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Abstract: Central post-stroke pain (CPSP) is an intractable neuropathic pain that can occur following
central nervous system injuries. Spino-thalamo-cortical pathway damage contributes to CPSP devel-
opment. However, brain regions involved in CPSP are unknown and previous studies were limited to
supratentorial strokes with cortical lesion involvement. We analyzed the brain metabolism changes
associated with CPSP following pontine hemorrhage. Thirty-two patients with isolated pontine
hemorrhage were examined; 14 had CPSP, while 18 did not. Brain glucose metabolism was evaluated
using 18F-fluorodeoxyglucose-positron emission tomography images. Additionally, regions revealing
metabolic correlation with CPSP severity were analyzed. Patients with CPSP showed changes in the
brain metabolism in the cerebral cortices and cerebellum. Compared with the control group, the CPSP
group showed significant hypometabolism in the contralesional rostral anterior cingulum and ipsile-
sional primary motor cortex (Puncorrected < 0.001). However, increased brain metabolism was observed
in the ipsilesional cerebellum (VI) and contralesional cerebellum (lobule VIIB) (Puncorrected < 0.001).
Moreover, increased pain intensity correlated with decreased metabolism in the ipsilesional supple-
mentary motor area and contralesional angular gyrus. This study emphasizes the role of the many
different areas of the cortex that are involved in affective and cognitive processing in the development
of CPSP.

Keywords: pain; pons; stroke; cerebral hemorrhage; cerebral cortex; cerebellum

1. Introduction

Central post-stroke pain (CPSP) is a neuropathic pain syndrome caused by a cere-
brovascular lesion at any level of the central nervous system [1,2]. It is characterized by
burning, aching, pricking, and annoying pain and signs of hypersensitivity in the body part
topographically corresponding to the location of the lesion of the central nervous system,
usually contralateral to the side of the stroke lesion [3]. CPSP is often intractable and can
interfere with the quality of life, causing long-term discomfort. CPSP has been shown to be
associated with not only thalamic lesions but also extra-thalamic lesions [3]. It had been
mistermed as thalamic pain; however, any lesion, regardless of the level of injury, affecting
the spino-thalamo-cortical pathway and its cortical projection, including the brainstem,
thalamus, and cerebral cortex, can interfere with pain sensation and act as a crucial factor
in the development of CPSP [3,4].
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While multiple pathways transmit and modulate pain information, there does not
appear to be a single “pain cortex” associated with the sensation of pain [5]. A network
model of pain, which is an emerging concept, explains the sensation of pain through an
integrated brain network [4]. The interactions between cortical and subcortical processing
areas across the brain appear to constitute a complicated structural network for pain
perception [4]. However, the cerebral cortical areas involved in pain processing are not yet
completely elucidated.

Since CPSP usually occurs in supratentorial lesions, many previous neuroimaging
studies are limited to supratentorial strokes with lesions involving the cerebral cortices
and deep gray or white matter [6]. However, central pain can also develop following
brainstem strokes, including pontine strokes [7]. Pontine involvement is most common
among the brainstem hemorrhagic events. Unlike the ischemic strokes usually affecting
the ventral part and causing motor dysfunction, pontine hemorrhagic strokes involve the
dorsal pons and the ascending sensory fibers, which, as a result, can cause CPSP as well
as sensory dysfunction [7]. Therefore, unlike previous studies, the present study focused
on patients with pontine hemorrhage without cortical involvement who developed CPSP.
Through this study, we aimed to evaluate the functionally related regions for processing
pain and their involvement in CPSP by analyzing the metabolic changes of glucose on
18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) images in patients
with pontine hemorrhage.

