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Abstract: Research has shown that abnormal brain networks in patients with schizophrenia appear
at different frequencies, but the relationship between these different frequencies is unclear. Therefore,
it is necessary to use a multilayer network model to evaluate the integration of information from
different frequency bands. To explore the mechanism of integration and separation in the multilayer
network of schizophrenia, we constructed multilayer frequency brain network models in 50 patients
with schizophrenia and 69 healthy subjects, and the entropy of the multiplex degree (EMD) and
multilayer clustering coefficient (MCC) were calculated. The results showed that the ability to
integrate and separate information in the multilayer network of patients was significantly higher
than that of normal people. This difference was mainly reflected in the default mode network,
sensorimotor network, subcortical network, and visual network. Among them, the subcortical
network was different in both MCC and EMD outcomes. Furthermore, differences were found in the
posterior cingulate gyrus, hippocampus, amygdala, putamen, pallidum, and thalamus. The thalamus
and posterior cingulate gyrus were associated with the patient’s symptom scores. Our results
showed that the cross-frequency interaction ability of patients with schizophrenia was significantly
enhanced, among which the subcortical network was the most active. This interaction may serve as a
compensation mechanism for intralayer dysfunction.

Keywords: schizophrenia; brain network; frequency; multilayer network; rs-fMRI

1. Introduction

Schizophrenia is a common chronic and disabling mental disorder, although its neural
basis remains unclear. Relevant studies have shown that schizophrenia is a typical complex
mental disorder with abnormal connections in the whole brain, and its underlying neu-
ropathology is related to the abnormal functional coordination of multiple brain regions in
patients [1].

Brain activity is frequency-specific, and different physiological activities produce
frequency-specific signals [2,3]. Recent research has found that brain network differences in
schizophrenia occur at different frequencies [4]. Researchers also found that schizophrenia
patients showed a wide range of frequency band-specific differences in low-frequency
amplitude and regional consistency [5]. However, previous studies have shown that
cross-frequency coupling was used the deployment of spatial attention during visuomotor
tasks [6,7]. Moran et al. also pointed out that the study of intraband or interband inter-
actions at specific frequencies plays an important role in the study of schizophrenia [8].
Therefore, different frequency bands cannot be regarded simply as single entities. Ignoring
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the interaction between frequency bands may lead to the loss of some important informa-
tion. An effective way to solve this problem is to use a multilayer network, which can
integrate the interdependencies from within and between layers simultaneously [9,10].

Research has demonstrated that, compared with healthy subjects, the brain network
topological characteristics of patients with schizophrenia was disordered [11]. This in-
dicated brain functional network tissue dysfunction in patients. Functional segregation
and integration are two major principles of human brain organization. An optimal brain
needs to strike a suitable balance between local specialization and global integration of
activities, which is well reflected by the small-world attribute [12]. Several recent studies
showed impairment in the state-related characteristics of both functional integration and
segregation of brain networks in patients with schizophrenia [13,14]. Segregation studies
report hyper-segregated features in the posterior cortical and subcortical (striatum) brain
regions [15,16]. Other studies reported on the default mode network (DMN) to whole-brain
connectivity as a predictive biomarker [17–19]. Another study reported that, compared
with healthy controls, patients with schizophrenia at baseline showed lower clustering
coefficient and local network efficiency [13]. However, it is not clear how these two indica-
tors of the brains of patients with schizophrenia can be quantified in a multilayer network.
Therefore, we researched the integration and segregation of multilayer networks.

Here, we explored the dynamic functional characteristics of the whole brain of patients
with schizophrenia from a multifrequency perspective. A multilayer network model was
first constructed; then, we evaluated the integration and segregation characteristics of
the multilayer frequency brain network in patients with schizophrenia. In addition, the
dynamic role of resting-state networks (RSNs) in multilayer networks was analyzed to
further evaluate the correlation between the properties of multilayer networks and patients’
clinical symptoms. The analysis strategy flow of this study is shown in Figure 1.

Figure 1. Schematic overview of the analysis strategy. (a) The resting-state fMRI data of schizophrenia
(SCHZ) and typical development (TD) were obtained. At the same time, the negative and positive
symptom scores of the patients were obtained. (b) This panel describes the preprocessing procedure of
data, and brain signals of 0.01–0.25 Hz were obtained. (c) The brain signals between 0.01 and 0.25 Hz
were decomposed into four frequency bands (slow2–slow5), and Pearson correlation was used to
establish intralayer functional connections. (d) The corresponding nodes are considered connected
between different layers. In this way, a multilayer frequency network model was constructed. (e)
Multilayer network measures were calculated.
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2. Materials and Methods
2.1. Participants and Data Acquisition

The resting-state fMRI data used in this study were acquired from the University of
California LA Consortium for Neuropsychiatric Phenomics study, which was approved
by the UCLA Institutional Review Board. The experiments were undertaken with the
understanding and written consent of each subject. This dataset includes 119 subjects, 50
schizophrenia patients, and 69 healthy people with matching ages and sex. Table 1 shows
the demographic information of the participants. Positive symptom severity was assessed
by the Scale for Assessment for Positive Symptoms (SAPS) [20]. Negative symptom severity
was assessed by the Scale for the Assessment of Negative Symptoms (SANS) [21].

