retain the colors of the squares in memory. Finally, a test array was presented until the
response. On 50% of the trials, all of the colors in the test array were identical to the colors
from the sample array. On the other 50% of the trials, one of the squares switched to a new
color. Participants were asked to indicate by a button-press response whether or not the
test array matched the sample array.
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The second task (Active WM-; Figure 2B) consisted of a nearly identical stimulus
sequence. In this task, participants were required to actively attend to the stimuli from
the 200 ms sample array in search of a target color, but were not required to store any of
the colors in working memory. In order to eliminate all memory requirements from this
task, a single square depicting the target color was continuously present at the top of the
screen. When a sample array contained a square matching the target color (10% of trials),
participants were instructed to press a button on a gamepad. No response was required on
the 90% of trials in which a target color was absent from the sample array.

The third task (Passive WM-; Figure 2C) again consisted of a nearly identical stimulus
sequence to the Active WM+ and Active WM- task variants. In this task, participants were
instructed to passively view the sample arrays. An unrelated simple intermittent task was
used to ensure adequate engagement.

This same experimental design was used for the replication sample, with the exception
that sample arrays consisted of 1, 2, 3, 4, or 5 colored squares, rather than 2, 4, or 6 colored
squares. Furthermore, the test arrays in the Active WM+ condition only included one of
the squares (with the participant reporting whether that particular square was the changed
color or not).

2.3. EEG Recording and Pre-Processing

For the primary sample, EEG data were recorded continuously at 1000 Hz using
a Brain Products ActiCHamp system (Brain Products GmbH, Gilching, Germany) over
64 channels (60 scalp electrodes, 3 EOG electrodes, and 1 online reference electrode). Data
were referenced online to a single electrode on the tip of the nose, and an online anti-
alias low-pass filter at 200 Hz was applied. The replication sample was also recorded
continuously at 1000 Hz using a Brain Products ActiCHamp system over 64 channels. For
this sample, data were referenced online to a single electrode (P9, similar to the left mastoid),
and an online anti-aliasing low-pass filter at 200 Hz was again applied.

Offline processing was performed in Matlab (Mathworks Inc., Natick, MA, USA) using
the EEGLAB [26] and ERPLAB [27] toolboxes. Data from the primary sample were first
re-referenced offline to the average of the left and right mastoids, whereas the replication
sample data were re-referenced to the average of P9 and P10, which is a close approximation
to the left and right mastoids. Data were then segmented to −1500–2500 ms relative to
the onset of the stimulus array, and adjusted with respect to the pre-stimulus baseline.
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Abnormally noisy channels were identified by visual inspection and interpolated. ICA
correction was performed to remove components related to eye movements and eye blinks,
and artifact correction was performed to remove trials with abnormally large voltage
deflections (>150 µV peak to peak). No offline filtering was applied at this stage.

2.4. Theta-Gamma Phase-Amplitude Coupling

Theta-gamma phase-amplitude coupling was then performed on the preprocessed
data using the procedure described in Sauseng et al. [14]. Briefly, the EEG segments were
first converted from voltage to current-source density (CSD) using an ERPLAB inbuilt func-
tion. Theta-gamma phase-amplitude coupling was measured during two time windows:
(1) during the pre-stimulus (baseline) period of −940 to −200 ms, prior to stimulus onset;
and (2) during the post-stimulus period (300 to 1900 ms after stimulus onset). The following
procedures were then conducted separately for each of the two time windows: first, the
FieldTrip Matlab toolbox [28] was used to calculate the instantaneous amplitude and phase
at 2–70 Hz. Specifically, we used a 5-cycle Morlet waveform transformation, resulting in
a complex decomposition of the data, with the amplitude and phase angle depicted by the
real and imaginary part of the transformed complex value, respectively. For the present
analysis, we measured the theta phase at 6 Hz, and the gamma amplitude in a window of
20–70 Hz at 1 Hz intervals. Note that this range includes frequencies that are lower than
the traditional gamma range (namely 20–30 Hz). These frequencies were included in the
analysis to more closely match the methods described by Sauseng et al. 2009. As discussed
further in the Results, two gamma ranges of interest emerged (25–35 Hz and 45–55 Hz),
hereafter referred to as ‘low’ and ‘high’ gamma, respectively. These two bands were thus
used in our statistical analyses.

