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Abstract: Brain tumor semantic segmentation is a critical medical image processing work, which aids
clinicians in diagnosing patients and determining the extent of lesions. Convolutional neural networks
(CNNs) have demonstrated exceptional performance in computer vision tasks in recent years. For 3D
medical image tasks, deep convolutional neural networks based on an encoder–decoder structure
and skip-connection have been frequently used. However, CNNs have the drawback of being unable
to learn global and remote semantic information well. On the other hand, the transformer has
recently found success in natural language processing and computer vision as a result of its usage of
a self-attention mechanism for global information modeling. For demanding prediction tasks, such as
3D medical picture segmentation, local and global characteristics are critical. We propose SwinBTS, a
new 3D medical picture segmentation approach, which combines a transformer, convolutional neural
network, and encoder–decoder structure to define the 3D brain tumor semantic segmentation job
as a sequence-to-sequence prediction challenge in this research. To extract contextual data, the 3D
Swin Transformer is utilized as the network’s encoder and decoder, and convolutional operations
are employed for upsampling and downsampling. Finally, we achieve segmentation results using
an improved Transformer module that we built for increasing detail feature extraction. Extensive
experimental results on the BraTS 2019, BraTS 2020, and BraTS 2021 datasets reveal that SwinBTS
outperforms state-of-the-art 3D algorithms for brain tumor segmentation on 3D MRI scanned images.

Keywords: brain tumor segmentation; Swin Transformer; 3D CNN; depth-wise separable convolution

1. Introduction

Brain tumors pose a serious threat to human life. Currently, there are more than
100 types of brain tumors affecting humans [1]. The treatment methods for such diseases
include surgery, chemotherapy, and radiotherapy. With the continuous development of
artificial intelligence, tumor diagnosis and surgical pre-assessment interventions based on
artificial intelligence are playing an increasingly important role. Fine segmentation of brain
tumors using techniques, such as voxel analysis, can help one to study their progression
and assist in preoperative planning [2]. Brain tumor segmentation from brain tumor images
is currently at the forefront of research [3–5].

Magnetic resonance imaging (MRI) technology can provide images of different con-
trasts (i.e., modalities) and is a non-invasive, high-performance soft tissue contrast imaging
modality [6]. A complete MRI image includes four modalities: T1-weighted (T1), T1-
enhanced contrast (T1-ce), T2-weighted (T2), and T2 fluid-attenuated inversion recovery
(Flair). Each of the four modalities captures specific features of the underlying anatomical
information. Combining multiple modalities can provide highly comprehensive informa-
tion for analyzing different subregions of organs and lesions. Among them, T2 and Flair
images are suitable for detecting edema around the lesion. T1 and T1ce are suitable for
detecting the core of the lesion. Generally speaking, there are obvious differences in the
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gray level of the lesion area and normal tissue in Flair images, while the boundary features
of the lesion area in T1ce images are more obvious [3–5]. MRI technology can produce
high-quality brain images without damage and skull artifacts and can provide more com-
prehensive information for the diagnosis and treatment of brain tumors, including the
shape, size, and location of organs and lesions. It plays a key role in diagnosis and is the
main technical means of brain tumor diagnosis and treatment.

For the auxiliary diagnosis technology of medical images, some studies focus on the
fusion of images. For example, CSID [7] proposes an algorithm for fusing CT and MRI
images to enhance the detailed information of clinical diagnosis, but the most important
research at present is image segmentation, such as using modified-moth-flame algorithm
and Kapur‘s thresholding for evaluating brain tumor [8], or using deep learning methods
to segment brain tumor images.

In recent years, deep convolutional neural networks, such as Alex-Net [9], VGG-
Net [10], ResNet [11], and Google-Net [12], have been successfully applied to many com-
puter vision tasks, and have been maintaining SOTA performance. Due to the powerful
feature extraction capability of deep convolutional neural networks, they were soon applied
to the field of medical image processing and analysis [13–15]. In brain tumor segmentation,
the method using fuzzy edge detection and U-NET CNN classification [16] can exceed
the performance of traditional machine learning methods; convolutional-neural-network-
based segmentation methods have also achieved state-of-the-art performance in various
tests [17–20]. However, due to the small and fixed size of the convolutional kernel of CNNs,
although the dilated Convolution [21,22] expands the perceptual field and the deformable
Convolution [23] allows some offset in the kernel, they find it difficult to extend adaptively
and flexibly to the entire feature map. This limits their ability to learn global features
and remote features, which are crucial for the accurate segmentation of tumors of various
shapes and sizes.