Table 1. Subjects’ characteristics and symptom scores.

Group TD SCHZ p-Value

Number of subjects 69 50 –
Age (mean ± SD) 31.83 ± 8.73 33.84 ± 6.51 0.156 1

Sex (M/F) 42/27 38/12 0.083 2

SAPS (mean ± SD) – 30.92 ± 21.04 –
SANS (mean ± SD) – 35.9 ± 19.21 –

Abbreviations: TD, typical development; SCHZ, schizophrenia; SD, standard deviation; SAPS, positive symptom
scores; SANS, negative symptom scores; 1 Independent-samples t-test. 2 Pearson chi-square two-tailed test.

Neuroimaging data were obtained on a 3T Siemens Trio scanner. During the process
of data acquisition, all subjects were required to keep their eyes open, to remain relaxed,
and to try to avoid mental activities. The fMRI data were collected with T2*-weighted
echo-planar imaging (EPI). The scanning parameters were as follows: slice thickness = 4
mm, slices = 34, repetition time (TR) = 2 s, echo time (TE) = 30 ms, flip angle = 90◦, field
of view (FOV) = 192 mm, and matrix = 64 × 64. For the structural scan, the equipment
parameters for the acquisition of T1-weighted magnetization-prepared rapid gradient echo
(MP-RAGE) sagittal images were as follows: slice thickness = 1 mm, slices = 176, TR = 1.9 s,
TE = 2.26 ms, matrix = 256 × 256, and FOV = 250 mm.

2.2. Data Preprocessing

The resting-state fMRI data were obtained using the Data Processing Assistant for
Resting-State fMRI (DPARSF) toolbox [22] and Statistical Parametric Mapping (SPM12) [23].
Briefly, data from the first 10 time points were removed, and slice timing correction was
performed. Then, the images of all subjects were realigned for head movement, which did
not exceed 2.0 mm of displacement or 2.0◦ of rotation in any direction. The image space
was standardized to the Montreal Institute of Neurology (MNI) head anatomy template
and resampled with 3 mm × 3 mm × 3 mm voxels. The linear trends of time series were
removed, and the effect of nuisance covariates was removed by signal regression using
the global signal, the motion parameters, the cerebrospinal fluid (CSF), and white matter
(WM) signals. Subsequently, 0.01–0.027 Hz (slow5), 0.027–0.073 Hz (slow4), 0.073–0.198
Hz (slow3), 0.198–0.25 Hz (slow2), and 0.01–0.25 (full-frequency) bandpass filters were
applied to the time series of each voxel [24]. Finally, a Gaussian filter with a full width at
half maximum (FWHM) of 6 mm was used to smooth the image.

2.3. Single-Layer Network Construction

The cerebral cortex was divided into 90 brain regions using an automated anatomical
labeling (AAL) template [25]. Pearson correlation was used to calculate the functional
connections between brain regions to build single-layer networks for five frequency bands.
In the experiment, the correlation coefficient matrix was binarized by setting a threshold
value so that all resultant networks have comparable topological structures with the same
number of edges. We used the equal interval sparsity threshold range (ranging from 0.1 to
0.4 with a partition interval of 0.05) The sparsity range used in this paper was 0.1–0.4 with
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an interval of 0.05. The brain functional network of all subjects was constructed under all
sparsity levels.

2.4. Multilayer Network Construction

For multilayer networks, a common representation is the supra-adjacency matrix [26,27].
A multilayer network with M layers can be expressed as follows: A[1] · · · IN

...
. . .

...
IN · · · A[M]

, (1)

where A[α] is an N × N (N = 90) adjacency matrix of the four frequency bands described
above, representing the interregional connectivity, and a[α]ij = 1 if node i and node j are
connected through a link on layer α. M is the number of layers, and M = 4. These constitute
the four independent layers of the multilayer network model. Adjacency matrices IN
were generated by connecting different frequency bands, which represent the regional
connectivity between different layers. IN is the N-dimensional identity matrix, which
represents the interlayer interaction of the multilayer network model.