To visually represent the coupling, we first normalized the gamma amplitude in each
trial, then binned the gamma amplitude by the concurrent theta phase (separately for each
electrode, condition, and time window), and plotted the average gamma amplitude at
each theta phase. For ease of visualization, a frontal cluster and posterior cluster were
created by averaging together the binned data of 21 frontal channels and 17 posterior and
occipital channels, separately. See Figure 3 for a representation of all the channels included
in each cluster.
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Figure 3. Average normalized gamma amplitude at each theta phase across our two clusters of
interest, averaged across all 60 subjects of the primary sample.

In order to numerically compare coupling across the different conditions and time
windows, we calculate the Phase Locking Value (PLV) as described in Sauseng et al.
2009 [14] and Penny et al. 2008 [29]. We first calculated the amplitude envelope of each
frequency in our gamma range (20–70 Hz) and then used a Hilbert transform to extract the
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phase information of the gamma amplitude fluctuations. Finally, PLV was then calculated
using the following formula:

PLV =

∣∣∣∣∣ 1
N

N

∑
n=1

exp
(

i
(

ϕϑ[n]− ϕAγ
[n]

))∣∣∣∣∣ (1)

where ϕϑ[n] is the theta phase angle at a given time point, and ϕAγ
[n] is the phase angle

of the gamma amplitude envelope. This was used to estimate the coherence between the
phase of the gamma amplitude envelope and the theta phase for each condition, electrode,
and trial independently. PLV was then averaged across trials to obtain a single PLV estimate
per condition and electrode. Frontal and posterior clusters were then created by averaging
PLV across the corresponding electrodes. Note that since the pre-stimulus time window
included fewer timepoints than the post-stimulus period window, we used a random
permutation approach to splice together time points from the pre-stimulus window to
achieve a similar number of total time points per segment for the post-stimulus window.
Lastly, to test the possibility that the observed PLV was obtained by chance, this analysis
was repeated with shuffled theta phase data, creating a null comparison condition.

2.5. Statistical Analyses

Statistical analyses were performed using the R-studio development suite [30]
and R statistical software [31], including specific packages for conducting repeated
measures of ANOVA [32], calculating Bayes factors [33], and conducting linear mixed
effect models [34,35] for the main results.

Our main statistical analyses rely on the following planned comparisons: first, we
conducted four 2 × 3 (time window × task) repeated measure ANOVAs to determine
whether PLV changed significantly between the pre-stimulus and post-stimulus delay
periods. This was done separately for the frontal and posterior clusters and for the low and
high gamma band. These same four comparisons were also conducted for the replication
sample. Where applicable, Greenhouse–Geisser corrections for sphericity violations were
applied; the degrees of freedom reported below thus reflect these statistical corrections.

Second, a within-subjects Bayes Factor analysis was performed to examine the strength
of evidence for the main effect of the task and time window separately for the two clusters,
frequency bands, and samples. This allowed us to discern whether there is strong evidence
for a null effect (or main effect) or simply a lack of evidence for the presence of an effect.

Third, a linear mixed effect model was used for a more focused contrast analyses to
test the specific hypothesis that PLV in the Active WM+ condition was higher than for the
other two conditions overall. This focused approach allows for greater power for detecting
the specified contrast, but does not test for any other effects of conditions (e.g., a difference
between Active WM- and Passive WM-).

Lastly, Pearson correlations were calculated to assess the covariation of individual
capacity scores (K) and the average PLV during the delay period in the Active WM+
condition, separately for the primary and replication sample. Due to the different test
arrays used in the original experiment and the replication experiment, we used slightly
different formulas to estimate capacity in each experiment [36]. The main experiment
used a full display in the test array, so we used the more appropriate Pashler’s formula
to estimate K, where K = S

(
h− f
1− f

)
, with S being the set size of the sample array, and

h and f being the hit rate and false alarm rate for that set size, respectively. The replication
experiment used a single probe test array. Thus, for the replication sample we used Cowan’s
K formula, where K = S(h− f ), as that is more appropriate for single probe displays.