Transformer models have excellent performance in natural language processing
tasks [24,25]. In the last two years, ViT [26], an approach that introduces a transformer to
computer vision tasks, has also achieved state-of-the-art performance in that time. ViT
relies on the global and remote modeling capabilities of a transformer and can achieve
better performance than CNNs, but the huge number of parameters in this class of models
makes it easy to implement in 2D segmentation tasks, while it is subject to the memory lim-
itation of the graphics card in 3D segmentation tasks. For example, the U-Netr method [27]
designed a network model using ViT as an encoder. Although this method showed better
performance, the number of model parameters reached more than 100 M. The training of
the model was time consuming and labor intensive. Swin Transformer [28] proposed a
hierarchical visual transformer using a shifted window, which restricts the self-attention to
the window. The performance of the SwinUnet [29] method based on the Swin Transformer
method is also powerful. The reduction in the number of parameters makes it easier to
introduce the transformer into the 3D segmentation task. In this work, we propose a novel
method called SwinBTS, which uses an encoder–decoder architecture, utilizing the 3D
Swin Transformer module as an encoder to extract contextual information and connect to a
decoder with the same resolution by skip-connection. The decoder also uses the 3D Swin
Transformer module. The NFCE (Neighbor-Feature Connection Enhancement) module
is used between the encoder and the downsampling to enhance the feature information
between the transformer structure and the convolutional downsampling with a step size.
The NFCE module is also added between the decoder and the upsampling. The resulting
method is found to be insufficient for detailed feature extraction after experiments. For the
extraction of local detail features, effective methods are channel attention, spatial attention,
convolution, etc. After comparing the experiments and the inspiration provided by the
method ELSA [30], we propose a module ETrans (Enhanced Transformer) in the bottom
BottleNeck part of the model combined with the matrix operation of Hadamard product,
which has the structure of a transformer and is mainly implemented with a convolution
operation to extract local information.
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Experiments on the BraTS 2019, BraTS 2020, and BraTS 2021 datasets demonstrate the
effectiveness of our model.

The main contributions of this work are as follows:

1. We propose a new transformer-based method for 3D medical image segmentation.
2. In this method, we designed a combination of Transformer structure and CNN to

achieve better performance, and we also designed a module ETrans to enhance detail
feature extraction.

3. The proposed model achieves excellent segmentation results on BraTS 2019, BraTS
2020, and BraTS 2021 datasets.

The structure of this paper is as follows. Section 2 details the 3D medical image
segmentation method using CNN and the 3D medical image segmentation method using
a transformer. Section 3 mainly introduces the overall network structure and its various
components. Section 4 introduces the experimental dataset, experimental environment,
and experimental hyperparameters. We compare and analyze the experimental results.
Finally, a summary is presented in Section 5.

2. Related Work
2.1. Convolution-Based 3D Medical Image Segmentation Method

Applying deep convolutional neural networks to 3D image segmentation, the first
proposed method is 3D U-Net [31], which is a 3D version of U-Net [32] and can achieve good
segmentation results using an encoder–decoder structure. Later, V-Net [33] proposed the
loss function Dice Loss for the first time, and the training period was optimized according
to the Dice coefficients to achieve a state that can handle the existence of a strong imbalance
between foreground and background voxels. nnU-Net [34] did not innovate the network
structure. It is a powerful segmentation model focused on dataset preprocessing, model
training methods, inference strategies, etc. Many of the current BraTS challenges use this
method as a baseline model for innovation. AGU-Net [17] is proposed to add an attention
gate mechanism to ResU-Net and achieved good results. ERV-Net [35] improved 3D U-Net
by introducing residual blocks and also adding the lightweight network ShuffleNetv2 [36]
to the encoder to reduce the complexity of the model, which achieved the state-of-the-art
performance on the BraTS 2018 dataset.