2.5. Network Measures

After the brain network was constructed, the network attributes were calculated for
each selected threshold. Because different threshold values could result in different brain
functional networks, the attribute values of each network were also quite different. There-
fore, we calculated the area under the curve (AUC) of each node attribute under different
thresholds. The AUC value was taken as the node attribute measurement in this study,
thus representing the overall characteristics of the index in the selected threshold space.

2.6. Single-Layer Network Measures of Segregation and Integration

For single-layer networks, we used the clustering coefficient (Cp) and the local network
efficiency (Eloc) to measure segregation and integration. The computations of Cp and Eloc
were performed using MATLAB codes termed GRETNA [28] (http://www.nitrc.org/
projects/gretna/ (accessed on 3 October 2021)).

2.7. Multilayer Network Segregation

The clustering coefficient in brain networks is an indicator that can be used to char-
acterize the local connectivity of networks and that reflects the functional differentiation
mechanism of the cerebral cortex. In general, clustering coefficients are defined in two
ways. The first is to quantify the likelihood that two neighbors of node i will connect to
each other. For node i, its immediate neighbor node is found in set k; then, the clustering
coefficient is set equal to the number of edges in the network composed of k divided
by the number of possible edges in the k set. The second calculation method, similar to
network transitivity, uses the ratio of closed triples to connected triples. Since each layer
of a multilayer network can be regarded as a single-layer network, the definition of the
network clustering coefficient and network transitivity can be used to describe the richness
of triangles in each layer.

However, the existence of a multilayer network greatly enriches the way triangles
are formed in the network. The edges of a closed triangle may all be distributed in a
certain layer or may be separately distributed in different layers. As shown in Figure 2,
a three-layer network model is taken as an example to introduce two ways of forming a
locally closed triangle across layers in a multilayer network. From this figure, we can obtain
two kinds of triangles, corresponding to the two rows on the right of Figure 2. The sides of
the first type of triangle are made up of two layers, while the sides of the second type of
triangle span three different layers. Thus, it can be seen that the triangles in a multilayer

http://www.nitrc.org/projects/gretna/
http://www.nitrc.org/projects/gretna/
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network are greatly different from those in a single-layer network. The interaction between
the various layers of the system in terms of clustering should be taken into account.

Figure 2. The formation of triangles in a multilayer network. On the right side of the figure are two
rows of triangles, each representing one case. For the first case, the sides of the triangle are made
up of two layers. Taking nodes A, B, and C as examples, node B and node C in layer 1 belong to
the neighbor nodes of node A, but there is no connecting edge between node B and node C. The
connection edge between them is detected in layer 2. In this case, the nodes A, B, and C form a closed
triangle in the multilayer network. A similar phenomenon can be observed for other triangles of the
first type. In the second case, the sides of the triangle span three different layers. Taking nodes B, D,
and E as an example, nodes B and D are connected at layer 1 but not at other layers, nodes B and E
are connected at layer 2 but not at other layers, and nodes D and E are connected at layer 3 but not at
other layers. In this case, the nodes B, D, and E form a closed triangle in the multilayer network. A
similar phenomenon can be observed for other triangles of the second type.

Many scholars have tried to solve this problem [29–31]. By extending the cluster-
ing coefficient in a multilayer brain network, we defined the cross-frequency clustering
coefficient [32] as follows:

Ci =
∑α ∑α′ 6=α ∑α′′ ∑j 6=j,m 6=i(a[α]ij a[α

′ ]
jm a[α

′′ ]
mi )

∑α ∑α′ 6=α ∑j 6=i,m 6=i(a[α]
ij a[α

′ ]
mi )

, (2)

where a[α]ij = 1 if node i and node j are connected through a link on layer α. This formula
represents the ratio of the number of closed triples formed by node i across layers to the
number of connected triples formed across layers in a multilayer network [32]. It reflects the
trend that nodes form locally connected triangles across different layers and is a measure
of local information processing capacity in multilayer networks.

The multilayer clustering coefficient (MCC) of the entire network can be expressed as
the average value of the MCC of all nodes and is defined as follows:

C =
1
N ∑ N

i=1Ci, (3)

2.8. Multilayer Network Integration

Similar to the degree index in the single-layer network, the degree value in the multi-
layer network is also a reflection of the importance of nodes. The degree value of nodes in
the whole multilayer network can be obtained by summing the degree values of nodes in
different layers, which is called the multilayer overlapping degree of nodes. Therefore, in a
multilayer network, there may be a situation where the multilayer overlapping degree of
node i and node j is the same, but they have different degree distributions at different layers.
Thus, these two nodes play different roles in a multilayer network. The entropy of the
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multiplex degree (EMD) index can well reflect the distribution of nodes’ links in different
layers to judge the specific functional roles of nodes in the whole multilayer network.

