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Abstract: Background: Diagnosis of Parkinson’s Disease (PD) based on clinical symptoms and scale
scores is mostly objective, and the accuracy of neuroimaging for PD diagnosis remains controversial.
This study aims to introduce a radiomic tool to improve the sensitivity and specificity of diagnosis
based on Diffusion Tensor Imaging (DTI) metrics. Methods: In this machine learning-based retrospec-
tive study, we collected basic clinical information and DTI images from 54 healthy controls (HCs) and
56 PD patients. Among them, 60 subjects (30 PD patients and 30 HCs) were assigned to the training
group, whereas the test cohort was 26 PD patients and 24 HCs. After the feature extraction and
selection using newly developed image processing software Ray-plus, LASSO regression was used to
finalize radiomic features. Results: A total of 4600 radiomic features were extracted, of which 12 were
finally selected. The values of the AUC (area under the subject operating curve) in the training
group, the validation group, and overall were 0.911, 0.931, and 0.919, respectively. Conclusion: This
study introduced a novel radiometric and computer algorithm based on DTI images, which can help
increase the sensitivity and specificity of PD screening.

Keywords: DTI; Parkinson’s disease; radiomics; algorithm

1. Introduction

Parkinson’s disease (PD) is a common progressive neurological disorder with motor
and cognitive disturbances, which can be characterized by the presence of Lewy bodies
and a loss of dopaminergic neurons in the substantia nigra, resulting in disability and
impaired life quality for patients [1]. Currently, the diagnosis of PD depends mainly on
clinical examinations and partly on radiology [2]. It is challenging to make an accurate
diagnosis of PD in the early stages.

In recent years, magnetic resonance imaging (MRI) technology has made significant
progress in the field of neuroimaging. A variety of different functional imaging technologies
represent effective methods for the non-invasive study of PD-related changes in brain
morphology and function [3]. As a routine MRI imaging technique, diffusion tensor
imaging (DTI) [4] has been widely used to provide quantitative diagnosis or prognosis
in PD and other neurodegenerative diseases [5–7]. DTI is an in vivo diffusion imaging
technique that reflects the diffusion of water molecules and microscopic changes in the
white matter fiber bundles of the brain. Two indicators, fractional anisotropy (FA) and
mean diffusivity (MD), are widely used to reveal the microstructure of normal and diseased
tissues [8].
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Although some studies have suggested that DTI appears to be a sensitive method for
studying PD pathophysiology and severity [7], another study reported that DTI could not
improve the diagnostic accuracy of brain MRIs for PD [9]. Therefore, in order to increase
the accuracy of PD diagnosis, radiomics has emerged in recent years. Radiomics is a
method for extracting high-dimensional quantitative features in images. It combines the
spatial correlation of signal intensity in medical images and carries out subsequent data
mining and application. Recent studies show that radiomics may detect imperceptible
information reflecting common sequences, which is a potential and promising method
for early identification and prognosis [10,11] and has been applied to the diagnosis of
neurodegenerative diseases [12]. Previous radiomic studies made diagnoses and differential
diagnoses mainly using routine T1- or T2-weighted MRIs [13,14]. In addition, it has been
reported that DTI data could also be processed by a computer algorithm to evaluate brain
connection and function [7].

In this study, we established a radiomics model based on DTI image data, aiming to
identify some new related indicators to help clinical diagnosis. The findings show that
radiomic technology, as a non-invasive tool, has the potential to support biopsies and be
a supplement to previous radiodiagnoses. This study can thus help provide new clues
for the early identification and treatment of PD patients with the achievement of the high
sensitivity, specificity, and classification accuracy of the PD clinical diagnosis system.

2. Methods & Materials
2.1. Patients

The criterion for inclusion in the study was confirmed PD according to the Movement
Disorder Society (MDS) clinical diagnostic criteria [15]. A total of 56 PD patients and
54 health controls (HCs) were enrolled in the study. Thirty patients and age/gender-
matched HCs were enrolled in the training cohort. After the model was established, 24
HCs and 26 patients were included in the validation/test cohort. Characteristics of the
two groups including age, gender, Unified Parkinson’s Disease Rating Scale (UPDRS)-III,
and Hoehn–Yahr (H&Y) stage of the training and validation cohorts are summarized in
Table 1. The Institutional Review Board approved this retrospective study and we obtained
informed consent from patients. A flow chart of the study is shown in Figure 1.