2.2. Transformer-Based 3D Medical Image Segmentation Method

The current research mainly combines a transformer and CNN to achieve the pur-
pose that the network model can extract both global information and local information.
nnFormer [37] uses a transformer as an encoder and decoder and uses convolution as
downsampling and upsampling. TransBTS [38] is the first attempt to utilize transformers
for 3D multimodal brain tumor segmentation by efficiently modeling local and global
features in both spatial and depth dimensions. Specifically, TransBTS‘s encoder–decoder
architecture uses a 3D CNN to extract local 3D volumetric spatial features and a transformer
to encode global features. The method proposed is more efficient than CNN-based methods.
TransBTSv2 [39] improves the model segmentation, mainly by introducing deformable
convolution in the skip-connection part based on TransBTS. BiTr-UNet [40] differs from
TransBTS in that the model adds two ViT layers in the deep skip-connection part to model
global features. Unetr [27], on the other hand, used ViT layers as encoders and convolu-
tional layers as decoders to build the network. The method achieved excellent performance
on several tasks, but the model resulted in a large number of parameters due to a large
number of ViT layers used. VT-Unet [41] is a lightweight model for segmenting 3D medical
images in a hierarchical manner. It introduces two self-attention layers in the encoder to cap-
ture local and global information. This model also introduces window-based self-attention,
cross-attention modules, and Fourier position coding in the decoder part to significantly
improve accuracy and efficiency. Cotr [42] designed a deformable transformer encoder,
which focuses on only a small portion of the key location feature information, which also
greatly reduces the computational complexity and spatial complexity. the experimental
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results show that this method has a significant improvement in effectiveness compared
to other transformer and CNN combination methods. TransFuse [43] combines a trans-
former with CNN in parallel to efficiently capture global dependencies at a shallow level of
the network. MissFormer [44] redesigned the feedforward network using an augmented
transformer to enhance remote dependencies and complement contextual information.

There are key differences between our model and these efforts:

1. SwinBTS uses a Swin Transformer as the encoder and decoder rather than as an
attention layer.

2. SwinBTS combines a transformer and CNN to form the entire network, combining
the advantages of both.

3. SwinBTS designs an enhanced transformer module for cases where detailed features
are under-extracted.

3. Methodology
3.1. Overall Architecture

The overall architecture of the proposed SwinBTS is shown in Figure 1. Concretely,
given a multimodal MRI medical image input X ∈ RC×H×W×D, where the image space
size is H ×W × D, the number of channels (modal number) is C. Because of the excellent
performance of the encoder–decoder structure in the segmentation task, we use the encoder–
decoder structure for the overall framework design. The 3D Swin Transformer module
and downsampling are first used to extract spatial and semantic information to deepen the
network depth, respectively, and then the enhanced transformer module is used to extract
deeply detailed feature information. The upsampling and 3D Swin Transformer module
are used to gradually produce segmentation results with the same resolution as the input.
Next, we will describe the individual components of SwinBTS in detail.
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Figure 1. Overview of UNETR architecture. A 3D input volume (e.g., C = 4 channels for MRI images)
is divided into a sequence of uniform non-overlapping patches and projected into an embedding
space using a linear layer. The sequence is added with a position embedding and used as an input to
a transformer model. The encoded representations of different layers in the transformer are extracted
and merged with a decoder via skip connections to predict the final segmentation.

3.2. Network Encoder
3.2.1. 3D Patch Partition

For the encoder, we cut the medical image into non-overlapping patches using a 3D
Patch Partition layer to convert the input to a serial input (patch size is 4× 4× 4). After cut-
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ting into patches, we used linear embedding layers to map the patches to
C(4 × 4 × 4 = 96) dimensional vectors. With this division, we obtain a feature map
of size C× (H/4)× (W/4)× (D/4).

3.2.2. 3D Swin Transformer Module

An important reason limiting the application of transformer structure to medical
image tasks is that converting the whole image into a sequence for self-attention is too
computationally intensive, consumes too much memory, and consumes a lot of time for
training the model. In contrast, Swin Transformer is built based on a shifted window,
which greatly reduces the number of parameters and at the same time exhibits a much
better feature learning capability. The structure of the Swin Transformer block is shown in
Figure 1 for the 3D Swin Block, which consists of LayerNorm (LN) layer, window-based
multi-head self-attentive module, GELU, and multilayer perceptron (MLP). In this paper,
we extend the Swin Transformer block to 3D as the base module of the whole network.