A series of exploratory pairwise comparisons were also performed to investigate any
differences in the mean PLV across the two electrode clusters or across frequency bands.
This was completed as a series of pairwise t-tests comparing the average PLV difference
between the frontal and posterior clusters or from a low gamma to high gamma, separately
for each condition. Due to the large number of comparisons and the exploratory nature
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of this analysis, a false discovery rate correction [37] was applied to reduce the number of
false positives.

3. Results
3.1. Effects of Task and Time Window

Theta-gamma phase-amplitude coupling in frontal and posterior clusters is depicted
in Figure 3. Using a collapsed localizer approach [38], we plotted the average normalized
gamma amplitude at each theta phase, collapsing across all three tasks. Using visual inspec-
tion, we identified two frequency ranges of interest that showed the highest modulation
by phase irrespective of condition: a low gamma band of interest (25–35 Hz) and a high
gamma band of interest (45–55 Hz). Given the exploratory nature of this study, we focused
our analyses on these two bands to increase our power for detecting any effects. For all
analyses, we calculated the mean PLV separately for a low and high gamma.

The results of the ANOVAS can be found in Table 1. Overall, we observed elevated
PLV during the post-stimulus period compared to the pre-stimulus period irrespective
of task, cluster, or frequency band (see Figure 4). Specifically, we found that the PLV
was significantly higher in the post-stimulus time-window compared to the pre-stimulus
time-window in both the frontal and posterior clusters and both frequency bands (p < 0.001,
η2 > 0.98 in all cases). Interestingly, PLV did not significantly vary across tasks for either
high or low gamma, or for frontal or posterior channels (p’s > 0.05, η2′s < 0.01), nor was
there an interaction between task and time window (p’s > 0.17, η2′s < 0.01), suggesting
that the cortical PLV magnitude is not impacted by task demands. To further interrogate
these effects, follow-up Bayes Factor analyses found very strong evidence for the null when
looking at the main effect of a task (BF10 < 0.034); conversely, we observed extremely strong
evidence for the main effect of the time window (BF10 < 10355 in all cases). Thus, it seems
that all three tasks led to increases in theta-gamma phase-amplitude coupling following
the onset of the stimuli to a similar degree.

Table 1. Results from the task × time window ANOVAs across the different electrode clusters and
frequency bands. Note that for the main effect of the task and the task-by-time-window interaction,
we report the corrected degrees of freedom and p-values. No sphericity correction was necessary
for the main effect of the time window since it only has two levels. When marking significance,
*** denotes p < 0.001.

Main ANOVA Results

Cluster Frequency Band Effect dfs F p(GG) η2 BF10

Frontal High Time Window 1, 59 73,073 <0.001 *** 0.986 >10374

Frontal High Task 1.97, 116.3 0.40 0.666 0.006 0.030

Frontal High Timewindow × Task 1.96, 115.4 0.27 0.757 0.002 –

Frontal Low Time Window 1, 59 20,363 <0.001 *** 0.995 >10355

Frontal Low Task 1.74, 102.8 3.12 0.055 0.044 0.031

Frontal Low Timewindow × Task 2.00, 118.0 2.57 0.081 0.003 –

Posterior High Time Window 1, 59 5915 <0.001 *** 0.980 >10374

Posterior High Task 1.97, 116.1 0.18 0.831 0.008 0.033

Posterior High Timewindow × Task 1.88, 111.1 1.77 0.177 0.000 –

Posterior Low Time Window 1, 59 5625 <0.001 *** 0.990 >10403

Posterior Low Task 1.91, 112.7 0.79 0.451 0.001 0.030

Posterior Low Timewindow × Task 1.91, 112.6 1.54 0.217 0.004 –
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Although we generally found no evidence for the effect of tasks, one comparison (for
the low gamma band in the frontal cluster) did approach significance (F(1.74,102) = 3.12,
p = 0.055). To fully explore the dataset, we performed a series of exploratory post-hoc
comparisons to examine the pattern of PLV magnitude by task. Qualitatively, we observed
that post-stimulus PLV in the Active WM+ task was slightly higher than the post-stimulus
PLV in the Active WM- condition (t(59) = 2.34, p = 0.023), with the PLV in Passive WM-
condition lying between the other two conditions. However, these differences were not
significant after correcting for a false discovery rate; furthermore, no such significant effects
were observed in the replication sample (see below).

