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Abstract: Objective Glioblastoma (GBM), a type of malignant glioma, is the most aggressive type
of brain tumor and is associated with high mortality. Hexose-6-phosphate dehydrogenase (H6PD)
has been detected in multiple tumors and is involved in tumor initiation and progression. However,
the specific role and mechanism of H6PD in GBM remain unclear. Methods We performed pan-
cancer analysis of expression and prognosis of H6PD in GBM using the Genotype-Tissue Expression
Project (GTEx) and The Cancer Genome Atlas (TCGA). Subsequently, noncoding RNAs regulating
H6PD expression were obtained by comprehensive analysis, including gene expression, prognosis,
correlation, and immune infiltration. Finally, tumor immune infiltrates related to H6PD and survival
were performed. Results Higher expression of H6PD was statistically significantly associated with
an unfavorable outcome in GBM. Downregulation of hsa-miR-124-3p and hsa-miR-516b-5p in GBM
was detected from GSE90603. Subsequently, OSMR-AS1 was observed in the regulation of H6PD
via hsa-miR-516b-5p. Moreover, higher H6PD expression significantly correlated with immune
infiltration of dendritic cells, immune checkpoint expression, and biomarkers of dendritic cells.
Conclusions The OSMR-AS1/ miR-516b-5p axis was identified as the highest-potential upstream
ncRNA-related pathway of H6PD in GBM. Furthermore, the present findings demonstrated that
H6PD blockading might possess antitumor roles via regulating dendritic cell infiltration and immune
checkpoint expression.

Keywords: H6PD; ceRNA network; glioblastoma; immune infiltration; outcome

1. Introduction

Glioma tissue derived from the nerve epithelium is a diffuse, highly invasive cerebral
tumor with a poor prognosis. Glioblastoma (GBM), a type of malignant glioma, is the most
aggressive variety of brain tumor and is associated with high mortality. GBM patients
typically have short survival times (approximately 1 year) and an extremely poor prognosis,
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with a 5-year overall survival (OS) rate of less than 4% [1]. The prognosis of GBM patients
remains dismal despite multiple therapies such as radical surgery, chemotherapy, and
radiotherapy [2,3]. Thus, detailed underlying molecular mechanisms and prognostic
predictors in GBM patients are urgently needed.

Hexose-6-phosphate dehydrogenase (H6PD) is involved in the downregulation of
nicotinamide adenine dinucleotide phosphate (NADPH) in the endoplasmic reticulum
lumen via converting glucose 6-phosphate to 6-phosphogluconate [4,5]. The H6PD gene
is upregulated in multiple malignancies, and early studies reported that H6PD led to
cancer cell growth [6,7]. Knockdown of H6PD reduced the proliferation and migration
of breast cancer cells [5]. Downregulation of H6PD with short interfering RNAs in the
murine colon and breast cancer cells correlated with reduced glucose uptake and decreased
proliferation [8]. Silencing of H6PD contributed to reduced invasion and migration of gall-
bladder cancers [7]. Furthermore, increased H6PD plays a crucial role in purine metabolic
reprogramming and the progression of glioma stem cells [9].

Nevertheless, the prognosis and regulatory mechanisms of H6PD in GBM remain
scarcely explored. Moreover, the potential function of H6PD in regulating tumor immune
cell infiltration in GBM is incompletely understood. In this study, we performed survival
analysis for H6PD in a pan-cancer study. Next, the potential upstream (noncoding RNA)
pathways of H6PD, including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs),
are also explored in GBM. Finally, we explored the correlation between H6PD expression
and immune infiltration in GBM. Collectively, our study suggests that elevated H6PD
regulated by OSMR-AS1/hsa-miR-516b-5p correlates with tumor immune infiltration and
poor prognosis in GBM patients.

2. Materials and Methods
2.1. TCGA Data Download, Process, and Analysis

Pan-cancer gene expression data were acquired from The Cancer Genome Atlas
(TCGA) database (https://tcga-data.nci.nih.gov/tcga/, accessed on 15 February 2022).
We analyzed the differential expression of H6PD using the R package [10]. We also
analyzed weighted Pearson correlations and p-values using the R package “weights”
(https://CRAN.R-project.org/package=weights); p-values less than 0.05 were considered
statistically significant.