3.2.3. Downsampling Module

Downsampling is implemented using a convolution operation with strides rather than
a neighboring concatenation operation. The method nnFormer [37] shows that convolution
downsampling improves the performance of the model because convolution downsampling
produces a hierarchical representation which helps to model the object concept at multiple
scales. The specific implementation is to use a convolutional with kernel size 2× 2× 2,
and stride is 2. After that, the LayerNorm function is used for normalization, and finally,
the GELU function is used for activation. We add the Neighbor-Feature Connection
Enhancement (NFCE) module before the downsampling module to enhance the feature
information between the 3D Swin Transformer module and the downsampling module
to reduce the information loss. The NFCE module is a deep separable convolution with
residual structure, as shown in the NFCE Block in Figure 1.

The whole encoder is implemented by stacking the 3D Swin Transformer module with
the downsampling module, and after three downsamplings, the image size changes from
(H/4)× (W/4)× (D/4) to (H/32)× (W/32)× (D/32), and the number of channels is
also increased by a factor of 8, enabling feature extraction of the input image.

3.3. Network Decoder

The decoder part also uses the 3D Swin Transformer module for feature decoding,
with the same depth as the encoder. A skip connection is used between the encoder and
the decoder. The upsampling module is performed using deconvolution. The same NFCE
module is used between the 3D Swin Transformer module and the upsampling module to
enhance the feature information. After the last layer of the 3D Swin Transformer module,
we obtain the feature map with a size of C× (H/4)× (W/4)× (D/4). To achieve pixel-
level prediction, it is necessary to obtain H ×W × D resolution output, which we achieve
by enhancing the dimensionality of the feature maps through linear transformations and
then assigning them to image sizes. A brain tumor is a triple classification task, and the
final output will be the feature map with size 3× H ×W × D.

3.4. Enhanced Transformer Module

To enhance the model for detailed feature extraction, an ETrans (Enhanced Trans-
former) module is added between the underlying encoder and decoder (BottleNeck), as
shown in Figure 2. Combining the methods [30], a common view in deep learning is that
higher-order mappings have a stronger fitting capability. Both the attention mechanism
as well as the convolution are second-order mappings. The structure of the attention
mechanism, as an example, is shown in Equation (1):

yi = So f t max( f (xi))xi + xi (1)



Brain Sci. 2022, 12, 797 6 of 15

where f (·) denotes a series of convolution operations, xi is the input feature map, and yi
is the output feature map. From Equation (1), we can see that the attention structure is
a second-order mapping, while the self-attention structure in the Transformer structure
is a third-order mapping, which may be the reason why the final result is not improved.
However, how do design the convolutional attention as a third-order mapping? We imple-
mented this structure by applying the Hadamard product [45], which is chosen because
it is computationally simple and consumes less memory compared to the matrix product.
Further, in combination with the Transformer structure, the same MLP module is added
after the attention structure to obtain our structure, as shown in Equations (2) and (3):

ŷi = So f t max( f (H_k� H_q))H_v + xi (2)

yi = MLP(LN(ŷi)) + ŷi (3)

where f (·) is also the convolution operation, � denotes the Hadamard product, H_k, H_q
and H_v are the feature maps obtained from the input linear transform, respectively. We
also experimentally verify the effect of stacking this module.
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Figure 2. The structure of the enhanced transformer module.

4. Experiments
4.1. Datasets

The experiments were conducted mainly on three public multimodal brain tumor
datasets BraTS2019, BraTS2020, and BraTS2021 [3–5,46,47]. All three datasets are com-
petition data provided by the BraTS challenge, which aims to evaluate state-of-the-art
methods for semantic segmentation of brain tumors by providing 3D MRI datasets with
Ground Truth annotated by physicians. BraTS 2019 contains 335 cases of brain images
for training, with each sample consisting of four brain MRI scans, namely T1-weighted
(T1), T1-enhanced contrast (T1-ce), T2-weighted (T2), and T2 fluid-attenuated inversion
recovery (Flair). The volume of each mode is 240× 240× 155, which has been aligned into
the same space. The labels contain four categories: background (Label 0), necrotic and
non-enhancing tumors (Label 1), peritumoral edema (Label 2), and GB-enhancing tumors
(Label 4), for segmentation of the enhanced tumor region (ET, Label 4), the core tumor
region (TC, Labels 1, 4), and the entire tumor region (WT, Labels 1, 2, 4). The BraTS 2020
dataset contains 369 cases of training data and 125 cases of validation data (unlabeled, for
online validation), the BraTS 2021 dataset contains 1251 cases of training data and 219 cases
of validation data (unlabeled, for online validation). Except for the number of cases in the
dataset, all other data of BraTS 2020, BraTS 2021, and BraTS 2019 are the same.
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4.2. Implementation Details

The model parameters are initialized using the weights pre-trained by Swin-T on
ImageNet-1K. For training, we use the Adam optimizer to train the model with an initial
learning rate of 1 × 10−4 with a cosine decay strategy. The source code can be found
at https://github.com/langwangdezhexue/Swin_BTS (accessed on 18 May 2022). The
following data enhancement techniques are used:

1. Min-max scaling followed by clipping intensity values;
2. Crop the volume to fixed size 240× 240× 155 by removing unnecessary backgrounds.

