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Abstract: The internal representation of numbers on the mental number line (MNL) was demon-
strated by performing the computerized version of the number-to-position (CNP) task on a touch-
screen while restricting response time. We found that the estimation pattern is best fit by a sigmoid
function, further denoted as the “sigmoidal model”. Two developmental leaps occurring during
elementary school were recognized: (1) the division of the number line into two segments and (2) con-
sistent use of different anchor points on the number line—the left endpoint in first grade, the right
endpoint in second grade, and finally the midpoint in third grade. Additionally, when examining the
differences between the breakpoints, we found that first graders demonstrated a breakpoint close to
6, which linearly decreased over the years until stabilizing close to 5. The relation between the ability
to place individual numbers on a number line and performance of mental arithmetic showed that the
consistent use of anchor points correlated significantly with faster responses in mental arithmetic.

Keywords: child development; mental number line; arithmetic abilities; anchor points

1. Introduction

Many studies investigating mental number representation assume that numbers and
quantities are spatially organized along a mental number line (MNL; e.g., [1–3]). However,
the exact developmental process of the MNL is still under debate. In their pioneering
work, Siegler and Opfer [4] attempted to understand this developmental process by using a
number-to-position (NP) task with participants of different ages. In this task, in each trial, a
number was presented, and the participant was asked to mark the corresponding position
on a bounded number line (on paper/screen), which was labeled with numbers only at
its endpoints. They found that accuracy of the number position changed with numerical
range and participant age.

For example, it was shown that second-grade children unevenly placed numbers on
a 0–1000 number line as their placement pattern was best fit by a logarithmic rather than
by a linear function. The same age group placed numbers more linearly (i.e., resulting in
a constant distance between consecutive numbers) on a 0–100 number line. In contrast,
adults produced a linear distribution when placing numbers on a 0–1000 number line [4].
This developmental change is known as the logarithmic-to-linear representational shift,
and it was replicated in a number of subsequent studies [5–8].

Despite such robust evidence for the logarithmic-to-linear representational shift, there
are studies that characterized the pattern of estimated number positions on a number line
in a different way. Ebersbach et al. [9] found that children divided the number line into
two segments and proposed a “segmented model” when examining number placement
on a 1–100 number line. In particular, they argued that children divide the number line
into two segments of varying range, depending on the child’s age and familiarity with the
numbers, with each segment best described by a distinct linear function.

Moreover, the slope of the first linear function fitting the numbers in the more familiar
range is always steeper compared to the slope of the second linear function fitting the
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numbers in the less familiar range as demonstrated in Figure 1. According to Ebersbach
et al. [9], the two ranges are separated by the change points whose values vary between
different age groups. Namely, they reported that the change point of kindergartens was 20,
first graders was 25.04, and second graders was 37.53.
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Figure 1. A representative schematic of a curve fitting the two-linear model of Ebersbach et al. [9]
with a flexible change point equal to 20. The values of xε(0, 20) correspond to the range of more
familiar numbers and are fit by the line of the steeper slope while the values of xε(21, 100) correspond
to the range of less familiar numbers and are fit by the line of the less steep slope.

Alternative ways for looking at the pattern of estimated number positions on a number
line can be found in the studies of Moeller et al. [10] and Barth and Paladino [11]. The first
group examined first graders’ estimation abilities on a 0–100 number line and showed that
the participants tended to divide the number line by a breakpoint close to 10. The second
group of researchers appealed to the proportion judgment model [12,13], which posits that
participants estimate the magnitude of a part relative to the whole. According to this model
derived from Stevens’ power Law [14–16], the relationship between the estimated magnitude
of a stimulus and its actual magnitude is determined by a power function, y = axβ.