2.2. GEPIA Database Analysis

GEPIA (http://gepia.cancer-pku.cn/detail.php, accessed on 15 February 2022) is a
web-based tool for gene expression and correlation analysis based on TCGA and data
from the Genotype-Tissue Expression Project (GTEx) [11]. GEPIA was used to analyze
the expression of H6PD and long noncoding RNA (lncRNA) in different types of cancers.
Survival analysis for H6PD in pan-cancer studies, including overall survival (OS) and
disease-free survival (DFS), was conducted using GEPIA. In addition, prognostic values
of the candidate lncRNAs were assessed by GEPIA and the R package. PDCD1, CD274,
CTLA4, SIGLEC15, HAVCR2, TIGIT, LAG3, and PDCD1LG2 were selected as major im-
mune checkpoints. The associations between H6PD and immune checkpoints in GBM were
investigated using data from the GEPIA database.

2.3. ENCORI Database Analysis

ENCORI (http://starbase.sysu.edu.cn/, accessed on 17 February 2022) is a web server
for analyzing RNA-related studies [12]. Candidate miRNAs were obtained using EN-
CORI. Several target prediction programs obtained predictive miRNAs of H6PD, including
RNA22, miRmap, PITA, microT, miRanda, PicTar, and TargetScan. In addition, parameters
for degradome data (low stringency), clip data (medium stringency), and pan-cancer type
(one cancer type) were set. Only predicted miRNAs acquired in at least three programs
were considered candidate miRNAs of H6PD. The correlation between miRNAs and H6PD
in GBM was analyzed by using ENCORI. miRNAs negatively correlated with H6PD were

https://tcga-data.nci.nih.gov/tcga/
https://CRAN.R-project.org/package=weights
http://gepia.cancer-pku.cn/detail.php
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selected for subsequent survival analysis. In addition, candidate lncRNAs that might bind
to candidate miRNAs were obtained from ENCORI.

2.4. Differential Expression Analysis by microRNA-seq

The miRNA sequencing of glioblastoma is publicly available from the GEO under
accession number GSE90603. The reads were mapped to the human genome (hg38). The
resulting matrix of reading counts was then loaded into RStudio (R version 3.6.3, R core
Team, 2020, R Foundation for Statistical Computing, Vienna, Austria). The differential
expression analysis was performed using the R/Bioconductor package DESeq (version
1.16.0, R Foundation for Statistical Computing, Vienna, Austria).

2.5. GEO2R Analysis

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r, accessed on 21 February 2022), a
web tool available from the NCBI, was applied to identify differentially expressed genes
between GBM and normal samples. GEO2R carried out comparisons using the GEOquery
and Limma R packages from the Bioconductor project to identify the differentially ex-
pressed miRNAs in GBM and normal brain samples. The statistical significance of miRNA
differential expression was determined by assigning |Log2 fold change| (|log2FC|) values
and adjusted p-values. An adjusted p-value < 0.05 and the absolute|log2FC| > 1 were set
as the cut-off criteria.

2.6. Prediction of lncRNA and ceRNA Network Construction

Based on the ceRNA hypothesis [13,14], we analyzed the positive correlation between
H6PD and targeted lncRNAs. We constructed a lncRNA–miRNA–mRNA interaction
network for H6PD to understand the gene regulation of H6PD.

2.7. UCSC Xena Database and Kaplan-Meier Plotter Analysis

The UCSC Xena database (http://xena.ucsc.edu/, accessed on 22 February 2022) is
a visualization and analysis web tool for correlations between genomic and phenotypic
variables. The database contains TCGA data. The database provided information on
survival outcomes and gene expression. The expression and survival curves of lncRNAs
were acquired by combining the GEPIA database and the “survival” package-derived R
Project.

2.8. TIMER Database Analysis

TIMER (https://cistrome.shinyapps.io/timer/, accessed on 21 February 2022) is a clas-
sical and authoritative database for evaluating immune infiltrates and clinical implications
in diverse cancer types. TIMER was used to generate the correlation of H6PD expression
with immune infiltrates in GBM. The survival module investigated the association between
clinical outcomes and immune infiltrates.