Our loss function is a combination of dice loss and cross-entropy loss, and it can be
computed in a voxel-wise manner according to Equations (4)–(6):

Ldl(G, Y) = 1− 2
J

J

∑
j=1

∑I
i=1 Gi,jYi,j

∑I
i=1 G2

i,j + ∑I
i=1 Y2

i,j
(4)

Lce(G, Y) =
1
I

I

∑
i=1

J

∑
j=1

Gi,j log Yi,j (5)

L(G, Y) = Ldl(G, Y) + Lce(G, Y) (6)

where I is the number of voxels, J is the number of classes, Yi,j and Gi,j denote the probability
output and one-hot encoded ground truth for class j at voxel i, respectively.

In the model, we use the Dropout operation, which is to make each neuron in a state
of inactivation with a certain probability in the forward propagation of the training process
to achieve the purpose of reducing overfitting.

4.3. Evaluation Metrics

We use the Dice score and 95% Hausdorff Distance (HD) to evaluate the accuracy of
segmentation in our experiments. The Dice score and HD metrics are defined as:

Dice(G, P) =
2∑I

i=1 GiPi

∑I
i=1 Gi i + ∑I

i=1 Pi
(7)

HD(G′, P′) = max{max
g′∈G′

min
p′∈P′
||g′ − p′||, max

p′∈P′
min
g′∈G′
||p′ − g′||} (8)

For a given semantic class, let Gi and Pi denote the ground truth and prediction values
for voxel i, G′ and P′ denote ground truth and prediction surface point sets, respectively.
The 95% HD uses the 95th percentile of the distances between ground truth and prediction
surface point sets. As a result, the impact of a very small subset of outliers is minimized
when calculating HD.

4.4. Experiment Results
4.4.1. BraTS 2019 Dataset

On this dataset, we mainly perform model validation, and we divide 335 samples into
222, 57, and 56 cases as training, validation, and test sets, respectively. The Dice scores and
the average Dice scores of SwinBTS on this dataset for ET, TC, and WT categories reach
74.43%, 79.28%, 89.75%, and 81.15%, respectively. We trained some SOTA models with the
same dataset partitioning for use as a comparison, and the experimental data are shown in
Table 1.

https://github.com/langwangdezhexue/Swin_BTS
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Table 1. Segmentation Dice results on BraTS 2019 test set.

Method
Dice Score (%)

ET TC WT AVG.

3D U-Net [31] 66.15 ± 0.339 66.94 ± 0.322 86.89 ± 0.071 73.33
Attention U-Net

[48] 67.06 ± 0.327 71.95 ± 0.264 86.69 ± 0.100 75.23

U-Netr [27] 67.19 ± 0.346 74.39 ± 0.256 88.57 ± 0.122 76.72
TransBTS [38] 71.08 ± 0.347 78.67 ± 0.207 89.75 ± 0.070 79.83
VTU-Net [41] 73.53 ± 0.311 78.09 ± 0.242 89.56 ± 0.089 80.39

SwinBTS 74.43 ± 0.294 79.28 ± 0.232 89.75 ± 0.070 81.15

In general, SwinBTS has good performance in ET, TC, and WT categories. Table 1
shows that compared with the classical 3D U-Net, the Dice score of SwinBTS has a great
advantage, which shows the advantage of the Transformer structure compared with convo-
lution. The results show that the method can have stronger segmentation performance than
3D U-Net. U-Netr uses the transformer structure as the encoder, which is more conducive to
learning long-distance features, so the effect of TC and WT category segmentation is more
obvious. TransBTS adds a Transformer structure to 3D U-Net to model global relationships,
but the method does not perform well in the ET category, indicating that the extraction of
local features is insufficient. VTU-Net is a method established using the transformer struc-
ture. The Dice scores of each category are well balanced while SwinBTS has an excellent
performance in the ET and TC categories, indicating the excellent extraction ability of our
method for global features and local features.