2. Materials and Methods
2.1. Participants

We collected medical records of all adult patients who had experienced the first
episode of pure pontine hemorrhage and were admitted to a tertiary inpatient rehabilitation
hospital between January 2010 and December 2019. All the patients underwent physical
and neurological examinations and detailed history taking within 24 h following admission,
along with pain evaluation. Patients were only included in the study if they had undergone
18F-FDG-PET studies in the hospital following the onset of a stroke. Records were obtained
using the electronic clinical data retrieval system. The inclusion criteria were (1) first episode
of stroke, (2) solitary hemorrhage in the pons confirmed by brain computed tomography
(CT) or magnetic resonance imaging (MRI), (3) age 20 years or above, and (4) no severe
cognitive impairment, with a Mini-Mental State Examination (MMSE) score of 23 points or
higher. Participants with evidence of old cerebral strokes were excluded if the lesions were
larger than 3 mm in diameter on MRI [8].

The initial stroke severity was evaluated according to the National Institutes of Health
Stroke Scale (NIHSS). The Fugl–Meyer (FM) assessment motor and sensory subscales were
used to measure sensorimotor impairments. The severity of depressed emotional status
was assessed using the Geriatric Depression Scale (GDS). Lesion volumes were measured
from CT scans using the ABC/2 formula [9]. Pain intensity was rated using the numeric
rating scale (NRS) at initial admission. It was measured as the average pain intensity over
the last 48 h, with a score of 0 indicating “no pain” and 10 indicating “worst intolerable
pain.” Medications that could interfere with the sensation of pain and brain metabolism,
such as antidepressants, anticonvulsants, anti-anxiety drugs, analgesics, muscle relaxants,
and antipsychotics, were quantified using the Medication Quantification Scale (MQS) [10].

Pain and sensory abnormalities were considered as CPSP if they had newly devel-
oped following stroke and in the body parts corresponding to the brain territory of the
stroke [1,3]. Other causes of pain, such as hemiplegic musculoskeletal shoulder pain,
peripheral entrapment neuropathy, radiculopathy, and painful spasticity, were excluded
based on signs and symptoms noted on physical examination, and on ultrasonography
and electromyography [11–13]. Complex regional pain syndromes were excluded using
the Budapest criteria [14].

The study was approved by the Institutional Review Board of Yonsei University Health
System, Severance Hospital, and was conducted in accordance with the principles outlined
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in the 1964 Declaration of Helsinki and its later amendments. The requirement for informed
consent was waived owing to the retrospective nature of the study.

2.2. Statistical Analyses of Clinical Data

To compare the baseline demographics and clinical information between patients with
and without CPSP, data were analyzed using SPSS Statistics software, Version 25.0 (IBM,
Armonk, NY, USA). The Shapiro–Wilk test was used to check the normality of continuous
variables. Depending on the distribution nature of the data, an independent t-test was
used as a parametric test, and the Mann–Whitney U test was used as a nonparametric test
for continuous variables (age at diagnosis, onset duration, volume of the lesion, NIHSS,
FM motor, FM sensory, MMSE, GDS, MQS, and NRS). Fisher’s exact test was used for
categorical variables (sex and lesion location). Correlations between the NRS and all the
continuous variables were analyzed using Spearman rank correlation coefficient to assess
potential confounding factors. A two-tailed p < 0.05 was considered statistically significant
in all statistical tests on demographic and clinical data.

2.3. Acquisition of Brain 18F-FDG-PET Images
18F-FDG PET/CT brain scans were obtained using a GE Discovery 600 PET/CT

scanner (GE Medical Systems, Milwaukee, WI, USA) for 15 min. Adverse effects were
monitored for 30 min following the injection. First, an initial low-dose CT scan was
performed, and subsequently, a three-dimensional PET emission scan was performed. The
transverse and axial resolutions were 4.8 mm full width at half-maximum, attenuation-
corrected emission data reconstructed in a 128 × 128 × 35 matrix, with a pixel size of
1.95 mm × 1.95 mm × 4.25 mm.