2.9. Immune Infiltration Analysis

Tumor immune infiltrates were obtained using a single GSEA (ssGSEA) method with
a GSVA R package based on TCGA datasets [15]. The correlation between H6PD and
eight immune cell types was determined using the Spearman correlation test. Graphs
were obtained using the ggplot2 R package (version 3.6.3, R core Team, 2020, Vienna,
Austria). The GEPIA database was utilized to identify the relationships between H6PD and
biomarkers of immune cells.

2.10. UACLAN

UALCAN is designed to provide easy access to a publicly available database; it is
a comprehensive and interactive online tool that can be used to analyze cancer OMICS
data [16]. Graphs and plots describing survival information of lncRNAs in GBM patients
were obtained from UALCAN.

http://www.ncbi.nlm.nih.gov/geo/geo2r
http://xena.ucsc.edu/
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2.11. The Human Protein Atlas (THPA) Analysis

THPA was used to assess the H6PD expression of GBM and normal brain tissues based
on immunohistochemistry.

2.12. Statistical Analysis

H6PD expression analysis was performed with TIMER, GEPIA, THPA, and R projects
using the “ggplot2” package. Survival analysis was performed with GEPIA, TIMER,
ENCORI, and R projects. Expression of miRNAs was performed with R projects. Expression
of lncRNAs was obtained from GEPIA. The association between H6PD and immune
checkpoints in GBM was evaluated using GEPIA. Kaplan–Meier survival analysis and Cox
regression were also utilized to assess the prognostic value of H6PD expression. A value of
p < 0.05 was considered statistically significant in all analyses.

3. Results
3.1. Expression and Survival Analysis for H6PD in Pan-Cancer Studies

Differences in H6PD were detected in 14 cancers based on TCGA cancer and standard
data (Figure 1A): bladder cancer (BLCA), breast cancer (BRCA), cervical squamous cell
carcinoma (CESC), GBM, kidney chromosome cancer (KICH), kidney renal clear cell carci-
noma (KIRC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), pheochromocytoma and paraganglioma (PCPG), prostate
adenocarcinoma (PRAD), stomach adenocarcinoma (STAD), thyroid cancer (THCA), and
uterine corpus endometrial carcinoma (UCEC). H6PD expression in these 14 cancers was
compared to corresponding TCGA and GTEx normal tissues (Figure 1B–O). Differential
H6PD expression was detected in four cancers: CESC, GBM, PCPG, and UCEC. Briefly,
H6PD was upregulated in GBM and downregulated in CESC, PCPG, and UCEC, sug-
gesting that H6PD may play an oncogenic role in these four cancers. Low expression of
H6PD was detected in the cerebral cortex, cerebellum, and low-grade glioma (Figure 2A–C).
Abundant H6PD expression was detected in GBM (Figure 2D). For overall survival (OS)
and disease-free survival (DFS), high expression of H6PD was significantly associated with
poor prognosis in GBM patients (Figure 2E–L). H6PD was not statistically significant in
predicting the prognoses of patients with other cancer types (Figure 2E–L).
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14 cancers: bladder cancer (BLCA), breast cancer (BRCA),cervical squamous cell carcinoma (CESC),
glioblastoma (GBM), kidney chromosome cancer (KICH), kidney renal clear cell carcinoma (KIRC),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carci-
noma(LUSC), pheochromocytoma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD),
stomach adenocarcinoma (STAD), thyroid cancer (THCA), and uterine corpus endometrial carci-
noma (UCEC). (B–O) H6PD expression in 14 cancers was provided compared to corresponding
TCGA and GTEx normal tissues. Differences in H6PD were detected in four cancers: CESC, GBM,
PCPG, and UCEC. Briefly, H6PD was upregulated in GBM and downregulated in CESC, PCPG, and
UCEC, suggesting that H6PD may play an oncogenic role in these four cancers. (ns: no significance;
* p-value < 0.05; ** p-value < 0.01; *** p value < 0.001).
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Figure 2. Immunohistochemistry and survival analysis of H6PD. (A–D) Low expression of H6PD was
detected in the cerebral cortex, cerebellum, and low-grade glioma. Abundant H6PD expression was
detected in GBM. (E–L) OS and DFS of CESC, GBM, PCPG, and UCEC are shown. For overall survival
(OS) and disease-free survival (DFS), high expression of H6PD was significantly associated with poor
prognosis in GBM patients. H6PD was not statistically significant in predicting the prognoses of
patients with other cancer types.