The data in brackets in Table 1 is the standard deviation of the segmentation results,
from which it can be seen that the SwinBTS model has the smallest classification variance
for the three categories, indicating that the model has the best segmentation effect and the
most stable segmentation, and the segmentation results will not have large differences.

In Table 2 we compare the mIOU results on the 2019 test dataset, and we also compare
the standard deviation. Compared with 3D Unet, SwinBTS can achieve a 10.07% higher
mIOU result, and also has a 1.03% improvement compared to the VTU-Net model that also
uses the Transformer structure. The smaller standard deviation also shows the stability of
the SwinBTS model segmentation results.

Table 2. Segmentation mIOU results on BraTS 2019 test set.

Method
mIOU (%)

ET TC WT AVG.

3D U-Net [31] 55.96 ± 0.308 52.72 ± 0.304 78.02 ± 0.104 73.33
Attention U-Net

[48] 57.85 ± 0.309 61.73 ± 0.275 77.76 ± 0.137 75.23

TransBTS [38] 62.63 ± 0.322 69.16 ± 0.228 82.38 ± 0.100 79.83
VTU-Net [41] 65.00 ± 0.300 69.09 ± 0.251 81.12 ± 0.114 80.39

SwinBTS 66.03 ± 0.296 70.23 ± 0.216 83.33 ± 0.104 81.15

We also draw the boxplots of the Dice scores of the SwinBTS and TransBTS methods
on the BraTS 2019 test dataset for comparative analysis, as shown in Figure 3. These two
methods achieve high-performance segmentation in most test samples. However, since the
dataset itself is obtained in different ways, the data are easily disturbed by factors, such as
noise, so there will be outliers, resulting in lower segmentation results.

4.4.2. BraTS 2020 Dataset

This dataset is mainly used for comparison with the SOTA model. We divide the
training set in the dataset into a training set and a validation set for training at a ratio of
8:2 and then perform segmentation prediction on the BraTS 2020 Validation dataset. The
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results were submitted to the BraTS 2020 Challenge official website for online verification
and comparison with the SOTA model. The dataset evaluates the results according to the
main evaluation indicators of the challenge, Dice score, and 95% Hausdorff distance. The
results are shown in Table 3.
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Table 3. Segmentation results on the BraTS 2020 validation dataset.

Method
Dice Score (%) 95% Hausdorff Dist. (mm)

ET TC WT AVG. ET TC WT AVG.

3D U-Net [31] 70.63 ± 0.284 73.70 ± 0.128 85.84 ± 0.250 76.72 34.30 18.86 10.93 21.36
V-Net [33] 68.97 77.90 86.11 77.66 43.52 16.15 14.49 24.72

Residual U-Net [49] 71.63 76.47 82.46 76.85 37.42 13.11 12.34 20.95
Attention U-Net [48] 71.83 ± 0.317 75.96 ± 0.126 85.57 ± 0.245 77.79 32.94 19.43 11.91 21.42

U-Netr [27] 71.18 ± 0.297 75.85 ± 0.100 88.30 ± 0.226 78.44 34.46 10.63 8.18 17.75
TransBTS [38] 76.31 ± 0.272 80.36 ± 0.075 88.78 ± 0.174 81.82 29.83 9.77 5.60 15.06
VTU-Net [41] 76.45 ± 0.267 80.39 ± 0.107 88.73 ± 0.218 81.86 28.99 14.76 9.54 17.76

SwinBTS 77.36 ± 0.224 80.30 ± 0.079 89.06 ± 0.130 82.24 26.84 15.78 8.56 17.06

The Dice scores of the SwinBTS method in the three categories of ET, TC, and WT
are 77.36%, 80.30%, and 89.06%, respectively. The Hausdorff distances are 26.84 mm,
15.78 mm, and 8.56 mm, respectively. Compared with traditional CNN methods, such as
3D U-Net, V-Net, and Residual U-Net, SwinBTS has obvious improvement. It also has a
certain improvement compared with methods using transformer structures, such as U-Netr,
TransBTS, and VTU-Net. We can also see that the improvement in the SwinBTS model in
Table 3 is relatively limited compared to the VTU-Net model, so the standard deviation
of the Dice score is compared, and it is found that the standard deviation of the SwinBTS
model is much lower, indicating that the model is in a large number of segmentation tasks.
The model is much more stable and does not exhibit large deviations.

