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Abstract: To estimate network structures to discover the interrelationships among variables and
distinguish the difference between networks. Three hundred and forty-eight stroke patients were
enrolled in this retrospective study. A network analysis was used to investigate the association
between those variables. A Network Comparison Test was performed to compare the correlation of
variables between networks. Three hundred and twenty-five connections were identified, and 22 of
these differed significantly between the high- and low-Functional Independence Measurement (FIM)
groups. In the high-FIM network structure, brain-derived neurotrophic factor (BDNF) and length
of stay (LOS) had associations with other nodes. However, there was no association with BDNF
and LOS in the low-FIM network. In addition, the use of amantadine was associated with shorter
LOS and lower FIM motor subscores in the high-FIM network, but there was no such connection
in the low-FIM network. Centrality indices revealed that amantadine use had high centrality with
others in the high-FIM network but not the low-FIM network. Coronary artery disease (CAD) had
high centrality in the low-FIM network structure but not the high-FIM network. Network analysis
revealed a new correlation of variables associated with stroke recovery. This approach might be a
promising method to facilitate the discovery of novel factors important for stroke recovery.

Keywords: BDNF (brain-derived neurotrophic factor); LOS (length of stay); network analysis;
stroke; recovery

1. Introduction

Stroke is the third-leading cause of disability worldwide, and the number of stroke
survivors has significantly increased, leading to a higher burden in the past two decades [1].
Finding variables affecting the functional outcome is essential when designing individu-
alized treatment plans to promote stroke recovery. Many factors, including age, gender,
diabetes, coronary artery disease (CAD), stroke volume, and electroencephalography (EEG)
have been investigated as predictive variables for stroke outcomes [2,3]. Many of these
studies use linear or logistic regression approaches, primary methods for outcome predic-
tion because of the interpretability and ease of utility. However, regression-based methods
utilize isolated variables for prediction and analyze the connection between the indepen-
dent and outcome variables. The performance of the regression approach is affected by the
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collinearity of the input variables, and therefore is limited by its low power in modeling
complex interrelationships between covariates [4].

In order to overcome the above challenges, network analysis has emerged as a promis-
ing approach to model complex forms between variables. It has the advantage of machine
learning with fewer assumptions about data distribution and can reflect complex interrela-
tionships between predictors and outcomes. This methodology is an aspect of graph theory
and has been widely used in various fields, such as lung cancer [5], psychiatry [6–8], and
climate change [9]. The approach assumes that all variables are constitutive of a disorder
so that the connective relationships among these variates initiate and maintain the disorder
but avoid the influence of the collinearity of the input variables [10]. The nodes can be any
entity or variable, and the edges can be any type of connection [11]. Usually, centrality
indices identify important variables of a complicated network. Further, Network Compari-
son Test (NCT) analysis distinguishes the difference between networks after computing
several networks [12]. The strength of this approach gives a unique opportunity to estimate
associations between several variables and to recognize how different variables relate to
each other. To our knowledge, this analysis approach has not yet been used in patients
with stroke.

In this retrospective study, the aim was to estimate two network structures in stroke
patients with high- and low-Functional Independence Measurement (FIM) motor function
to discover the interrelationships among variables and to investigate the difference between
the two networks. The use of amantadine was included to explore the therapeutic benefit
of amantadine for stroke patients since amantadine has been proven to be effective for
traumatic brain injury (TBI). Brain-derived neurotrophic factor (BDNF) is a recognized
marker of neuroplasticity, and as such was included as a potential marker of stroke recovery.
We hypothesized that network analysis would allow the identification of factors that are
associated with stroke recovery.

2. Materials and Methods
2.1. Participants

The study was approved by the Institutional Review Board (IRB). We used our pre-
viously published dataset for data analysis [13]. Patients admitted to an acute inpatient
rehabilitation hospital from March 2014 to June 2015 were selected using the following
inclusion and exclusion criteria. Inclusion criteria consisted of >18 years of age, stroke
lesion confirmed by computed tomography (CT) or/and magnetic resonance imaging
(MRI), >1 week LOS at the hospital, and peripheral serum samples collected and stored on
admission. Exclusion criteria were participants with any missing data. A total of 348 stroke
patients met the criteria for inclusion in the study.