An identical pattern of results was found in the replication sample
(see Supplementary Materials), providing further evidence that tasks did not signifi-
cantly affect coupling. That is, we observed a significant main effect of the time window
(p < 0.001, η2 > 0.98) but no significant effect of tasks (p’s > 0.09, η2′s < 0.01), nor a significant
interaction between the time window and task (p’s > 0.61 η2′s < 0.01). Bayesian analyses
provide further evidence for the pattern, with extremely strong evidence for a main effect
of the time window (BF10 > 10ˆ115 for all cases), but very strong evidence for the null when
examining the main effect of tasks (BF10 < 0.081 in all cases).

3.2. Focused Contrast Analysis

Because the omnibus ANOVAs tested all pairwise comparisons and not the critical
contrasts of interest, it is possible that they are not sufficiently sensitive to provide a strong
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test of the hypothesis that theta-gamma coupling is elevated in the active WM+ condition.
We therefore additionally conducted analyses examining a more focused contrast using
a linear mixed effects model—this allowed us to test the narrower hypothesis that the PLV
during the active WM+ condition was specifically higher than the other two conditions,
with greater power than an omnibus test. We used a linear mixed effect model with fixed
effects of the time window (pre-stimulus vs. post-stimulus) and condition (Active WM+,
Active WM-, and Passive WM-) and a random effect for the subject (to account for the
repeated measures design). We manually specified the contrasts of the condition effect
as 2/3, −1/3, and −1/3, respectively, meaning that rather than a general effect of the
condition, our model was testing for a specific effect where the Active WM+ condition led
to a higher PLV value than the other two conditions overall. We applied this model across
the two frequency bands and electrode clusters independently (see Table 2). Similar to the
ANOVA results, we found a significant effect of the time window (t(295) > 210, p < 0.001,
Cohen d > 104 in all cases) but no significant effect of the condition (t(295) < 0.86, p > 0.390,
Cohen d < 0.04 in all cases) nor a significant interaction between the time window and
condition (t(295) < 1.37, p > 0.171, Cohen d < 0. 11 in all cases). An identical pattern of
results was found in the replication sample (see Supplemental Materials).

Table 2. Results from the task× time window linear mixed model analysis using the focused contrasts
across the different electrode clusters and frequency bands. Note that for the effect of tasks, we only
tested the narrow hypothesis that Active WM+ led to a higher PLV than the other two conditions.
When marking significance, *** denotes p < 0.001.