4.4.3. BraTS 2021 Dataset

This dataset has the same settings as the BraTS 2020 dataset. It also uses the 8:2 ratio
split dataset as the training set and the verification set for training, and finally, conducts
online verification. The results are shown in Table 4.

SwinBTS also achieved excellent segmentation results on the BraTS 2021 dataset. ET,
TC, and WT can achieve Dice scores of 83.21%, 84.75%, and 91.83%, respectively, and the
Hausdorff distances are 16.03 mm, 14.51 mm, and 3.65 mm, respectively, exceeding the
results of most methods.
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Table 4. Segmentation results on BraTS 2021 validation dataset.

Method
Dice Score (%) 95% Hausdorff Dist. (mm)

ET TC WT AVG. ET TC WT AVG.

SwinBTS 83.21 ± 0.222 84.75 ± 0.227 91.83 ± 0.078 86.60 16.03 14.51 3.65 11.39

4.5. Ablation Experiments and Analysis

We also conducted sufficient ablation experiments to verify the effectiveness of the
SwinBTS model. There are mainly two ablation experiments:

(1) We verify the validity of each module, as shown in Table 5. The segmentation
results of the basic model, adding the NFCE module, adding the Transformer module to
the Bottleneck model, adding the convolution module to the BottleNeck model, and adding
the ETrans module, are compared.

Table 5. Ablation experiments of each module.

Model
Dice Score (%)

ET TC WT AVG.

SwinUnet3D 71.75 76.74 88.40 78.96
SwinUnet3D + NFCE 73.00 77.48 89.01 79.83 (+0.87)

SwinUnet3D + NFCE + Trans 73.42 77.91 90.07 80.46 (+0.63)
SwinBTS + NFCE + Conv 72.55 77.97 87.85 79.46 (−0.37)

SwinUnet3D + NFCE + ETrans 74.43 79.28 89.75 81.15 (+1.32)

We first convert SwinUnet to a 3D version as the basic method of the study. From the
experimental results, we can see that the average Dice score obtained by SwinUnet3D is
78.96%, which is lower than that of TransBTS and other methods. After adding the NFCE
module, the Dice score can be improved by 0.87%. This module improves all three cate-
gories’ results. In the bottom bottleneck part, we first tried to add a Transformer structure
and a convolution module, respectively. The results show that adding the Transformer
structure can improve the performance to a certain extent, but compared with the SOTA
model, the model has poor performance for ET and TC category segmentation. For these
two categories, information extraction requires the model to have strong detail feature ex-
traction capabilities. Therefore, we chose to use convolution to enhance the model, but after
adding the convolution module, the model performance dropped by 0.37%. The reason for
the analysis may be that the convolution structure is a second-order mapping, resulting
in insufficient model fitting ability. Therefore, we combine the Transformer structure to
transform the convolution operation into a third-order map and add the MLP structure
to design the ETrans module. The final experiment also proves the effectiveness of this
module. The average Dice score is 1.32% higher than that without this module and 2.19%
higher than the baseline model.

(2) Depth ablation experiment with the ETrans module. The segmentation outcomes
when the number of stacks in this module is 1, 2, or 4, respectively, are shown in Table 6.

Table 6. Experiments of different depths.

Method Depth
Dice Score (%)

ET TC WT AVG.

SwinBTS
1 73.06 78.60 89.08 80.24
2 74.43 79.28 89.75 81.15
4 72.88 79.19 89.63 80.57

From Table 5, we can see that it is not the case that the higher the number of stacks, the
better the segmentation effect is. We follow the usual setting that the segmentation result
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when the depth is four is not as good as the segmentation result when the depth is two.
Therefore, the depth of ETrans used in this paper is two.

4.6. Heatmap Analysis

Figure 4 shows the heatmap of the model before and after adding the ETrans module.
The role of the ETrans module is mainly to improve the model’s feature extraction capability
for local features, especially small-size categories. From Figure 4, we can see that when
the ETrans module is not added, the model has poor recognition of the necrotic area and
the enhanced tumor area in the entire tumor area, so the segmentation ability of the two
categories of ET and TC is poor. After adding the ETrans module, the network obviously
pays more attention to the central area of the tumor.
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4.7. The Impact of Dataset Noise on Experiments

Noise is an unavoidable problem in medical images. Due to different factors, such as
equipment, operations, patients, and environments, datasets always have different levels
of noise problems. Therefore, in this section, we explore the segmentation ability of the
SwinBTS model for datasets with varying degrees of noise.