2.2. Procedure

Demographic and clinical characteristics were extracted from medical records (Table 1)
and included gender, ethnicity, marriage, age, body mass index (BMI), stroke risk factors
(stroke history, hypertension, atrial fibrillation, CAD, and diabetes), stroke side, stroke
site, type of stroke, aphasia, spasticity, use of amantadine, LOS, discharge destination, FIM
motor and cognition subscores on admission and discharge, levels of BUN, creatinine, and
hematocrit (HCT). FIM scores were measured after admission and before discharge. Serum
BDNF level were measured in duplicate using an enzyme-linked immunosorbent assay
(ELISA) (R&D System, Inc., Minneapolis, MN, USA). BDNF measurement was part of this
research study and was not a routine clinical test.



Brain Sci. 2022, 12, 1065 3 of 11

Table 1. List of demographic and clinical characteristics, serum biomarkers, and corresponding node IDs.

ID Variable Abbreviation

1 Spasticity (non-spastic vs spastic) SPA
2 Stroke side (right side vs left side vs both sides) SIDE

3 Stroke site (supratentorial vs infratentorial vs
both sites) SITE

4 Discharge destination (home vs skilled nursing
facility vs acute hospital) DSTN

5 Stroke type (ischemic stroke vs
hemorrhage stroke) TYPE

6 Gender GED
7 Ethnicity (Hispanic vs non-Hispanic) ETH
8 Marriage (married vs unmarried) MAR
9 Prior stroke history HST

10 Hypertension HTN
11 Atrial fibrillation (AF) AF
12 Coronary artery disease (CAD) CAD
13 Diabetes mellitus (DM) DM
14 Aphasia APH
15 Amantadine AMA
16 FIM motor subscores on admission (FMA) FMA
17 FIM cognitive subscores on admission (FCA) FCA
18 FIM motor subscores at discharge (FMD) FMD
19 FIM cognitive subscores at discharge (FCD) FCD
20 Age AGE
21 Body mass index (BMI) BMI
22 Length of stay (LOS) LOS
23 Blood urea nitrogen (BUN) BUN
24 Creatinine CRE
25 Hematocrit (HCT) HCT
26 brain-derived neurotrophic factor (BDNF) BDNF

2.3. Statistical Analysis

Participants were grouped into a high-FIM motor subscore and low-FIM network
structure using the median value, 29, of FIM motor score on admission as a cut-off. Network
analysis contains three main steps: (1) estimation of a statistical model; therefore, some
parameters from the weighted network can be used to represent a weighted network,
(2) analysis of the weighted network based on graph theory, and (3) evaluation of the
accuracy of the network (11). Furthermore, we employed NCT to distinguish the differences
between estimated networks. R program (3.6.1, A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.
R-project.org/, accessed on 4 August 2022) and bootnet (1.2.3, form Sacha Epskamp), qgraph
(1.6.3, from Sacha Epskamp), ggplot2 (3.2.0, from Hadley Wickham), NetworkComparisonTest
(2.2.1, from Claudia van Borkulo) packages were used to conduct this analysis.

2.3.1. Estimating Networks

The Gaussian graphical model was used to estimate the networks. The estimateNet-
work function from the bootnet package was applied to detect ordinal variables, compute
polychoric (or, if needed, polyserial and Pearson) correlations, and estimate network
structures automatically. Then, we applied the plot function from qgraph to display the net-
work [14]. In the network graph, the width of the edges correlates with the strength of the
connections; the blue or red edges indicate positive or negative relationships, respectively.