Table 1. Basic characteristics of patients and controls.

Train Cohort Test Cohort HC-Train
vs. PD-Train

p Value
PD (30) HC (30) All (60) PD (26) HC (24) All (50)

Age (years,
mean ± SD) 57.78 ± 7.68 57.69 ± 7.72 57.83 ± 7.63 65.12 ± 12.54 38.71 ± 11.26 52.44 ± 17.79 0.2717

Gender
(male/female) 15/15 14/16 29/31 17/9 12/12 29/21 >0.999

UPDRS 29.87 ± 14.62 / / 32.75 ± 17.36 / / /
H&Y stage 1.83 ± 0.77 / / 2 ± 0.71 / / /

2.2. MRI Imaging Protocol

All PD patient and healthy control data were performed with a 3.0-T MRI scanner
(Magnetom Trio System, Siemens Healthcare, Erlangen, Germany) with a 12-channel
head coil. The head of each subject was positioned carefully with restraining pads to
minimize head motions. High-resolution T1- and T2-weighted images were acquired for
each participant to exclude the possibility of recessive lesions. DTI data were obtained using
a single-shot echo-planar imaging sequence with the following parameters: TR = 6000 ms,
TE = 93 ms, FA = 90◦, 44 axial slices, slice thickness = 2mm, FOV = 256 × 256 mm2, matrix
size = 128 × 128, noncollinear directions = 30, b-value = 1000 s/mm2 and b = 0 s/mm2 (no
diffusion gradient), and scanning time = 6 min and 32 s. FA and MD maps were generated
by a workstation (syngo.via XA20, Siemens Healthcare, Erlangen, Germany) after DTI
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acquisition and derived from the three eigenvalues (λ1, λ2, and λ3). The diffusion tensor
was diagonalized to yield the major (λ1), intermediate (λ2), and minor (λ3) eigenvalues
corresponding to the three eigenvectors in the diffusion tensor matrix [16]. MD was a
voxel-wise measure of the directionally averaged magnitude of diffusion (unit: square
millimeters per second), calculated as follows: MD = (λ1 + λ2 + λ3)/3 [17]. FA was used to
measure the fraction of the total magnitude of diffusion, which was anisotropic, and had a
value of 0 for isotropic diffusion (λ1 = λ2 = λ3) and 1 for completely anisotropic diffusion
(λ1 ≥ 0, λ2 = λ3 = 0). FA was calculated as reported [18]:

FA =

√
3
2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3
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Figure 1. Flow chart for the whole study.

2.3. MRI Image Segmentation and Feature Extraction

MRI image segmentation and radiomic feature extraction were performed with a
newly developed image processing software Ray-plus (Rayplus Technology, Inc., Wuhan
China) based on the software framework pyradiomics as described previously [17]. We
firstly smoothed the images to fill the holes in the threshold segmentation process. The
whole brain was set as the region of interest (ROI) using a threshold segmentation tool.
For FA and MD images, positive signals mainly occurred inside the brain. Noise signals
outside the brain were excluded manually. Feature extraction was performed using the
ROI analysis module of Ray-plus (Figure 2). During the feature extraction process, we
transformed the ROI to original, exponential, logarithm, wavelet, Gabor, and LoG forms.
Radiomic features were extracted from six classes of matrices: histogram, volumetric,
morphologic, the gray-level co-occurrence matrix (GLCM), the gray-level dependence
matrix (GLDM), and the gray-level run-length matrix (GLRLM). For each sequence of ROI,
we calculated 2300 features. Since each ROI had both FA and MD images, there were a total
of 4600 radiomic features for each patient or HC.
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Figure 2. MRI image segmentation feature extraction by Ray-plus software (the whole brain was
selected as the ROI for feature extraction in red; grey means FA/MD values).