2.4. Analyses of Brain 18F-FDG-PET Images

PET images were processed and analyzed using Statistical Parametric Mapping (SPM) soft-
ware version 12 (Statistical Parametric Mapping 12, Wellcome Centre for Human Neuroimaging,
London, UK; http://www.fil.ion.ucl.ac.uk/spm/, accessed on 25 December 2021) of MATLAB
R2018a software (MathWorks, Natick, MA, USA). Since the sensory symptoms of the CPSP
are generally contralateral to the side of the stroke lesion [3], data sets of patients with
right side pain were flipped to relocate the lesions to the right side of the brain. The
18F-FDG PET/CT brain images were normalized using the standard PET template of the
Montreal Neurological Institute to make them comparable between the participants. Then,
the images were smoothed by a three-dimensional filter, a Gaussian kernel with full width
at half maximum of 8 mm × 8 mm × 8 mm [15,16]. To remove global nuisance effects and
to improve the sensitivity, the intensity values for each scan were normalized by means of
proportional scaling in SPM [17,18].

The resulting PET images were compared between patients with and without CPSP
using the voxel-wise two-sample t-test implemented in SPM for brain glucose metabolism
investigation. An uncorrected threshold of two-tailed p < 0.001 was used to determine
statistical significance, with a cluster size threshold of 10 voxels. In addition, multiple
regression was performed to identify the regions that were associated with the pain intensity
in the CPSP group, controlling for age as a nuisance variable [19]. The anatomical locations of
the regions were labeled using an Automated Anatomical Labeling program (https://www.
gin.cnrs.fr/AAL/, accessed on 25 December 2021) [20].

Voxel-wise corrections for multiple comparisons implemented in neuroimaging pack-
ages, such as SPM, have been shown to be conservative, repeatedly [21,22]. Owing to the
limited variability of the lesions, we expected to find small effects within brain cortices.
Therefore, we decided to identify changes at a statistical voxel-wise uncorrected thresh-
old of two-tailed p < 0.001. To reduce false-positive findings, a cluster size threshold of
10 continuous voxels was required for significance, and we later replicated the results with
a regions-of-interest approach using volumetric measurements.

http://www.fil.ion.ucl.ac.uk/spm/
https://www.gin.cnrs.fr/AAL/
https://www.gin.cnrs.fr/AAL/
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3. Results

As a result, a total of 32 patients with unilateral pontine hemorrhage meeting the
inclusion criteria were identified. Among the 32 patients, 14 with contralesional pain were
assigned to the CPSP group, and the remaining 18 without CPSP were assigned to the
control group (Figure 1). There were no statistically significant differences between the
CPSP and control groups in terms of age, sex, duration since onset of stroke, laterality of
the lesion, lesion volume, and NIHSS, FM motor/sensory, MMSE, GDS, and MQS scores
(Table 1). The location and size of pontine hemorrhages and the corresponding location
and pain characteristics for each patient with CPSP are depicted in Table 2. Among the
continuous variables, none showed correlation with the NRS scores. Overlays of the lesion
distributions for all participants of the two groups are presented in Figure 2.
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Table 1. Demographic characteristics of patients with pontine hemorrhage.

Control Group
(n = 18)

CPSP Group
(n = 14) p

Age, years 48.1 ± 10.7 50.3 ± 11.6 0.587
Sex (male/female) 18/0 11/3 0.073

Duration since onset n, days 135.2 (123.5) 128.4 (97.3) 0.924
Side of lesion 0.255

Right, 4 (12.5%) 1 (5.6) 3 (21.4)
Left, 6 (18.8%) 5 (27.8) 1 (7.1)

Bilateral, 22 (68.7%) 12 (66.7) 10 (71.4)
Lesion volume, mL 8.4 (5.9) 7.2 (5.7) 0.676

NIHSS (0–42) 9.6 ± 4.9 8.6 ± 4.9 0.586
FM motor (0–100) 50.1 (46.0) 58.7 (51.3) 0.372
FM sensory (0–24) 12.8 (14.3) 11.6 (12.5) 0.746