2.3.2. Computing Centrality Indices

We computed centrality using the centralityPlot function from qgraph. For the aug-
ments of the plot, closeness was the mean length of connected edges, indicating the like-
lihood that each given node impacts the whole network structure. Betweenness was the
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value of how many times the node was located on the edges between two other nodes,
suggesting the contribution of the one node on information flow of the whole network.
Strength was the sum weight of the connected edges [11,15]. Hence, the large parts of the
network may be influenced by altering the nodes with the highest closeness and betweenness,
and many other nodes might be affected by making some adjustments to the node with the
highest strength.

2.3.3. Accuracy Test

The stability of networks and centrality indices are quite common after network
structures estimated. We used the package bootnet to assess the accuracy and used plot
function from qgraph to display the results. As to the stability plots of the sample size, the
lines represented the average correlations between the percent of given samples and the
whole sample size, and the shaded area represented the 2.5 and 97.5 percentiles of the
estimated samples [16].

2.3.4. Network Comparison

To estimate the structural level differences between networks, we used a newly de-
veloped R package NetworkComparisonTest from Claudia van Borkulo, et al. [17]. This
analysis gave us the Bonferroni corrected p-value of edges. A p < 0.05 was considered as
significantly different. From the results, we concluded which node played a different role
between networks. In addition, we used a paired t-test to compute the global strength
difference or density difference of connection.

3. Results

In order to estimate the interrelationship of variables, the Gaussian graphical model
was applied to compute the high- and low-FIM networks. We used the same data (as
shown in Table 1) from our previous publication that included 26 variables of demographic
and clinical characteristics, and serum biomarkers [13]. There were 174 participants in each
group, and no significant difference was found between the two groups regarding age,
gender, BMI, ethnicity, stroke type, stroke side, HCT, BUN, creatinine level, the occurrence
of CAD, diabetes, hypertension, atrial fibrillation (AF), and prior stroke. Moreover, signifi-
cant differences were found in LOS, discharge destination, serum BDNF level, FIM motor
subscores on admission (FMA) and discharge (FMD).

3.1. High-FIM Network

The high-FIM network structure (Figure 1A) showed strong positive connections
between BUN and creatinine, and strong negative connections between spasticity and
discharge destination (with spasticity more likely on discharge home). Centrality indices
results revealed that amantadine use had the highest strength, closeness, and betweenness
(Figure 2, Table 2) among all variables analyzed, suggesting the administration of aman-
tadine had the most interactions with other covariants. As shown in Figure 3A, stability
was reduced as the sample size decreased. Corstability (CS-coefficient) of strength was 0.05
(cor = 0.7) and was under the cut-off of 0.5, which is considered a required metric stable.
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Table 2. Differences in Two Groups of Centrality Indices.

ID Variables
High Motor Function Low Motor Function

Betweenness Closeness Strength Betweenness Closeness Strength

1 Spasticity 0.36 1.07 0.98 0.26 0.75 1.60
2 Stroke side 0.28 0.65 −0.58 0.62 0.83 1.44
3 Stroke site −0.14 0.68 0.40 −0.02 0.87 0.89
4 Destination 1.11 0.75 0.88 −0.93 −2.05 −1.06
5 Stroke type −0.06 0.84 0.15 −0.54 −0.87 −0.69
6 Gender −0.56 0.10 0.41 1.93 1.43 1.40
7 Ethnicity −0.98 −0.91 −0.86 −0.93 0.51 −0.18
8 Marriage −0.72 0.17 −0.03 1.14 0.86 0.13