2.4. Dimensionality Reduction

In order to avoid the curse of dimensionality caused by a large number of radiomic
features, we performed dimensionality reduction in the training cohort in two steps. First,
the radiomic features of all patients were each tested by a two-samples t-test or Mann–
Whitney U test, which was recommended by the algorithm of the LASSO regression of
the R project [19,20]. Features with significant differences (p < 0.001) between the PD
group and the HC group were selected for further reduction. Second, the least absolute
shrinkage and selection operator (LASSO) was used for regression and feature selection in
the “glmnet” package of the R software (Version 3.4.1). An established statistical model
enhanced the prediction accuracy and interpretability by performing variable selection
and regularization. The min criteria (the min binomial deviance) were used to tune the
regularization parameter (λ) in a 5-fold cross-validation for feature selection.

2.5. Radiomic Score Building

Logistic regression was used as the machine learning method to generate a combined
radiomic score. Best predictable radiomic features were finally selected by dimensionality
reduction. Multivariable binary logistic regression was used with the data of the training
cohort and the coefficients of each feature were calculated. The assessment of the optimal
radiomic score was performed using the receiver operating characteristic curve (ROC)
system in the “pROC” package of the R software (Version 3.4.1). The area under the ROC
(AUC) was used to evaluate the classification ability of the radiomic score (0.5–1.0, a higher
value meant a better performance for diagnosis).

2.6. Statistics

Data were represented as mean ± SD. All statistical analyses were conducted using R
software (Version 4.2.0, https://www.r-project.org/, accessed on 22 April 2022). LASSO
regression based on multivariate binary logistic regression was performed with the “glmnet”
package. ROC curves were created with the “pROC” package. Reported statistically
significant differences were all two-sided, with statistical significance at p < 0.05.

https://www.r-project.org/
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3. Results
3.1. Patient Characteristics

We collected the basic information including the age and gender of the PD patients
and HCs. In the training cohort, no significant difference in age was found between the
PDs and the HCs (57.78 ± 7.68 and 57.69 ± 7.72, respectively, p = 0.2717), nor was there a
significant difference in gender (15/15 and 14/16 in male/female, p > 0.9999). The clinical
characteristics of the test group were also summarized. In addition, we have summarized
the UPDRS and H&Y stages of the PD patients in the training and test cohorts in Table 1.

3.2. Feature Selection

Two (FA and MD) images of every patient were applied for radiomic features extrac-
tion. Because 2300 features were extracted from each image, there were 4600 features in
total for one patient or HC. A total of 430 features were tested by two-sample t-tests or
Mann–Whitney U tests and a significant difference was found between the PD and HC
groups in the training cohort (p < 0.001). Therefore, the 430 features were used for the
LASSO regression also in the training cohort. Seven features were selected by LASSO
with the best-tuned regularization parameter λ found by fivefold cross-validation. The
remaining seven features were used for the radiomic modeling (Figure 3).
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Figure 3. Radiomic feature selection using the least absolute shrinkage and selection operator
(LASSO) binary logistic regression model. (a) Tuning parameter (λ) selection in the LASSO model
used 5-fold cross-validation via minimum criteria. The binomial deviance was plotted versus log
(λ). Dotted vertical lines were drawn at the optimal values using the minimum criteria and the
λ standard error of the minimum criteria (the 1−SE criteria). According to 5-fold cross-validation,
the minimum criteria (λ = 0.06656, log (λ) = −2.700) were chosen for selection of radiomic features.
(b) LASSO coefficient profiles of the 7 selected features. A coefficient profile plot was produced
against the log (λ) sequence.

3.3. Development of the Radiomic Score

In order to build an optimal predictive radiomic score, logistic regression was applied
to generate a linear classifier. The radiomic score was developed from the seven radiomic
features selected in the last step (Table 2). Based on the intercept and coefficients of each
radiomic feature, the building formula of the radiomic score is shown in Figure 4.
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Table 2. List of maps, source (image form), algorithm of source, feature class, feature name, and
formula of each selected radiomic feature.