As shown in Figure 3, the physical meaning of the EMD index is demonstrated in a
two-layer network. Take two nodes as an example; the x1 and x2 nodes have the same
multilayer overlapping degree value. As for the x1 node, it has the same degree distribution
at each layer of the multilayer network, so it can spread the information acquired in each
layer evenly among different layers. It can be regarded as the key node in the information
exchange between layers, and its corresponding EMD value is the largest. However, for x2
node, its network connection edges are all concentrated in the first layer of the multilayer
network, while in the second layer, it belongs to the isolated node. Although it is a key node
of information transmission in the first layer, it cannot transfer the information of the first
layer to other layers, so it plays a certain blocking role in the inter-layer interaction. This
node exists as a peripheral node in the whole multilayer network, and its corresponding
EMD value is the minimum.

Figure 3. Diagram of the entropy of the multiplex degree. Node x1 and node x2 in the network
correspond to a class of nodes with maximum and minimum entropy of the multiplex degree.

Therefore, the higher the EMD is, the more evenly the node’s links are distributed
at each layer, and the more important the node is in the interlayer interaction. Therefore,
EMD is a measure of global information processing capacity in a multilayer network. For a
multilayer brain network, we defined the cross-frequency EMD [33] as follows:

Ei = −∑ M
α=1

K[α]
i

Oi
ln(

K[α]
i

Oi
), (4)

where α represents a layer in a multilayer network, M is the number of layers, K[α]
i

represents the degree value of node i on the α layer, and Oi represents the overlapping
degree of node i [33]. The relationship between Oi and K[α]

i is as follows:

Oi = ∑ M
α=1K[α]

i , (5)

The EMD of the whole network can be expressed as the average value of the EMD of
all nodes:

E =
1
N ∑ N

i=1Ei, (6)

2.9. Parcellation into RSNs

Each of the brain regions divided using AAL was associated with its correspond-
ing RSN. Five empirical functional networks could be extracted from the network tem-
plates [34,35]: the default mode network (DMN), attention network, sensorimotor network,
subcortical network, and visual network (see Supplementary Material Table S1). By comput-
ing multilayer network metrics at the RSN level, the differences in functional subnetworks
between normal control and patients with schizophrenia can be quantified.
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2.10. Statistical Analysis

The distribution of data was checked before the statistical test method was selected.
The two sets of data in this paper all obeyed a normal distribution and satisfied the same
variance. Therefore, the independent-samples t-test was used to analyze the network
indicators difference between groups (TD and SCHZ), and the significance level was set at
0.05. To control the false positive rate, we used false discovery rate (FDR) correction for the
results of the statistical tests [36]. P-values were adjusted using the FDR correction by the
R package ‘fdrtool’. The program is freely available from the Comprehensive R Archive
Network (http://cran.r-project.org/ (accessed on 2nd November 2021)). As a result of the
correction, the statistical significance level was p < 0.05. In addition, the nonparametric
Spearman correlation coefficient R was used to test whether multilayer network indicators
were related to the symptom scores (SANS and SAPS). Meanwhile, the clustering coefficient
correlations between pairs of layers in normal controls and schizophrenia patients were
computed by Spearman correlation coefficient R. The independent-samples t-test and the
nonparametric Spearman correlation were obtained using SPSS 20.0 software.

3. Results
3.1. Network Integration and Segregation

The difference between the two groups in terms of integration using EMD and segrega-
tion using MCC was explored at the whole-brain level. As seen in Figure 4, the EMD value
(t(90) = −17.059, p = 0.000) and MCC value (t(90) = −2.179, p = 0.033) in schizophrenia were
significantly higher than those of the control group.

Figure 4. Panels (a,b) represent the differences in the entropy of the multiplex degree (EMD) and
multilayer clustering coefficient (MCC) at the whole-brain level between control subjects and patients
with schizophrenia (SCHZ), respectively. * indicates 0.01 < p < 0.05, *** indicates p = 0.000.

Figure 5a,b show the clustering coefficient values of 90 brain regions of normal controls
and patients with schizophrenia in the single-layer and multilayer networks, respectively.
It can be seen that the clustering coefficient is very different in these two kinds of networks.
Statistical analysis showed that there were significant differences in the clustering coefficient
(Cp) (slow3: t(90) = −2.323, p = 0.022; full-frequency: t(90) = 2.441, p = 0.016) and local
network efficiency (Eloc) (slow3: t(90) = −5.927, p = 0.000; full-frequency: t(90) = 2.009,
p = 0.047) between the two groups in the slow3 frequency band and full-frequency band
(Figure 5c). Furthermore, we analyzed the correlation between the cluster coefficient
sequences of all brain regions in different networks (Figure 6).

http://cran.r-project.org/
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Figure 5. The clustering coefficient values of 90 brain regions. (a) The clustering coefficient for each
region for four single-layer frequency-specific networks and a multilayer network in the healthy
group is shown. (b) The clustering coefficient for each region for four single-layer frequency-specific
networks and a multilayer network in patients with schizophrenia is depicted. (c) The differences in
the clustering coefficient (Cp) and local network efficiency (Eloc) between the two groups in the slow3
frequency and full-frequency are shown. * indicates 0.01 < p < 0.05. *** indicates p = 0.000.