Contrast Analysis Results

Cluster Frequency Band Effect df t p Cohen’s d

Frontal High Time Window 295 240 <0.001 *** >104

Frontal High Task 295 0.86 0.390 0.043

Frontal High Timewindow × Task 295 −0.28 0.782 0.005

Frontal Low Time Window 295 210 <0.001 *** >104

Frontal Low Task 295 0.66 0.512 0.025

Frontal Low Timewindow × Task 295 1.37 0.171 0.109

Posterior High Time Window 295 240 <0.001 *** >104

Posterior High Task 295 −0.85 0.395 0.042

Posterior High Timewindow × Task 295 0.68 0.495 0.027

Posterior Low Time Window 295 269 <0.001 *** >104

Posterior Low Task 295 0.66 0.509 0.025

Posterior Low Timewindow × Task 295 0.31 0.406 0.006

3.3. Effects of Cluster and Frequency Bands

Given the apparent differences in coupling strength between the frontal and pos-
terior electrode clusters (see Figure 3), we conducted an exploratory series of t-tests to
determine whether coupling differed by cluster location for any of the comparisons. Sur-
prisingly, we found that coupling strength was not significantly different between posterior
and frontal regions for any of the comparisons examined (see Table 3, all p’s > 0.060,
all Cohen’s d’s < 0.25). Further inspection of the data revealed the source of these appar-
ently contradictory observations (see Supplementary Figure S1): compared to posterior
electrodes, frontal electrodes exhibited a much more consistent relationship between theta
phase and peak gamma amplitude, meaning that phase-amplitude coupling is more uni-
form within the frontal cluster. By contrast, in the posterior cluster the specific phase at
which gamma amplitude is highest differs even among neighboring electrodes—in other
words, posterior coupling seems to be rather localized, while frontal coupling is more
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distributed. However, since the PLV calculation merely captures covariance between theta
phase and gamma amplitude and is not impacted by the specific theta phase at which the
gamma amplitude is highest, PLV values are similar across frontal and posterior clusters,
despite the apparent differences shown in Figure 3, which depict the average gamma
amplitude by theta phase across all electrodes within the frontal and posterior clusters.

Table 3. A summary of all pairwise comparisons for the two electrode clusters. An FDR correction
was applied across comparisons. Significance after the FDR correction is denoted in the corresponding
column of the table. When marking significance.

Pairwise Comparisons for Electrode Cluster

Cluster
PLV Time

Window
Frequency

Band Task df t p FDR Cohen’s d
Mean SD

Frontal 0.105 0.005
Pre-Stimulus High Active WM+ 59 −0.61 0.54 n.s. −0.08

Posterior 0.109 0.004

Frontal 0.106 0.005
Pre-Stimulus High Active WM- 59 −0.35 0.731 n.s. −0.05

Posterior 0.109 0.003

Frontal 0.106 0.005
Pre-Stimulus High Passive WM- 59 −1.19 0.24 n.s. −0.15

Posterior 0.109 0.003

Frontal 0.114 0.002
Pre-Stimulus Low Active WM+ 59 1.11 0.271 n.s. 0.14

Posterior 0.116 0.003

Frontal 0.114 0.002
Pre-Stimulus Low Active WM- 59 −0.74 0.464 n.s. −0.10

Posterior 0.114 0.002

Frontal 0.114 0.003
Pre-Stimulus Low Passive WM- 59 1.64 0.107 n.s. 0.21

Posterior 0.115 0.002

Frontal 0.176 0.005
Post-Stimulus High Active WM+ 59 −1.4 0.168 n.s. −0.18

Posterior 0.179 0.004

Frontal 0.177 0.006
Post-Stimulus High Active WM- 59 −1.51 0.134 n.s. −0.19

Posterior 0.180 0.004

Frontal 0.177 0.005
Post-Stimulus High Passive WM- 59 −0.86 0.578 n.s. −0.11

Posterior 0.179 0.004

Frontal 0.186 0.006
Post-Stimulus Low Active WM+ 59 0.66 0.51 n.s. 0.09

Posterior 0.187 0.003

Frontal 0.184 0.005
Post-Stimulus Low Active WM- 59 −0.45 0.658 n.s. −0.06

Posterior 0.186 0.003

Frontal 0.185 0.006
Post-Stimulus Low Passive WM- 59 −1.91 0.06 n.s. −0.25

Posterior 0.187 0.003

We also conducted a similar set of pairwise t-tests to assess the degree to which PLV
differed across the two frequency bands of interest. We found that the low gamma band
yielded significantly higher PLV compared to the high gamma band in all comparisons
(see Table 4, all p’s < 0.001, all Cohen’s d’s > 0.5). Thus, it appears that theta-gamma
coupling is more robust within the lower gamma frequency band, an effect that appears
equally strong for both the pre-stimulus and post-stimulus time windows. An identical
pattern of results was observed in the replication sample (Supplementary Materials). Briefly,
we found that PLV was statistically similar between frontal and posterior clusters for all
tasks and time windows, while the low gamma band led to significantly higher PLV values
than the high band across all comparisons.
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Table 4. A summary of all pairwise comparisons for the two frequency bands. An FDR correction was
applied across comparisons. Significance after the FDR correction is denoted in the corresponding
column of the table. When marking significance, * denotes significance after FDR correction.