3.2. Analysis of Candidate miRNAs and lncRNAs Binding to H6PD

According to the ceRNA hypothesis [13,14], there is a positive correlation between
lncRNA and H6PD, while a negative correlation exists between miRNA and H6PD. We
obtained three candidate miRNAs that could competitively bind to H6PD: hsa-miR-124-3p,
hsa-miR-516b-5p, and hsa-miR-506-3p (Figure 3A). Downregulation of hsa-miR-124-3p and
hsa-miR-516b-5p was detected from GSE90603, while downregulation of hsa-miR-506-3p
was not. Subsequently, 27 candidate lncRNAs related to hsa-miR-124-3p were upregulated
in GBM (Figure 3B–D). Statistical significance of DLEU1 for predicting the prognosis of
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GBM was detected, while statistical significance was not found for the other 26 lncRNAs
(Figure 3E,F). OS and DFS analyses demonstrated that GBM patients with higher DLEU1
expression had a good clinical prognosis. Thirty-five candidate lncRNAs related to hsa-
miR-516b-5p were upregulated in GBM (Figure 3G–J). Statistical significance of OSMR-AS1
for predicting the prognosis of GBM was detected, while statistical significance was not
found for the other thirty-four lncRNAs (Figure 3K,L). GBM patients with higher OSMR-
AS1 expression were negatively associated with OS and RFS. It was found that OSMR-
AS1 was positively correlated with H6PD, while DLEU1 was negatively correlated with
H6PD (Figure 3M,N). Considering expression analysis, survival analysis, and correlation
analysis, OSMR-AS1 might be the highest-potential upstream lncRNA of the hsa-miR-516b-
5p/H6PD axis in GBM.
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Figure 3. Expression, survival analysis, correlation of candidate miRNAs, lncRNAs, and H6PD. To
ascertain whether some lncRNAs modulated H6PD, the upstream miRNAs bound to H6PD were
predicted, and finally, three miRNAs, namely hsa-miR-124-3p, hsa-miR-516b-5p, and hsa-miR-506-
3p, were found (A). Downregulation of hsa-miR-124-3p and hsa-miR-516b-5p was detected from
GSE90603, while downregulation of hsa-miR-506-3p was not. Twenty-seven candidate lncRNAs
related to hsa-miR-124-3p were upregulated in GBM (B–D). DLEU1 was significantly associated with
prognosis in GBM patients, while the other 26 lncRNAs were not (E,F). OS and DFS analyses demon-
strated that GBM patients with higher DLEU1 expression had a good clinical prognosis. Thirty-five
candidate lncRNAs related to hsa-miR-516b-5p were upregulated in GBM (G–J). Statistical signifi-
cance of OSMR-AS1 for predicting prognosis of GBM was detected, while statistical significance of the
other 34 lncRNAs was not (K,L). GBM patients with higher OSMR-AS1 expression were negatively
associated with OS and RFS. DLEU1 was negatively correlated with H6PD (M), while OSMR-AS1
was positively correlated with H6PD (N). (ns: no significance; * p-value < 0.05; ** p-value < 0.01;
*** p value < 0.001).
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3.3. Association of Immune Infiltration, Overall Survival, Immune Checkpoints, and H6PD Level
in GBM