Figure 6. Panels (a,b) represent the clustering coefficient correlations between pairs of layers in
normal controls and patients with schizophrenia. The self-correlations are equal to 1.

3.2. RSNs Differences

The differences between the two groups at the RSN level are shown in Figure 7, and
these results were adjusted by FDR. By comparing the average EMD and MCC, we found
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that the EMD was significantly different in the DMN (t(90) = −9.002, p(FDR) = 0.000),
sensorimotor network (t(90) = −14.451, p(FDR) = 0.000), visual network (t(90) = −3.989,
p(FDR) = 0.000), and subcortical network (t(90) = −25.364, p(FDR) = 0.000). Furthermore,
the MCC was significantly different in the subcortical network (t(90) = −5.677, p(FDR) =
0.000). In addition, the differences between the two groups at the RSN level of single-layer
networks are shown in Supplementary Material Tables S2 and S3, and these results were
adjusted by FDR.

Figure 7. The differences in the entropy of the multiplex degree (EMD) and multilayer cluster-
ing coefficient (MCC) at the RSN level between controls and patients with schizophrenia (SCHZ).
*** indicates p = 0.000.

3.3. Node Vulnerability

At the node level, the difference between the EMD and MCC groups was detected.
We focused on the brain regions in the differential RSN mentioned in the previous section.
For EMD (Table 2), there were a total of 23 abnormal brain regions in patients, among
which 5 nodes belonged to the DMN (Figure 8a), 3 nodes belonged to the sensorimotor
network (Figure 8b), 4 nodes belonged to the visual network (Figure 8c), and 11 nodes
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belonged to the subcortical network (Figure 8d). The cortical distribution of all of these
brain regions is shown in Figure 9a. In the MCC index (Table 3), we found 13 abnormally
damaged brain regions belonging to the subcortical network (Figure 8e), and these nodes
are shown in Figure 9b. In addition, the differences between the two groups at the node
level of single-layer networks were shown in Supplementary Material Tables S4 and S5,
and these results were adjusted by FDR.

Table 2. Brain regions showing significant differences in the entropy of the multiplex degree.

ROI Name Abbreviation Network P (FDR) SCHZ (SD) TD (SD)

3 Frontal_Sup_L SFGdor.L Default mode 0.020 1.338 (0.058) 1.305 (0.061)
21 Olfactory_L OLF.L Subcortical 0.000 1.098 (0.338) 0.132 (0.344)
22 Olfactory_R OLF.R Subcortical 0.000 1.091 (0.398) 0.038 (0.182)
25 Frontal_Mid_Orb_L ORBsupmed.L Default mode 0.014 1.245 (0.122) 1.092 (0.388)
28 Rectus_R REC.R Default mode 0.009 1.180 (0.228) 0.999 (0.387)
35 Cingulum_Post_L PCG.L Default mode 0.009 1.205 (0.213) 1.021 (0.393)
36 Cingulum_Post_R PCG.R Default mode 0.000 1.208 (0.126) 0.289 (0.483)
39 ParaHippocampal_L PHG.L Subcortical 0.023 1.289 (0.098) 1.190 (0.229)
41 Amygdala_L AMYG.L Subcortical 0.000 1.242 (0.129) 0.000 (0.000)
42 Amygdala_R AMYG.R Subcortical 0.000 1.249 (0.116) 0.026 (0.156)
45 Cuneus_L CUN.L Visual 0.005 1.311 (0.073) 1.268 (0.068)
46 Cuneus_R CUN.R Visual 0.023 1.332 (0.059) 1.300 (0.061)
49 Occipital_Sup_L SOG.L Visual 0.000 1.311 (0.071) 1.188 (0.221)
53 Occipital_Inf_L IOG.L Visual 0.000 1.322 (0.079) 1.265 (0.072)
59 Parietal_Sup_L SPG.L Sensorimotor 0.000 1.334 (0.060) 1.260 (0.095)
74 Putamen_R PUT.R Subcortical 0.043 1.293 (0.075) 1.250 (0.113)
75 Pallidum_L PAL.L Subcortical 0.000 1.227 (0.211) 0.045 (0.216)
76 Pallidum_R PAL.R Subcortical 0.000 1.245 (0.119) 0.015 (0.124)
77 Thalamus_L THA.L Subcortical 0.038 1.258 (0.118) 1.179 (0.191)
78 Thalamus_R THA.R Subcortical 0.000 1.269 (0.111) 1.163 (0.154)
79 Heschl_L HES.L Sensorimotor 0.000 1.282 (0.080) 0.196 (0.409)
80 Heschl_R HES.R Sensorimotor 0.000 1.302 (0.074) 0.285 (0.482)
87 Temporal_Pole_Mid_L TPOmid.L Subcortical 0.000 1.149 (0.278) 0.829 (0.489)