MMSE (0–30) 28.0 (3.3) 27.4 (4.5) 0.679
GDS (0–30) 12.6 ± 8.4 13.9 ± 9.3 0.665

MQS 7.7 (10.5) 6.6 (8.0) 0.954
Pain intensity (NRS, 0–10) 0 (0.0) 5.6 (1.5) <0.001 *

Values are presented as means ± standard deviations for normally distributed continuous variables and as
medians (interquartile ranges) for non-normally distributed variables. CPSP, central post-stroke pain; NIHSS,
National Institutes of Health Stroke Scale; FM, Fugl–Meyer assessment; MMSE, Mini-Mental State Examination;
GDS, Geriatric Depression Scale; MQS, Medication Quantification Scale; NRS, numeric rating scale * p < 0.05.
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Table 2. Location and size of hemorrhage and corresponding pain location and characteristics for
each patient with central post-stroke pain.

Patient Number Location of Hemorrhage Size of Hemorrhage (mL) Pain Location Pain Characteristics Pain Intensity (NRS)

1 bilateral pons 10.2 Lt. hand aching, tingling 9
2 bilateral pons 1.0 Rt. whole arm tingling, cold pain 8
3 bilateral pons 20.3 Lt. whole arm tingling 7
4 right pons 7.6 Lt. whole arm aching, tingling 6

5 bilateral pons 10.1 Lt. upper arm, Lt.
whole leg tingling 6

6 left pons 5.4 Rt. face, Rt. whole arm tingling, stabbing,
hyperalgesia 6

7 bilateral pons 8.5 Rt. face, Rt. hand,
Rt. foot tingling 5

8 right pons 2.4 Lt. upper arm,
Lt. thigh aching, tingling 5

9 right pons 3.3 Lt. whole arm, Lt.
whole leg pricking 5

10 bilateral pons 8.9 Lt. buttock aching 5
11 bilateral pons 7.3 Lt. face, Lt. hand tingling 5
12 bilateral pons 6.5 Rt. face, Rt. hand tingling, cold pain 4

13 bilateral pons 5.9 Rt. hand to forearm pricking, tingling,
cold pain 4

14 bilateral pons 3.5 Lt. whole leg aching, tingling 3

NRS, numeric rating scale.

Brain Sci. 2022, 12, x FOR PEER REVIEW 5 of 11 
 

Table 1. Demographic characteristics of patients with pontine hemorrhage. 

 Control Group 
(n = 18) 

CPSP Group 
(n = 14) 

p 

Age, years 48.1 ± 10.7 50.3 ± 11.6 0.587 
Sex (male/female) 18/0 11/3 0.073 

Duration since onset n, 
days 

135.2 (123.5) 128.4 (97.3) 0.924 

Side of lesion   0.255 
Right, 4 (12.5%) 1 (5.6) 3 (21.4)  
Left, 6 (18.8%) 5 (27.8) 1 (7.1)  

Bilateral, 22 (68.7%) 12 (66.7) 10 (71.4)  
Lesion volume, mL 8.4 (5.9) 7.2 (5.7) 0.676 

NIHSS (0–42) 9.6 ± 4.9 8.6 ± 4.9 0.586 
FM motor (0–100) 50.1 (46.0) 58.7 (51.3) 0.372 
FM sensory (0–24) 12.8 (14.3) 11.6 (12.5) 0.746 

MMSE (0–30) 28.0 (3.3) 27.4 (4.5) 0.679 
GDS (0–30) 12.6 ± 8.4 13.9 ± 9.3 0.665 

MQS 7.7 (10.5) 6.6 (8.0) 0.954 
Pain intensity (NRS, 0–10) 0 (0.0) 5.6 (1.5) <0.001 * 

Values are presented as means ± standard deviations for normally distributed continuous variables 
and as medians (interquartile ranges) for non-normally distributed variables. CPSP, central post-
stroke pain; NIHSS, National Institutes of Health Stroke Scale; FM, Fugl–Meyer assessment; MMSE, 
Mini-Mental State Examination; GDS, Geriatric Depression Scale; MQS, Medication Quantification 
Scale; NRS, numeric rating scale * p < 0.05. 