As the number line in a typical NP task is bounded, the estimated position of each
number relates to the entire range of the numbers. In other words, it is assumed that
participants use the numbers on the edges as anchor points, which helps them to determine
the proper position of each number on the given number line. As a result, the estimated
number positions fit an s-shaped or an inverse s-shaped curve—both constituting a one-
cycle model, as shown in Figure 2A. The one-cycle model can be further extended to
a two-cycle model once participants begin to use the midpoint of the number line as an
additional anchor point. In this case, the resulting pattern of the estimated number positions
would look like a concatenation of two s-shaped curves: one between the left edge and the
midpoint and another between the midpoint and the right edge (see a two-cycle model
shown in Figure 2B).
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Figure 2. A representative schematic of curves fitting the estimated number position according to the
proportion judgment model [12,13]. The shape of the curve depends on the value of β. (A) The curve
fits the estimated number position when using numbers on the edges as anchors. (B) The curve fits
the estimated number position when using the midpoint as an additional anchor point.

Studies investigating developmental differences according to the proportion judgment
model within the 0–100 number range [11,17–20] showed that children tend to overestimate
number positions between the left edge (0) and the midpoint (50) and underestimate
the number positions between the midpoint (50) and the right edge (100). In addition,
studies have shown that the use of the midpoint as an anchor point is established at the
beginning of third grade, thus yielding a more accurate number position within the given
range [19,21,22].

Based on the above findings, it appears that both the two-linear and the proportion
judgment models divide the number line into smaller segments, which helps participants
place a given number more accurately. This number line division has also been documented
in the literature by showing that children and adults subjectively divided the number line
into “landmarks” in an attempt to place numbers more accurately along the number
line [4,23].

However, the drawback of all the above studies was that they used the same model to fit
the placement of both one-digit and two-digit numbers within various number ranges (e.g.,
0–20 or 0–100) while ignoring the differences between unit-decade encoding processes inherent
in one-digit and two-digit numbers, as stressed in several studies [10,24,25]. As follows from
the above literature survey, the determination of fundamental mechanisms governing the
developmental process of the MNL is still the focus of active academic research.

Despite a general agreement regarding the important role of anchor points in assisting
children to determine the correct position of a specific number on the number line, the final
word in relating the number and position of anchor points to a given range of numbers
and to a child’s age has still not been decided. Surprisingly, no systematic studies have
been conducted to investigate the developmental process of the MNL with respect to
the placement of solely one-digit numbers. This fact can apparently be explained by an
assumption of excessive simplicity for children of all ages when performing the NP task
with one-digit numbers.

However, performing the NP task with single-digit numbers has two noticeable
advantages: first, it minimizes uncertainties related to distinct mechanisms responsible
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for processing multi-digit numbers and second, first through six graders are all familiar
with this range of numbers, which means that changes observed in the NP task between
children can be strictly related to their maturity processes rather than just to exposure to
the specific range of numbers. For both reasons, the NP task performed using a one-digit
range of numbers can also constitute an excellent platform for its further correlation with
arithmetic achievements of children of all ages.

In fact, because the ability to place numbers on the number line is based on spatial
numerical association (SNA) and numerical cardinalities [26,27], researchers have found a
significant correlation between performance in number-line estimation tasks and arithmetic
achievements [18,28–37]. All the above-mentioned studies examining the relationship
between performance in the number line task and mathematical competence have shown
evidence of a correlation between a child’s percentage of absolute accuracy on the number
line estimation task and different arithmetic tasks.

However, a limitation of these studies is that they examined performance only in terms
of the mean estimation of all numbers, ignoring the differences between the placements
of the individual numbers. As such, there is no last word on critical factors correlating
between performance in number-line estimation tasks and arithmetic achievements.

The objectives of our study were twofold. First, we focused on the representation of
numbers within the 0–10 number range and proposed a new approach that encompassed
properties inherent to both the two-linear and the proportion judgment models. A key idea
was that in the process of estimation of placing numbers on the 0–10 number line, children
would divide the number line into two segments, and the developmental differences
between the groups would be characterized by the flexible breakpoint.