Table 3. Brain regions showing significant differences in the multilayer clustering coefficient.

ROI Name Abbreviation Network P (FDR) SCHZ (SD) TD (SD)

21 Olfactory_L OLF.L Subcortical 0.000 0.207 (0.079) 0.139(0.059)
37 Hippocampus_L HIP.L Subcortical 0.000 0.247 (0.071) 0.203 (0.058)
38 Hippocampus_R HIP.R Subcortical 0.000 0.254 (0.070) 0.212 (0.054)
39 Parahippocampal_L PHG.L Subcortical 0.000 0.270 (0.065) 0.221 (0.049)
40 Parahippocampal_R PHG.R Subcortical 0.004 0.274 (0.065) 0.236 (0.054)
41 Amygdala_L AMYG.L Subcortical 0.000 0.230 (0.076) 0.172 (0.057)
42 Amygdala_R AMYG.R Subcortical 0.000 0.240 (0.064) 0.169 (0.060)
73 Putamen_L PUT.L Subcortical 0.033 0.249 (0.073) 0.219 (0.062)
75 Pallidum_L PAL.L Subcortical 0.000 0.223 (0.073) 0.168 (0.059)
76 Pallidum_R PAL.R Subcortical 0.002 0.213 (0.073) 0.170 (0.058)
77 Thalamus_L THA.L Subcortical 0.000 0.254 (0.068) 0.199 (0.067)
78 Thalamus_R THA.R Subcortical 0.002 0.245 (0.073) 0.201 (0.063)
87 Temporal_Pole_Mid_L TPOmid.L Subcortical 0.000 0.216 (0.064) 0.160 (0.061)
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Figure 8. Differences between normal controls and patients with schizophrenia (SCHZ) in terms
of node vulnerability. Panels (a–d) represent the damaged brain areas detected in the default
mode network, sensorimotor network, visual network and subcortical network, respectively, of the
schizophrenia patients according to the entropy of the multiplex degree (EMD). Panel (e) represents
the damaged brain areas in the subcortical network of schizophrenia under the multilayer clustering
coefficient index (MCC). Asterisks indicate the difference between the groups and were divided into
three cases: * 0.01 < p < 0.05, ** 0.001 < p < 0.01, and *** p = 0.000.
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Figure 9. Cortical maps of damaged brain regions in schizophrenia. Panel (a) represents the cortical
distribution of the damaged brain regions in the default mode network, sensorimotor network, visual
network, and subcortical network of patients according to the entropy of the multiplex degree index.
Panel (b) represents the cortical distribution of the damaged brain regions in the subcortical network
of patients under the multilayer clustering coefficient index. The sizes of the nodes correspond to the
significance of the difference between the groups. The smaller the p-value, the larger the node.

3.4. Correlation between Network Measures and Cognitive Scores

The correlation between damaged brain regions and positive symptom scores and be-
tween damaged brain regions and negative symptom scores of patients with schizophrenia
was explored (Figure 10). The results showed that, for the EMD index, the right posterior
cingulate gyrus (PCG.R) (r = 0.333, p = 0.018) was significantly correlated with SANS, and
the right thalamus (THA.R) (r = 0.317, p = 0.025) was significantly correlated with SAPS.
For the MCC index, the left thalamus (THA.L) (r = 0.282, p = 0.047) and THA.R (r = 0.357,
p = 0.011) were significantly correlated with SANS, and the PCG.R (r = 0.321, p = 0.023) was
significantly correlated with SAPS.

Figure 10. Graph (a) shows the correlation between the entropy of the multiplex degree of the right
posterior cingulate gyrus (PCG.R) and the SANS. Graph (b) depicts the correlation between the entropy
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of the multiplex degree of the right thalamus (THA.R) and the SAPS. Graph (c) represents the
correlation between the multilayer clustering coefficient of the left thalamus (THA.L) and the SANS.
Graph (d) displays the correlation between the multilayer clustering coefficient of the THA.R and the
SANS. Graph (e) demonstrates the correlation between the multilayer clustering coefficient of the
PCG.R and the SAPS.