9 Stroke
history −0.39 0.13 0.31 −0.10 −0.10 −0.54

10 Hypertension 1.11 0.76 0.66 1.33 1.20 1.35
11 AF 1.61 1.05 1.29 −0.50 −0.81 −0.38
12 CAD −0.06 0.78 0.42 2.85 § 1.81 § 1.74 §
13 Diabetes 1.36 0.89 1.18 −0.50 −0.12 −0.42
14 Aphasia −0.39 0.54 0.71 −0.93 −1.35 −1.05
15 Amantadine 3.44 § 1.75 § 2.07 § 1.25 0.70 −0.18
16 FMA −0.98 −1.36 −1.39 0.66 −0.31 −0.10
17 FCA −0.39 −1.46 −0.96 −0.69 −1.18 −0.07
18 FMD −0.39 0.28 −0.05 −0.10 −1.23 −0.20
19 FCD −0.56 −1.54 −1.42 −0.10 −0.97 0.13
20 Age −0.31 0.34 0.44 −0.14 −0.31 −0.42
21 BMI −0.89 −2.01 −2.06 −0.69 −0.18 −0.51
22 LOS −0.47 0.10 0.22 −0.93 NA † −1.53
23 BUN −0.31 −1.25 −1.08 −0.69 0.08 0.48
24 Creatinine −0.14 −1.16 −0.95 −0.38 0.44 1.25
25 HCT −0.81 −0.89 −1.13 −0.93 NA † −1.53
26 BDNF −0.89 −0.29 −0.76 −0.93 NA † −1.53

† Three closeness scores were missing due to weak connection with the largest component of the network structure.
§ Higher scores represent higher centrality. AF: Atrial fibrillation, CAD: Coronary artery disease, FMA: FIM motor
subscores on admission, FCA: FIM cognitive subscores on admission, FMD: FIM motor subscores at discharge,
FCD: FIM cognitive subscores at discharge, BMI: Body mass index, LOS: Length of stay, BUN: Blood urea nitrogen,
HCT: Hematocrit, BDNF: brain-derived neurotrophic factor.
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3.2. Low-FIM Network

As shown in Figure 1B in the low-FIM network, stroke side had a strong negative
connection with spasticity and a strong positive connection with stroke site. In addition,
strong positive correlations were found in the high-FIM network between FCD and FCA,
and BUN and creatinine. The centrality indices plot (Figure 2, blue) and centrality scores
(Table 2) revealed that CAD was the most central variable in the low-FIM network. In
addition, when the sample size decreased, the strength was unstable (Figure 3B), since the
CS-coefficient of strength was (CS (cor = 0.7) = 0.05).

3.3. Network Comparison

NCT was performed to quantify the differences in the connection weights to further
investigate the overall differences between these two network structures. Twenty-two
of 325 connections differed significantly between networks (Table 3). In addition, LOS
was linked to five of the 22 connections, implying it was significantly different in the two
networks and formed more complicated connections in the high-FIM network. Interestingly,
factors that affect LOS were different between the high-FIM and low-FIM networks. In the
high-FIM network, high FMA and FMD, as well as being married and female were more
likely to show a decreased LOS; however, in the low-FIM network, these factors were not
correlated with LOS. The paired t-test revealed that the global strength was significantly
different between the two networks (p < 0.001), and the high-FIM network had more
dense connections.

Table 3. Variable correlations that differ significantly between the High-FIM and Low-FIM networks.

Correlation Represented by the Edge of Two Variables p Value

FMA-Marriage <0.001
FMD-LOS <0.001

FMD-Gender <0.001
Marriage-LOS 0.001
Gender-LOS 0.003

Amantadine-LOS 0.011
Age-HCT 0.015

Destination-AF 0.023
Spasticity-Aphasia 0.027

Stroke Site-Age 0.027
Spasticity-Destination 0.028

Amantadine-FMD 0.031
Stroke Site-Stroke History 0.033

Stroke History-Hypertension 0.033
Spasticity-Stroke Site 0.034
Destination-Aphasia 0.035

AF-Age 0.04
Destination-LOS 0.04

AF-HCT 0.042
Marriage-Amantadine 0.044

DM-Aphasia 0.045
Stroke Type-Hypertension 0.046

p < 0.05 were considered as significantly different.

4. Discussion

In this study, we found that network analysis may be a promising tool for discovering
complex interrelationships of variables contributing to stroke recovery. Comparing high-
FIM and low-FIM networks revealed that twenty-two out of 325 connections differed
significantly between networks. The high-FIM network had more dense connections, with
several correlations with potential clinical implications.