 
Figure 2. Lesion overlaps in the (A) control and (B) central post-stroke pain groups in patients with 
pontine hemorrhage. Left-sided lesions are flipped to the right. Different colors represent numbers Figure 2. Lesion overlaps in the (A) control and (B) central post-stroke pain groups in patients with
pontine hemorrhage. Left-sided lesions are flipped to the right. Different colors represent numbers
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There were significant differences in metabolism between the two groups. Compared
with the control group, the CPSP group showed significant hypometabolism in the con-
tralesional rostral anterior cingulate cortex (ACC) and ipsilesional primary motor cortex
(M1) (Figure 3, Table 2). However, increased brain metabolism was observed in the ipsile-
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sional cerebellum (lobule VI) and contralesional cerebellum (lobule VIIB), which are in the
superior posterior lobe of the cerebellum (Figure 4, Table 3).
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following pontine hemorrhage compared with that in the control group. (Puncorrected < 0.001, k = 10).

Table 3. Area of the brain that showed altered glucose metabolism in patients with central post-stroke
pain following pontine hemorrhage.

Metabolism Area
Coordinate

t Score z Score Cluster
x y z

Decreased Contralesional Anterior Cingulum −14 42 14 4.58 3.94 269
Ipsilesional primary motor cortex 38 0 38 3.84 3.42 224

Increased Ipsilesional cerebellum 30 −36 −30 4.04 3.57 179
Contralesional cerebellum −10 −8 −52 3.92 3.48 292

(Puncorrected < 0.001, k = 10).

Multiple regression analysis revealed supratentorial cortices to be associated with the
pain intensity expressed using the NRS scores. Results showed that decreased metabolism
in the ipsilesional supplementary motor area and contralesional angular gyrus was corre-
lated with increased pain intensity, and no region showed positive correlations (Figure 5,
Table 4). None of the other variables showed a significant correlation.
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Figure 5. Statistical parametric maps demonstrating the regions with decreased pain intensity
correlated with increased pain intensity. (Puncorrected < 0.001, k = 10).

Table 4. Area of the brain that showed altered glucose metabolism in patients with central post-stroke
pain showing correlation with intensity of pain.

Metabolism Area
Coordinate

t Score z Score Cluster
x y z

Decreased Ipsilesional Supplementary Motor Cortex 10 −10 66 4.83 3.47 73
Contralesional angular gyrus −28 −74 44 4.52 3.33 171

(Puncorrected < 0.001, k = 10).

4. Discussion

Several studies using brain 18F-FDG-PET images have investigated the neural cor-
relates for the development of CPSP in supratentorial stroke. However, this is the first
study to assess the metabolic changes in the brain related to CPSP following isolated
brainstem stroke.

Although the CPSP and control groups did not show any significant difference in the
baseline clinical parameters, differences in metabolism were found in multiple regions
of the cerebral cortices and cerebellum. Additionally, altered brain metabolism in the
ipsilesional supplementary motor area and contralesional angular gyrus were correlated
with the pain intensity.

The supplementary motor area and angular gyrus were the only regions that appeared
to be relevant to the pain sensitivity. Many aspects of the supplementary motor cortex
remain questionable; however, its relation to emotion, affective functions, and cognitive
control and behavior processing are known [23]. Moreover, its functional connections
with the limbic system and primary motor cortex have been proven to play a role in
negative emotions [24]. A study of rheumatoid arthritis patients using functional MRI
(fMRI) reported increased connectivity, predominately for the supplementary motor cortex,
cingulate cortex, and bilateral sensorimotor cortex, suggesting their involvement in pain
processing [25]. The angular gyrus is believed to play an integrative role; multisensory
inputs are integrated in the angular gyrus, and interactions with different subsystems
such as memory, attention, and concepts are performed to ultimately comprehend events,
thus acting as an attentional subsystem [26]. The angular gyrus thus reflects the ability
to integrate aspects of information, especially including sensory information and internal
mental representations [26].