Infiltration levels of various immune cells under different copy numbers of H6PD in
GBM were provided. Significant changes in immune cell infiltration levels were observed
under various copy numbers of H6PD in GBM, including B cells, CD8+ T cells, CD4+ T cells,
and neutrophils. We found a significant positive correlation between H6PD expression
and dendritic cell infiltration (Figure 4C). Higher dendritic cell infiltration and expression
of H6PD were significantly positively associated with poor outcomes (Figure 4D,E). A
correlation was found between biomarkers of dendritic cell infiltration and H6PD in GBM.
CD8A, HLA-DPB1, TGAX, NRP1, SIRPA, THBD, and XCR1 were positively associated with
H6PD expression (Figure 5 A–G). The association of H6PD with biomarkers of dendritic
cells in GBM is summarized in Table 1. Higher expression of eight checkpoints in GBM was
detected (Figure 6A). The correlations between H6PD and immune checkpoints in GBM
were assessed (Figure 6B–I). H6PD expression was significantly positively correlated with
CD274, CTLA4, LAG3, PDCD1LG2, TIGHT, and SIGLEX15.
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Figure 4. The relationship of immune cell infiltration and survival with H6PD levels in GBM.
Infiltration levels of various immune cells under different copy numbers of H6PD in GBM were
provided (A). A significant change in immune cell infiltration levels under various copy numbers of
H6PD in GBM, including B cells, CD8+ T cells, CD4+ T cells, and neutrophils, was observed (A). The
correlation of H6PD expression level with B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil,
and dendritic cell infiltration level in GBM was shown (B,C). H6PD expression was significantly
positively associated with dendritic cells. In the survival module, we investigated whether immune
infiltrates and H6PD expression were associated with clinical outcomes (D,E). Higher dendritic cell
infiltration and expression of H6PD were significantly positively associated with poor outcomes.
(* p < 0.05, ** p < 0.01).
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TGAX, NRP1, SIRPA, THBD, and XCR1 were positively associated with H6PD expression (A–G).

Table 1. Correlation between biomarkers of dendritic cells and H6PD in GBM.

DC Subtype Biomarker R-Value p Value

cDC1 THBD 0.32 <0.001
CLEC9A -0.15 0.064

CD8a 0.24 0.0019
BATF3 0.0063 0.94
XCR1 0.21 0.006

cDC2 CD1c 0.094 0.23
CD172a/SIRPA 0.32 <0.001

pDC CD303 0.031 0.7
CD304/NRP1 0.49 <0.001

LC CD1a 0.095 0.23
DC HLA-DPB1 0.16 0.042

HLA-DQB1 0.085 0.28
HLA-DRA 0.013 0.87
HLA-DPA1 0.13 0.091

CD11c/ITGAX 0.17 0.031
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4. Discussion

Malignant glioma is the most common primary brain tumor type and has a poor
prognosis. According to previous studies, the median survival time for GBM patients after
treatment is approximately one year [17]. Despite improvement in surgery and chemo-
radiotherapy for GBM, the clinical prognosis of GBM patients is extremely poor. Accumu-
lating evidence indicates that H6PD plays an essential role in tumor initiation, progression,
and drug resistance in multiple human cancers, including gallbladder, prostate, and breast
cancer [6,7]. However, the function, molecular mechanism, and immune infiltration of
H6PD in GBM remain unclear.

The study conducted a pan-cancer analysis of H6PD’s expression using TCGA and
GTEx data. H6PD was upregulated in GBM and downregulated in CESC, PCPG, and
UCEC, suggesting that H6PD may play an oncogenic role in these four cancers. Although
CECS, PCPG, and UCEC are different cancer types and come from different tissues, they
share the same result from H6PD downregulation. H6PD controls cancer cell proliferation
and migration through pleiotropic effects, unfolded protein response, calcium homeostasis,
and redox balance, which may result in a downregulation in CECS, PCPG, and UCEC .
Future studies assessing gene expression might provide necessary insight into the biological
mechanism. Low H6PD expression was detected in normal brain tissues and low-grade
glioma. Nevertheless, abundant H6PD expression was found in GBM and related to a poor
prognosis. H6PD was not statistically significant in predicting the prognosis of patients
with other cancer types. Previous studies also indicated that upregulation of H6PD plays
an essential role in purine metabolic reprogramming and glioma stem cell progression [9].