Pairwise Comparisons for Frequency Band.

Frequency
PLV

Time window Cluster Task df t p FDR Cohen’s d
Mean SD

High 0.105 0.005
Pre-Stimulus Frontal Active WM+ 59 −9.8 <0.001 * −1.27

Low 0.114 0.002

High 0.106 0.005
Pre-Stimulus Frontal Active WM- 59 −10.2 <0.001 * −1.32

Low 0.114 0.002

High 0.106 0.005
Pre-Stimulus Frontal Passive WM- 59 −12.2 <0.001 * −1.58

Low 0.114 0.003

High 0.109 0.004
Pre-Stimulus Posterior Active WM+ 59 −10.5 <0.001 * −1.36

Low 0.116 0.003

High 0.109 0.003
Pre-Stimulus Posterior Active WM- 59 −12.4 <0.001 * −1.60

Low 0.114 0.002

High 0.109 0.003
Pre-Stimulus Posterior Passive WM- 59 −10.4 <0.001 * −1.34

Low 0.115 0.002

High 0.176 0.005
Post-Stimulus Frontal Active WM+ 59 −6.9 <0.001 * −0.89

Low 0.186 0.006

High 0.177 0.006
Post-Stimulus Frontal Active WM- 59 −8.8 <0.001 * −1.14

Low 0.184 0.005

High 0.177 0.005
Post-Stimulus Frontal Passive WM- 59 −4.1 <0.001 * −0.53

Low 0.185 0.006

High 0.179 0.004
Post-Stimulus Posterior Active WM+ 59 −10.4 <0.001 * −1.34

Low 0.187 0.003

High 0.180 0.004
Post-Stimulus Posterior Active WM- 59 −12.9 <0.001 * −1.67

Low 0.186 0.003

High 0.179 0.004
Post-Stimulus Posterior Passive WM- 59 −12.9 <0.001 * −1.67

Low 0.187 0.003

3.4. Relationship between PLV and Working Memory Capacity

Finally, we calculated the average PLV separately for the two electrode clusters and
two frequency bands during the delay period (i.e., for the post-stimulus window in the
Active WM+ task), and examined the correlation between the observed individual coupling
levels and Cowan’s K, a measure of individual working memory capacity in change-
detection tasks [36]. A false discovery rate correction was applied to correct for multiple
comparisons [37]. If theta-gamma coupling is related to working memory capacity, we
would expect that participants with a higher capacity will demonstrate a stronger coupling,
and thus overall larger PLV values during the delay period of Active WM+.

We found that there was no significant association between individual PLV values and
K for either the frontal or posterior electrode cluster, or for high or low gamma in either
the primary sample (abs(r’s) < 0.232; p’s > 0.075) or the replication sample (abs(r’s) < 0.480;
p’s > 0.032) after correction. In the replication sample, the correlation between the low band
posterior cluster PLV and K was significant before correction (r = 0.480, p = 0.032). However,
this comparison failed to remain significant after FDR correction was applied. Furthermore,
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the equivalent comparison in the primary sample was not significant (r = −0.200, p = 0.126),
suggesting that the observed correlation is unlikely to reflect a consistent relationship
between PLV and K. To visualize the associations between PLV and K, we plot the average
PLV and K across the different clusters, frequency bands, and samples in Figure 5.
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4. Discussion

In this study, we investigated the question of whether cortical theta-gamma phase-
amplitude coupling is specific to working memory or if it reflects a broader set of processes
applicable to many cognitive domains, including perception and attention. We found strong
evidence that, although coupling was significantly elevated during the post-stimulus period
compared to the pre-stimulus period and compared to the null model, it was elevated to
the same degree across all three tasks—two of which did not require any maintenance of
information in working memory. Furthermore, coupling from the memory condition was
not significantly or consistently correlated with working memory capacity. This suggests
that theta-gamma phase-amplitude coupling, as measured using EEG, likely reflects more
widely distributed perceptual processes or obligatory phase resetting following the onset of
a visual stimulus, rather than a specific cognitive process such as working memory. These
conclusions are further supported by the observation that an identical pattern of results
was subsequently observed in a smaller replication sample.

