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In the early 2010s, the “replication crisis” and synonymous terms (“replicability crisis”
and “reproducibility crisis”) were coined to describe growing concerns regarding pub-
lished research results too often not being replicable, potentially undermining scientific
progress [1]. Many psychologists have studied this problem, contributing groundbreaking
work resulting in numerous articles and several Special Issues in journals, with titles such
as “Replicability in Psychological Science: A Crisis of Confidence?”, “Reliability and repli-
cation in cognitive and affective neuroscience research”, “Replications of Important Results
in Social Psychology”, “Building a cumulative psychological science”, and “The replication
crisis: Implications for linguistics” [1–5]. Researchers in the field of brain imaging, which
often dovetails with psychology, have also published numerous works on the subject, with
brain imaging organizations having become staunch supporters of efforts to address the
problem, such organizations including the Stanford Center for Reproducible Neuroscience
and the Organization for Human Brain Mapping (OHBM), the latter having created an
annual award for the best replication study [6], regularly featuring informative events
concerning the replication crisis and Open Science at its annual meetings [3,7]. The purpose
of the Brain Sciences Special Issue “The Brain Imaging Replication Crisis” is to provide a
forum for discussions concerning this replication crisis in light of the special challenges
posed by brain imaging.

In John Ioannidis’ widely cited article entitled “Why most published research findings
are false”, he convincingly argues that most published findings are indeed false, with
relatively few exceptions [8–10]. He supports this claim using Bayes’ theorem and some
reasonable assumptions concerning published research findings. It follows from Bayes’
theorem that when a hypothesis test is positive, the likelihood that this study finding is
true (PPV, positive predictive value) depends on three variables: the α-level for statistical
significance (where α is the probability of a positive test, given that the hypothesis is false),
the power of the study (1 − β, where β is the probability of a negative test, given that the
hypothesis is true), and the odds that the hypothesis is true (R, the ratio of the probability
that the hypothesis is true to the probability that the hypothesis is false). This relationship is
expressed with the equation PPV = R(1 − β)/[α + R(1 − β)]. From this equation, it follows
that any hypothesis will likely be false, even after a positive test, when R < α. This situation
applies to fields where tested hypotheses are seldom true, which could in part explain
the low replication rates observed in cancer studies [11,12]. It also follows that when the
study power is equal to α, the probability that the hypothesis is true remains the same as
it was before the test. Thus, inadequately powered studies lack the capacity to advance
our confidence in the tested hypotheses. The PPV can also be reduced by sources of bias
that elevate the actual value of α above its nominal value, for example, when publication
bias [13,14] causes only positive studies to be published for a given hypothesis. When
published p-values are not corrected for multiple comparisons involving negative studies,
actual p-values become much higher than the published ones.
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Academic incentives regarding the publication of “interesting” findings in high-impact
journals can further bias research towards the production of spurious, false–positive find-
ings through multiple mechanisms [15]. Simmons et al. [16] demonstrated with computer
simulations how four common variations in research methods and data analyses allowed
the inflation of actual p-values via so-called p-hacking [14,17], from 0.05 to 0.61. Researchers
incentivized to find their anticipated results might be biased towards choosing methods that
yield those results [18]. In the same vein, methodological errors [19] might be found less
frequently when they support the anticipated results. Additionally, after seeing the results
of a study, researchers might be inclined to reconsider their original hypotheses to match
the observed data, so-called HARKing (hypothesizing after the results are known) [20].

To counteract these deleterious academic incentives, Serra-Garcia and Gneezy [21]
proposed disincentives for the publication of nonreplicable research findings. A problem
with this approach is that it can take years and considerable research resources to identify
such findings. Another problem is that the replicability of findings is not necessarily a good
measure of study quality. High-quality studies have the capacity to sift out replicable from
irreplicable hypotheses, for example, in confirmatory studies to provide a higher margin of
certainty for hypotheses already considered likely to be true, and in exploratory studies
to identify promising candidates for further research. Obviously, some such candidate
hypotheses will not prove replicable. Conversely, a positive study of low quality, with
no capacity to separate true from false hypotheses, could prove replicable if the tested
hypothesis happened to be true.

Determining which hypotheses are replicable can be especially challenging in the
field of brain imaging, with many experiments lacking the power to find the sought-after
differences in neural activity due to limitations in the reliability of measures combined
with cost considerations limiting sample sizes [22–30]. Nonetheless, the countless pipelines
from available methods of analysis can provide the needed p-value to support practically
any hypothesis [31,32]. HARKing also reliably yields positive findings, which can seem
confirmatory. For example, if using functional connectivity (FC) to study brain differences
between two groups that differ clinically in some way, one recipe for “success” is the
following: (1) divide the brain into ~100 regions and find the FC between each pair of
regions, yielding ~500 such pairs whose FC differs significantly between the two groups,
with α = 0.05; (2) select a pair of such brain regions that happens to correspond to existing
findings in the literature related to the studied clinical group differences; (3) write the paper
as if the selected pair had been the only pair of interest, based on the literature search,
thereby giving the appearance that the study is a confirmation of an expected finding.

What can improve the replicability of research results? Theoretical considerations
can help to sift out likely from unlikely hypotheses even before testing begins [33]. Judi-
cious study design can improve power. Perhaps the most efficient means of improving
replicability are those that address the inflation of p-values. The preregistration of study
hypotheses and methods [3,7] can prevent p-hacking and HARKing, provided that methods
are specified in enough detail to eliminate flexibility in the data collection and analysis. A
detailed specification of methods in published articles allows other researchers to reproduce
published studies and to double-check the authors’ work if study data and software are
also available. Many organizations now provide tools to facilitate such a preregistration of
studies and storage of data and software. The Center for Open Science [34,35], for example,
is a well-funded, nonprofit organization that provides these services at little to no cost
to researchers.

We welcome the submission of papers contributing further ideas for how to address
the replication crisis, including replication studies or papers describing refinements of
brain imaging methods to improve study power. Additionally welcome are examples
of excellent study quality involving (1) preregistration with detailed methods allowing
an unambiguous study reproduction and (2) availability of data and software, if feasible.
Please feel free to contact the guest editor (R.E.K.) to discuss a planned study, to learn if it
would be considered suitable for publication, and if not, how to make it so.
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