4. Discussion

In this study, we explored the dynamic topology characteristics of a multilayer network
based on resting-state fMRI data. The mechanism of integration and separation of the
multilayer brain network in patients with schizophrenia was studied. The results showed
that both local and global information processing abilities were abnormally higher in the
multilayer frequency brain network of patients with schizophrenia than in the control
group and that there was a significant correlation between the impaired nodes and the
cognitive scores of the patients.

4.1. High Integration and Segregation in the Multilayer Network of Patients with Schizophrenia

This study shows an increase in integration ability in the multilayer network of patients
with schizophrenia, indicating that the interlayer information interaction ability had an
increasing trend. One reason for this may be that the brain activity of patients is unstable.
The results of a study on brain network reconstruction in patients with schizophrenia
during n-back tasks showed that patients had the highest overall brain flexibility during
working memory tasks, that the brain flexibility of their relatives was in the middle, and that
healthy controls had the lowest flexibility [37]. In addition, a study based on resting-state
fMRI data has consistently shown that the brains of patients are indeed significantly more
flexible than those of healthy people [38]. This may represent a compensatory measure of
brain dynamics, with frequent interactions between different systems even at rest.

Similarly, the segregation degree in the multilayer network of schizophrenia also
showed an increasing trend, indicating that the local information processing ability across
the frequency band was enhanced. In addition, this study also found that the local
information-processing ability of the slow3 frequency band and full-frequency band were
impaired. One possible explanation for our results is that cross-layer communication
may have served as a compensatory mechanism in maintaining basic cognitive processes.
For example, we found that intra-frequency Cp of pallidum (Pallidum.R) decreased for
full-frequency single network and that cross-frequency EMD increased.

4.2. Aberrant RSNs in Patients with Schizophrenia

The results showed that the EMD of the DMN, sensorimotor network, and visual
network in patients with schizophrenia is significantly higher than that of normal people. It
indicates that these RSNs contribute the most to the enhancement of the global information
processing ability. The functional network differences in the brains of patients have been
reported in previous studies [39,40]. The distribution of connections within and between
functional modules in patients changed, indicating the existence of unbalanced mechanisms
of functional separation and integration.

The study found that the connection between functional networks especially in the
DMN was reduced in patients with early schizophrenia [41]. It has also been reported as the
strongest contributor to the structural differences in communities [42]. Most importantly,
this dysfunction of functional connectivity in DMN is associated with positive symptoms
in clinical symptoms, including delusions and hallucinations [43]. Therefore, schizophrenia
is related to changes in the time frequency and spatial location of the DMN. A study based
on fMRI has detected abnormal functional connections in the sensorimotor network at
low frequencies (0.01–0.08 Hz) in schizophrenia, and the functional connections between
this region and the patient’s visual region also tend to be weakened [44]. These findings
highlight the impairment in information integration between the sensory and perceptual
systems of patients with schizophrenia and provide new neurological evidence for the
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hypothesis of perceptual and cognitive dysfunction in patients with schizophrenia. Taken
together, findings from previous studies and our results suggest that the brain networks of
patients with schizophrenia may be altered.

Among all brain regions, those with significant differences in the DMN include the left
dorsal superior frontal gyrus (SFGdor.L), right olfactory cortex (OLF.R), left medial orbital
superior frontal gyrus (ORBsupmed.L), right gyrus rectus (REC.R), and posterior cingulate
gyrus (PCG.L/R). Brain regions with significant differences in the sensorimotor network
included the left superior parietal gyrus (SPG.L) and Heschl gyrus (HES.L/R). Brain
regions with significant differences in the visual network include the cuneus (CUN.L/R),
left superior occipital gyrus (SOG.L), and left inferior occipital gyrus (IOG.L). In addition,
the PCG.R was associated with the SANS of the patients according to the EMD index. The
PCG.R was associated with the SAPS of the patients according to the MCC index.

Research has shown that the central executive network, dominated by the dorsolateral
prefrontal cortex and lateral posterior parietal cortex, is disrupted in schizophrenia and
that the loss of working memory in patients is at least partially attributable to specific
pathological changes in the neuronal circuits of the dorsolateral prefrontal cortex [45].
The posterior cingulate gyrus, the core node of the DMN, has also been reported to be
associated with schizophrenia [46]. The brain function of the orbitofrontal region mainly
includes the processes of scenario processing, motivation processing, expectation processing
and risk decision making. A previous study has also found abnormal brain blood flow
and brain function in the orbitofrontal lobe of patients with schizophrenia, suggesting
a possible correlation with negative symptoms in these patients [47]. In addition, the
detection results of brain networks in patients showed that the length of the shortest path
in the olfactory cortex, left middle occipital gyrus, and left superior occipital gyrus was
significantly higher than that in normal controls, indicating impaired global information
integration in these regions [48]. For these brain regions with significantly increased entropy
values, we found that the frontal lobe, temporal lobe, occipital lobe, and basal lobe were
predominant. Among them, the frontal, temporal, and occipital lobes have been shown
to have more dysfunctional central nodes and reduced overall efficiency in patients with
schizophrenia [49,50]. The frontal lobe, basal ganglia, and temporal lobes are thought to be
the sites responsible for schizophrenia pathology [51].