In this context, we hypothesized that the sigmoidal function, incorporating the fea-
tures of both the two-linear and the proportion judgment models and taking into account
the existence of flexible breakpoint (see Figure 3), would best characterize the number
representation on the number line. Second, we examined the correlation between the ability
to place individual numbers on a physical number line (focusing on the breakpoint and the
numbers on the edges that serve as anchor points) and the performance of mental arithmetic
using the arithmetic facts (AF) task (a true/false verification model) with numbers up to 10.
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Both objectives were achieved by performing three experiments, including comput-
erized and “classic” paper and pencil number-to-position (NP) tasks as well as the AF
task, including a discrepancy/split factor constituting the difference between “close” and
“distant” wrong answers [38] based on an estimation strategy [39,40]. Based on the idea
that an estimation strategy is dominant both in the NP and the AF tasks, we hypothesized
that we would find a correlation between estimation accuracy in each of the NP tasks and
RT in the AF task.

2. Experiment 1
2.1. Method
2.1.1. Participants

A total of 181 right-handed (to avoid any motor differences in the digital task
that included finger trajectories, we involved only right-handed children in our study)
children from first through sixth grades were recruited for this study from elementary
schools within the neighborhood surrounding the university campus (see Table 1 for the
participant demographics).

Table 1. Group, sample size, mean age, and gender distribution.

Group N The Mean Age in Years (SD) Males Females

1st grade 28 6.9 (0.4) 16 12
2nd grade 27 7.8 (0.3) 15 12
3rd grade 31 8.9 (0.5) 14 17
4th grade 29 9.8 (0.3) 12 17
5th grade 31 11.0 (0.3) 10 21
6th grade 35 11.9 (0.4) 21 14

The procedure was approved by the Israeli Ministry of Education. For all child partici-
pants, written informed parental consent was obtained. The children were predominantly
from middle to upper class families.

2.1.2. Materials and Procedure

The participants met one-on-one with the experimenter and performed the com-
puterized NP (CNP) task in a quiet room. Each participant was presented with a
touchscreen displaying a bounded number line that remained at the top part of the
screen throughout the experiment. The line had marked numbers only at the endpoints
(0 and 10). To start a trial, the participant touched the starting point (a gray rectangle
at the middle bottom of the screen), which caused a fixation cross to appear above
the middle of the number line. The participant then moved his/her finger across the
screen toward the number line.

The fixation cross was replaced by the target number when the finger reached 10 px
above the starting point, and the participant continued moving toward the estimated
corresponding position on the 0–10 number line. A feedback arrow showed the point
where the participant estimated the position of the presented target number (see Figure 4).
Each number between 0 and 10 randomly appeared five times as a target number above
the number line.

The trial was considered invalid if the finger moved backward, was lifted from
the screen in midtrial, or moved too slowly (more than 2500 ms from appearance of
the target number until the finger reached the number line) or too quickly (less than
800 ms to cross 30% of the vertical distance). Invalid trials were not analyzed, and the
target number appeared later again in the experiment. No feedback was given except
for general encouragement. The experimenter said, “Here on the touchscreen you see a
number line with two numbers on its ends, 0 and 10. You are asked to touch the gray
square, then the number will be presented above the middle of the number line, without
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lifting your finger from the screen, you need to drag your finger to the place you think
the number should be”.
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Figure 4. A schematic example of the task with a participant’s finger movement.

The CNP task was preceded by two training tasks:

• A task aimed to ensure a minimum level of motor control for the participants. The
task was administered like the CNP task, except that each stimulus was not a number
but a downward-pointing arrow whose tip touched a random position on the number
line. The participants dragged their finger to the location of the arrow. There were
20 trials; no feedback was received.

• Ten training trials in the CNP task were presented to ensure that the participant clearly
understood the task. The data set of these trials was not included in the analysis.