Our main approach is to add different degrees of Gaussian noise to the BraTS2019
dataset. The dataset comparison after adding noise is shown in Figure 5.

In Table 7, we enumerate the effect of adding different degrees of noise on the segmen-
tation effect.

From Table 7, we can see that SwinBTS is more sensitive to noise. When the noise is low,
the model still has excellent performance, but when the added noise level (noise-sigma = 5)
is large, the final segmentation result of the model will drop by about 10%. Therefore, in
the task of medical image analysis, noise is a key influencing factor, but for MRI images,
the noise factor has less influence, and it does not have a great impact on brain tumor
segmentation tasks.

Table 7. Experiments of different degrees of noise.

Method Noise-Sigma
Dice Score (%)

ET TC WT AVG.

SwinBTS
0 74.43 79.28 89.75 81.15
1 69.62 75.84 85.80 77.08
5 59.67 69.85 82.85 70.79
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4.8. Visual Comparison

In this section, we compare the visualization of the brain tumor segmentation results
between the proposed method and 3DU-Net, TransBTS, and VTU-Net, as shown in Figure 4.
In Figure 6, the first row is the cross-sectional image of the brain tumor, the second row is the
sagittal image, and the third row is the coronal image. For the convenience of observation,
we show all three cross-sectional images and set the coordinates of the intercept point as
(109, 89, 78). The red label in the figure represents the ET area, the yellow label represents
the TC area, and the green label represents the WT area. It can be seen from Figure 6 that
all models have the best segmentation effect for the WT region, and the segmentation effect
for the two complex edges of ET and TC is very different. Compared with Ground Truth,
our model is more accurate for the segmentation results of edge details.

4.9. Discussion

Using artificial intelligence to assist doctors in diagnosis can greatly improve the
efficiency of diagnosis. The use of deep learning methods for medical image segmentation
is currently the most cutting-edge research and has the best performance. However, in
order to truly apply this research to medical-aided diagnosis, higher segmentation accuracy
is required to ensure the safety and effectiveness of diagnosis. The main purpose of our
research is to improve the segmentation accuracy of brain tumor MRI images by designing
and improving the network model. The comparison of the above experimental results also
proves that our model has excellent segmentation performance (Dice score). However,
our model also shows some inadequacies; it can be seen from Table 3 that the SwinBTS
model performs worse than the Unetr model and the TransBTS model in the 95% Hausdorff
Distance indicator, indicating that the SwinBTS model has relatively insufficient ability
to segment image edges. We think this problem is caused by the extensive use of the
Transformer structure. Therefore, our next step will be to combine CNN on the basis of
SwinBTS to improve it and achieve better performance.
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5. Conclusions

We proposed a novel segmentation method, SwinBTS, which can automatically seg-
ment diseased tissue in brain MRI images. The model effectively combines a 3D Swin
Transformer, 3D convolutional structure, and encoder–decoder structure to achieve efficient
and accurate segmentation of MRI images. Different from using CNN, we use a 3D Swin
Transformer as the encoder and decoder to effectively extract the global information of the
feature map. After the encoder/decoder, the combination of NFCE module and downsam-
pling/upsampling can reduce information loss when downsampling/upsampling. The
ETrans module added at the bottom of the model is designed by combining CNN and Trans-
former structures. This module is used to extract local detailed features, so that the model
also has strong segmentation capabilities for categories that occupy a small proportion of
the image (such as ET). Finally, we validate the method on three datasets (BraTS 2019, BraTS
2020, and BraTS 2021). Experimental results show that our method has better performance
in brain tumor MRI image segmentation compared with some state-of-the-art methods
(such as Residual U-Net, Attention U-Net, and TransBTS). Multiple experimental results
show that our method achieves good results on three datasets, indicating its potential for
practical application in auxiliary diagnostic systems. The visualization results show that
the proposed method has good segmentation performance for all three lesion regions of
brain tumors. In future work, we will explore optimizing the self-attention structure of the
Swin Transformer module to improve the overall performance of the method, and at the
same time, explore how to more effectively combine the Transformer and CNN to improve
the model’s ability to segment the lesion edge region.
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