4.3. Active Subcortical Network in Patients with Schizophrenia

The patients’ subcortical network had significantly enhanced global and local information-
processing capacity in the multilayer network, indicating that the network made the greatest
contribution to the cross-layer compensation mechanism caused by the disorder of intralayer
information integration. The subcortical structure includes the basal ganglia and part of the
limbic system regions, which are associated with various cognitive processes, such as memory,
learning, attention, and emotion. Changes in this region may be related to clinical symptoms,
behavioral abnormalities, and developmental abnormalities in patients. Subcortical structures
have been shown to play an important role in higher-order cognitive functions such as attention,
learning, motor control, and working memory; moreover, patients with schizophrenia tend to be
deficient in these functions. Therefore, the study of subcortical structures is of great significance.
The subcortical network shows intergroup differences under the two indexes of the EMD and
MCC, and the brain regions mainly involved include the left and right hippocampus (HIP.L/R),
left and right parahippocampal gyrus (PHG. L/R), left and right amygdala (AMYG.L/R), left
and right putamen (PUT.L/R), left and right pallidum (PAL.L/R), left and right thalamus
(THA.L/R), and left temporal pole: middle temporal gyrus (TPOmid.L). In addition, the THA.R
was associated with the SAPS of the patients according to the EMD index. The THA.L/R was
associated with the SANS of the patients according to the MCC index.

A previous study conducted MRI scanning analysis on the brains of 2028 patients with
schizophrenia and found that the brain volume of the subcortical network of the patients
was significantly different from that of people with normal brain function, mainly evident
in the small volumes of the hippocampus, amygdala, thalamus, and intracranial and in the
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large volumes of the putamen, pallidum, and lateral ventricle of the patients [52]. Studies
of adolescents with subclinical psychotic experiences also yielded consistent results for
subcortical structures, demonstrating abnormal volume and laterality in the hippocampus,
caudate nucleus, amygdala, and pallidum regions. This study suggests that there is already
abnormality in the pallidum volume in early adolescence, which may be a precursor to
psychosis [53].

4.4. Methodological Considerations and Limitations

Although multilayer networks can integrate the information from within and between
layers at the same time, methods for the allocation of the weight of interlayer connections are
not yet mature enough for this purpose. The physiological significance of the connections
between different functional layers is less clear. In this study, the coupling of the same brain
region between different layers was only analyzed, and the more complex cross-frequency
coupling was not explored; this exploration will be a key research direction in the future.

The results of this study are based on a small data sample, which may lead to the
lack of universality of the results. This method will be applied to larger data sets in future
work. Like most studies of brain functional networks based on resting-state fMRI, the
effects of physiological noise cannot be eliminated. Although we performed realignment
in the data preprocessing procedure, it is still possible that some results may have been
affected by motion artifacts. Due to the limitation of data sources, we have no way to obtain
and eliminate physiological signals such as subjects’ respiration and heartbeat. Although
covariate regression was carried out in the data preprocessing stage, it may still have had
some influence.

5. Conclusions

This study constructs multilayer brain networks in patients with schizophrenia and
healthy subjects from the multifrequency dimension, and the mechanism of functional inte-
gration and separation in the multilayer network was researched. The results showed that
the trends of information interaction (integration mechanism) and cross-layer formation
of local triangles (separation mechanism) in the multilayer frequency brain network of
patients with schizophrenia were significantly enhanced compared with those of healthy
controls. This change is focused on the DMN, sensorimotor network, subcortical network,
and visual network. It is worth noting that the subcortical network is the most active
functional network in the multilayer network of patients with schizophrenia; this activity
is significantly higher in patients with schizophrenia than that of people with normal brain
function according to the two indicators evaluated in this study. In addition, we found
typically damaged brain regions, such as the thalamus and posterior cingulate gyrus, which
were significantly associated with the clinical presentation of patients with schizophrenia.
These results may serve as a possible com mechanism for intralayer dysfunction and may
provide a new explanation for the neuropathologic mechanism in schizophrenia.
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