Feature Maps Source Algorithm Class Feature Equation

No.172 FA Gabor Beta.90.Theta.135 GLCM Contrast
Ng

∑
i=1

Ng

∑
j=1

(i− j)2 p(i, j)

No.191 FA Gabor Beta.90.Theta.135 GLSZM ZoneVariance
Ng

∑
i=1

Ng

∑
j=1

p(i, j)(j− µ)2

No.242 FA wavelet LLL GLSZM SmallAreaLow
GrayLevelEmphasis

∑
Ng
i=1 ∑Ns

j=1

P(i,j)
i2 j2

Nz

No.297 FA wavelet LHL GLCM lmc1 HXY−HXY1
max{HX,HY}

No.320 FA wavelet LHH GLRLM LongRunLow
GrayLevelEmphasis

∑
Ng
i=1 ∑Nr

j=1
P(i,j|θ)j2

i2
Nr(θ)

No.360 FA wavelet HLH Histogram Kurtosis
1

Np ∑
Np
i=1(X(i)−X)

4(
1

Np ∑
Np
i=1(X(i)−X)

2
)2

No.391 FA wavelet HHL Histogram Uniformity
Ng

∑
I=1

p(i)2

1 

 

 

Figure 4. Formula of radiomic score.

3.4. Performance of the Radiomic Model

The AUC was generally used for the assessment of the classification and prediction
ability of the radiomic models. Good performance based on the radiomic score was
observed, as seen in Figure 5. The AUC of the training cohort was 0.911 and the AUC of
the test cohort was 0.931. In total, the global data showed a high AUC of 0.919, indicating
that the radiomics score generated by our radiomic analysis and modeling had a relatively
high potential in predicting the occurrence of PD in the suspected patients.
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4. Discussion

In this study, we have generated and evaluated a quantitative model based on the
radiomic features extracted from the DTI images of patients’ brains for non-invasively
predicting the occurrence of disease. In other words, we presented a convenient radiomics
model based on DTI data (especially FA and MD features), with increased accuracy for
an individual PD diagnosis. Compared to a previous study which reported an AUC of
0.733 in diagnosing PD [21], our predictive radiomic score showed excellent performance
with a higher AUC in both the training and testing cohort (0.911 in the training cohort and
0.931 in the testing cohort), implying the clinical potential of radiomic scores in diagnosing
PD patients in the early stages. A longitudinal correlation between the AUC and clinical
symptoms in patients could be the desired data.

FA and MD are commonly used as DTI features and in clinical studies of PD patients [7,22].
A previous study found that there was no specific FA value with high sensitivity and
specificity for both the screening and diagnosis of PD [6]. In addition, a recent study
of DTI introduced the architecture of a convolutional neural network to distinguish PD
patients from HCs; however, the algorithm was much more complex [23]. Therefore, in
our study, we proposed a convenient model based on FA and MD values to improve the
accuracy of PD diagnoses. One of the main advantages of our radiomics model is that we
set the whole brain as the ROI to enhance its applicability in wide clinical use. Different
regions of the brain were previously chosen as the ROI for feature extraction [24]. However,
the segmentation of the given regions in the brain faces difficult challenges in precise
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delineation. Usually, at least two experienced radiologists are required to conform to the
same ROI of each patient, which greatly limits the application of the radiomics models.
Normalizing the patient brain images to a standard brain templet is another method for
accurate dilation of brain regions, but vast information related to shape was lost due
to deformations in the normalization. Setting the whole brain as the ROI ensured the
convenience and reliability of our radiomic model. After the calculation of the algorithm,
seven features of FA maps were finally screened for the model establishment, which may
be because of the same sources of the FA and MD maps with similar commonalities and
connections generated by the DTI images. Then we can better distinguish PD patients
individually through a small amount of data while making important clinical predictions.

There are a few limitations to our study. First, this was a retrospective study from a
single site with a limited sample size. To solve this limitation, we used cross-validation
and independent test sets for internal validation. Specifically, N-fold cross-validation
was used in the LASSO regression with subsequent validation groups as independent
internal validation groups [25]. Second, the small sample size and single DTI image omics
lead to the limited diagnostic efficacy in differentiating different PD types. In addition,
the b-matrix spatial distribution in the DTI (BSD-DTI) method could be used in future
investigations [26–29].

Overall, our study proposes a radiomics model based on DTI that can improve the
specificity and sensitivity of the diagnosis of neurodegenerative diseases including PD. The
identification of such new biomarkers is crucial for promoting the early recognition and a
better understanding of the pathogenesis of PD.
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