First, node amantadine strongly interacted with other variables in the high-FIM net-
work. The use of amantadine tended to decrease LOS in the high-FIM network structure
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but not in the low-FIM network structure, suggesting that different motor functions may
influence the relationship between amantadine use and LOS. Although much evidence
supports amantadine’s use in improving consciousness, cognition, and disability level
for patients with traumatic brain injury (TBI) [18–20], the effect of amantadine on stroke
recovery is less clear [21,22]. As an NMDA receptor (NMDA-R) antagonist, amantadine
may also be anti-inflammatory. Indeed, it was reported that amantadine has an inhibitory
effect on microglial activation and the signaling pathway [23], implying amantadine use
for stroke patients where neuroinflammation is common.

Second, the BDNF node was positively connected with diabetes in the high-FIM
network but not in the low-FIM network. Our findings are consistent with prior studies
that did not show a significant association between serum BDNF and diabetes [24,25].
However, other studies have shown such an association [26,27]. This incongruence may
be attributed to variations in BMI [26], ethnicity [28]. Many factors can impact circulating
BDNF levels, including vigorous aerobic exercise [29], calorie restriction [30,31], blood
glucose levels [32], platelet activity, gender, and cognition [33]. Moreover, BDNF has two
isoforms (pro-BDNF and mature BDNF) and has two transmembrane signaling pathways
through receptors tropomyosin-related kinase B (TrKB) and p75 neurotrophic receptor
(p75NTR) [34]. Mature BDNF specifically binds to TrKB promoting cell survival, whereas
pro-BDNF preferentially binds to p75NTR resulting in apoptosis. Loss of TrKB signaling
is reported in aging and different neurogenerative disorders. Therefore, the functional
outcome of BDNF depends on which isoforms of BDNF and the receptors, not just the level
of circulating BDNF. Consideration of these other factors will be important in future studies.

Third, the LOS node was connected to several nodes in the high-FIM network, in-
cluding FMD (negative), FMA (negative), gender (negative), amantadine (negative), and
marriage (positive). However, the LOS node had no connections in the low-FIM network.
Our findings are consistent with other studies showing LOS correlated with functional
outcomes on admission, gender [35], and marriage status [36]. The lack of an association
in the low-FIM, suggests that variables affecting LOS are different in the high-FIM and
low-FIM groups. Further study is needed to dissect the contributing factors to LOS that
would provide insight into treatment and discharge plans.

In addition, a strong negative connection was found in the high-FIM network between
discharge destination and spasticity, suggesting that patients with spasticity are more likely
to be discharged home. This is consistent with a study reporting that stroke patients with
spasticity have better outcomes than non-spastic patients [37]. However, other studies
report the opposite correlation in chronic stroke [38,39]. This incongruence may be related
to different stages of recovery [40].

The node CAD has high centrality in the low-FIM network but not in the high-FIM
network. CAD may have more apparent interactions with other clinical factors in the
low-function group compared to the high-function group. This finding is inconsistent with
the finding that CAD is a major detrimental factor for patients with low mobility [41]. Our
data suggest that in patients with high mobility, CAD appears to be a less limiting factor.

The primary strength of the network analysis approach is interrelationship discovery,
which may reveal unknown relationships between variables. In this study, some connec-
tions, including the correlation between serum BDNF levels with diabetes–stroke patients
and amantadine, were not confirmed.

Limitations

The cohort consisted of stroke patients from one urban rehabilitation hospital; there-
fore, conclusions cannot be generalized to the general population. Causal associations
cannot be defined in this study [42], and experimental and prospective studies must con-
firm a causal relationship [43]. Another limitation is the small sample size. Future studies
with larger sample sizes are necessary [44]. The infarct volume is an important variable
for stroke patients, but it was not included in this study since not all patients had imaging
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available for analysis. Lacking in our dataset was the length of time between stroke onset
and initiation of rehabilitation, which is variable, and likely impacts functional outcomes.

5. Conclusions

The described network analysis approach offers a unique opportunity to learn how
demographic and clinical characteristics and serum biomarkers may contribute to stroke
recovery. Dissimilar performance of variables has been displayed between high- and
low-FIM networks, including LOS, serum BDNF level, and amantadine use.
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