To explore whether ncRNAs modulated H6PD, we predicted the candidate miRNAs
of H6PD and finally found three miRNAs: hsa-miR-124-3p, hsa-miR-516b-5p, and hsa-
miR-506-3p. Downregulation of hsa-miR-124-3p and hsa-miR-516b-5p was detected from
GSE90603, while downregulation of hsa-miR-506-3p was not. Previous studies reported
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that miR-124-3p correlated with tumor proliferation and migration in glioma [18–20].
Hypoxia-induced PDIA3P1 promoted mesenchymal transition via sponging of miR-124-3p
in glioma [18]. miR-124-3p inhibited the viability of glioblastoma by targeting RhoG [19].
miR-124-3p also prevented cell proliferation, migration, and invasion in glioma via down-
regulation of Fra-2 and EphA2 in glioma [20,21]. miR-516b-5p plays important roles in
tumor initiation and progression of multiple human cancers, including hepatocellular
carcinoma, retinoblastoma, bladder cancer, lung cancer, and esophageal squamous cell
carcinoma [22–26]. Tumor-suppressive effects of LINC02362 were implemented by mod-
ulation of the miR-516b-5p in hepatocellular carcinoma [22]. miR-516b-5p binding with
taurine-upregulated gene 1 led to ectopic H6PD expression in retinoblastoma [23].

The ceRNA hypothesis is a novel mechanism for RNA interactions. Based on the
ceRNA hypothesis, lncRNA acts as a ceRNA to interact with mRNA by competing with the
corresponding miRNA [13]. The ceRNA hypothesis has provided a novel perspective that
ceRNA–miRNA–mRNA interactions (or lncRNAs acting as ceRNAs) can regulate many
cancers’ biological processes for cancer therapy [27,28]. Thirty-five candidate lncRNAs
related to hsa-miR-516b-5p were upregulated in GBM. It was found that OSMR-AS1 works
as a prognosticator for GBM in the present study. GBM patients with higher expression of
OSMR-AS1 possessed poor OS and RFS. A positive correlation between OSMR-AS1 and
H6PD was detected. OSMR-AS1 was found to be a differentially expressed lncRNA and an
independent prognosis factor for patients with hepatocellular carcinoma [29]. OSMR-AS1
was detected as a survival-related lncRNA in glioblastoma using TCGA databases [30].
Moreover, OSMR-AS1 was a lncRNA related to pro-neural to mesenchymal transition and
was positively associated with poor prognosis in glioma [31].

Immune checkpoint blockading promotes immune infiltration and antitumor immune
response [32]. Immune infiltration can contribute to tumor progression by altering the
tumor microenvironment and extracellular matrix [14]. The relationship between H6PD and
immune response remains unclear. Our work suggested that significant changes in immune
infiltration with various copy numbers of H6PD, including B cells, CD8+ T cells, CD4+ T
cells, and neutrophils, were observed in GBM. H6PD expression was significantly positively
associated with dendritic cell infiltration. Moreover, higher immune cell infiltration of
dendritic cells and higher expression of H6PD were significantly positively associated
with poor outcomes. Subsequently, we found that biomarkers of dendritic cells, including
CD8A, HLA-DPB1, TGAX, NRP1, SIRPA, THBD, and XCR1, were positively associated
with H6PD expression. Additionally, we investigated the association between H6PD
and immune checkpoints. Higher expression of eight checkpoints in GBM was detected
(Figure 6A). The correlation between H6PD and immune checkpoints in GBM was assessed
(Figure 6B–I). H6PD expression was significantly positively correlated with CD274, CTLA4,
LAG3, PDCD1LG2, TIGHT, and SIGLEX15, indicating that targeting H6PD might increase
the efficacy of immunotherapy in GBM.

5. Conclusions

H6PD was highly expressed and correlated with an unfavorable prognosis in GBM.
The OSMR-AS1/miR-516b-5p axis was identified as the highest-potential upstream ncRNA-
related pathway of H6PD in GBM. Furthermore, the present findings demonstrated that
H6PD blockading might possess antitumor roles via regulating dendritic cell infiltration
and immune checkpoint expression. However, basic experimental studies and clinical trials
need to be carried out in the future to further validate these bioinformatic analysis results
for GBM.
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