The findings from this study are consistent with observations from the literature that
there is little association between cortical coupling and behavioral measures of working
memory [17,21], and may provide an explanatory account for this lack of correlation. If
cortical theta-gamma coupling reflects other processes, then it might be expected that the
coupling captured by those paradigms was not necessarily reflecting the number of items
stored in memory, and thus did not significantly vary with performance. Although the
present observations may explain this lack of correlation, the functional significance of this
signal remains unclear. Given that theta-gamma coupling is significantly elevated during
the post-stimulus period compared to the pre-stimulus period, we speculate that it may
serve a more generalized perceptual function. Further research is needed to better under-
stand the conditions under which coupling can be modulated, as well as to understand
the significance of reduced coupling observed in neurological and psychological disorders
(e.g., [19,20]).

Although these findings may appear at odds with the original work linking theta-
gamma coupling to working memory [14], there are several caveats. First and foremost, it
may be that the hippocampus-to-cortex theta-gamma coupling measured through iEEG
and ECoG [8,11,12] does not meaningfully translate to scalp measures like EEG. Of note, it
remains possible that MEG will be able to capture memory-specific coupling whereas EEG
cannot, although more research is needed to determine to what degree that holds true.

Second, theta-gamma coupling was measured within-electrode, as described by
Sauseng et al. [14]. Therefore, the putative function of theta-gamma coupling (i.e., to
coordinate signals across distant brain structures) might not have been captured by this
analytical approach. Similarly, it could be that working memory maintenance affects the
distribution of coupling across cortical networks but not the overall degree of coupling
(which is our main outcome in this analysis). Given that the present analytical approach is
rather insensitive to topographical differences in coupling, more advanced computational
techniques such as functional connectivity analyses or multivariate decoding techniques
may be used to test this hypothesis.

Finally, the working memory task used in this study relies heavily on the maintenance
of perceptual information and less on the executive function; that is, a change-detection
task merely requires participants to store the colors in memory but without any active
manipulation or updating of the items that are characteristic of other types of working
memory tasks. It is possible that other paradigms that require more executive control, such
as the N-back task, may depend on theta-gamma coupling to a greater degree than simple
maintenance tasks.

5. Conclusions

In conclusion, the current study shows strong evidence that cortical theta-gamma
phase-amplitude coupling occurs to an equivalent degree in tasks that do not require
working memory maintenance as it does in a task that does require maintenance. Thus, it is
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likely that within-electrode coupling reflects other processes, such as perceptual processing
or spatial attentional control, and not working memory per se. Although it is possible
that a memory-specific signal does exist in the dynamics of theta or gamma oscillations,
further research is needed to isolate such a signal from more general neural dynamics.
Similarly, more research is required to identify which processes modulate cortical theta-
gamma phase-amplitude coupling, and to what degree hippocampal theta interacts with
cortical coupling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12091131/s1, Figure S1: Mean gamma amplitude (across
the low gamma band) by theta phase plotted separately for each electrode in our two clusters. Note
that electrodes in the frontal cluster show mostly the same response to theta phase, while electrodes in
the posterior cluster differ in their specific tuning. The scalp maps on the top left of each plot indicate
which electrode corresponds to each line in the plot. Table S1: A summary of the replication sample
results from the task x time-window ANOVAS. When marking significance, *** denotes p < 0.001.
Table S2: The resul from the replication sample for the linear mixed effects models using the focused
contrast testing whether PLV in the Active WM+ condition is higher than the other two conditions.
When marking significance, denotes p < 0.001. Table S3: A summary of the replication sample results
from pairwise comparisons of the mean PLV in the frontal and posterior clusters. A false discovery
rate correction was to correct for multiple comparisons. The FDR column denotes which comparisons
were significant after correction. When marking significance, * significance after FDR correction.
Table S4: A summary of the replication sample results from pairwise comparisons of the mean PLV
across the high and low frequency bands. A false discovery rate correction was to correct for multiple
comparisons. The FDR column denotes which comparisons were significant after correction. When
marking significance, * significance after FDR correction.
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