Another cerebral cortical region, the anterior cingulate cortex (ACC) along with sup-
plementary motor area, and angular gyrus, was found to be associated with CPSP in this
study. The ACC has been reported to play a critical role in the process of emotional and
cognitive tasks and pain perception, playing a role in the negative affective responses to
pain sensation [27,28]. The ACC is also known to be a part of the ascending pain-related and
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descending inhibitory pain modulatory pathways [29,30]. Our results suggest that these
cortical regions might presumably be involved in the processing of sensory information
regarding the affective dimension of pain.

Many chronic pain syndromes have shown altered excitability of the primary motor
cortex (M1) [31], and it is the major target for neuro-modulation by brain stimulation
therapy to improve the symptoms in patients with intractable neuropathic pain [32,33].
The repetitive transcranial brain/magnetic stimulation of the motor cortex was shown
to increase cerebral blood flow in many cortical and subcortical regions, including the
ACC [32]. In previous studies with fMRI, the M1 showed markedly increased activation in
relation to chronic pain or nociceptive stimuli, which provides evidence for a spinothalamic-
tract-related input to the M1 [34,35]. However, until now, the correlation between the M1
and pain sensation has not been clearly elucidated, and our study might provide additional
supportive evidence.

The cerebellum is engaged in a number of integrative functions, such as cognitive
and affective functions, motor control, and somatosensory processing, including nocicep-
tion [36,37]. It receives afferent nociceptive stimuli, and PET studies and neuroimaging
studies using fMRI suggest that nociceptive-related activation is processed in the cerebel-
lum [38,39]. Moreover, cerebellar cognitive affective syndrome is known to result from
injury to the posterior cerebellar lobe [40]. Cognitive processing in areas of the cerebellum
could be related to nociceptive processing and pain perception.

There are a few limitations to our study. First, since this is a cross-sectional study, the
time period between the development of CPSP and acquisition of 18F-FDG-PET images
cannot be clarified. Second, the specific location other than left/right orientation and
characteristics of the pain in the patients were not considered in the analysis of the regions.
Third, the sex ratio between the patient and control groups was different; the control group
was comprised of men alone, and the patient group included women as well. Finally, this
study was limited to the population with pontine hemorrhage, which can be both a strength
and limitation. It is now known that a variety of lesions, particularly those of pontine,
medullary, thalamic, and cortical strokes can all lead to CPSP [4]. While many previous
studies on CPSP have been limited to thalamic lesions or supratentorial strokes or stokes
with cortical involvements, this study is meaningful in that it focused on patients with
pontine stroke, which is infratentorial stroke [41]. Thus, we could reveal and emphasize
that, regardless of stroke lesions, distant areas of the cortex can be involved in CPSP.
Further studies, possibly including patients with stroke of the midbrain and medulla, or
study comparisons with thalamic strokes can be considered. While previous functional
neuroimaging studies of CPSP revealed metabolic changes in the thalamus [42], our results
did not indicate metabolic changes in the thalamus. This is significant in that it provides a
new perspective that CPSP can occur regardless of any anatomical or functional relationship
with the thalamus, and, also, that regions other than the thalamus can be more statistically
significantly involved in CPSP.

5. Conclusions

In conclusion, our results demonstrated that remote pontine lesions could cause
disorientation in multiple regions of the cerebral cortices and cerebellum, which contribute
to the experience of pain in CPSP. Future research should be expanded to investigate CPSP
in patients of stroke with lesions at different locations, and in association with clinical
features using functional neuroimaging studies.
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