The internal reliability of these conditions was estimated by using the Spearman–
Brown corrected split-half correlations [41], separating all endpoint scores of each target
number into two sets of trials: the odd and the even trials. Then, we calculated the
asymmetry score for each set and the Pearson product moment correlation between the
two resulting sets of asymmetry scores; the correlation was r = 0.95.

2.2. Results
2.2.1. The Estimated Position Pattern Analysis

It is noteworthy that all participants successfully completed the above training parts
of the task. The accuracy in the arrow task was very high; therefore, we did not include
this part in the results section.

First, we examined the mean estimated position of each target number. As the end-
points (0, 10) were presented on the screen, the analysis included only data of the target
numbers 1–9 for each grade (see Figure 5).
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Figure 5. The mean estimated position of each target number for each grade. The dashed black line
indicates the correct position of each target number (x = y).

To characterize the pattern for the estimated positions on the number line, for each
participant, we computed the R2 values of the curve that fit the estimations according
to the proportion judgment model and the sigmoidal model. To calculate the sigmoidal
function that fit the estimated positions, we used the Levenberg–Marquardt algorithm:
y = Bottom + (Top−Bottom)[

1+exp (breakpoint−estimated position)
slope

] . The breakpoint (discrete values from 1 to 9)

of the sigmoidal function corresponding to each participant was computed using a least
square fit, based on maximal individual R2 values (see Table 2).

Table 2. Statistics of the various models by age group in Experiment 1.

Age Group Model R2
Model

Comparison
Repeated Contrasts

AIC
F df p η2

p

1st grade
2L 0.85 2L vs. P 12.13 **

1, 27
<0.001 0.31 25%

P 0.7 2L vs. S 2.97 =0.09 0.10 7%
S 0.88 68%

2nd grade
2L 0.93 2L vs. P 4.11 *

1, 26
=0.053 0.14 11%

P 0.89 2L vs. S 20.24 ** <0.001 0.44 4%
S 0.96 85%

3rd grade
2L 0.92 2L vs. P 1.46

1, 30
=0.24 0.05 –

P 0.94 P vs. S 15.13 ** <0.001 0.34 6%
S 0.98 94%

4th grade
2L 0.95 2L vs. P 0.11

1, 28
=0.74 0.00 7%

P 0.95 P vs. S 23.31 ** <0.001 0.45 7%
S 0.97 86%

5th grade
2L 0.95 2L vs. P 0.43

1, 30
=0.52 0.01 13%

P 0.98 P vs. S 13.49 ** <0.001 0.31 3%
S 0.99 84%

6th grade
2L 0.97 2L vs. P 0.001

1, 34
=0.97 0.00 9%

P 0.97 P vs. S 8.85 * <0.01 0.21 14%
S 0.99 77%

2L—Two-Linear, P—Proportion, S—Sigmoidal. * p < 0.05 and ** p < 0.01.

As shown in Table 2, there were no significant differences between the two-linear
model fit and the sigmoidal model fit in first graders; at this age, it appears that the two-
linear model was the best fit followed by the proportion judgment model. However, the
sigmoidal model best fit the pattern of the estimated number position for all other grades.
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A general consensus is that models with more free parameters typically fit curves
better than models with less free parameters. In the current study, the proportional model
used one free parameter, the sigmoidal model used two free parameters, and the bilinear
model used three free parameters. For a fair comparison between models, the fitting
adequacy must be corrected to the number of free parameters [42]. To adjust for this,
the Akaike Information Criterion (AIC; [42]), which determines the relative information
value of the model using the maximum likelihood estimate and the number of parameters
(independent variables) in the model, was used in the current study.

The formula for AIC is: AIC = 2k− 2ln(L̂), where k is the number of independent
variables used and L̂ is the log-likelihood estimate. The AIC has been successfully used for
number line estimation tasks (e.g., [43,44]). To identify the model that fit most participants,
we assessed the AIC of each model for each participant and then averaged the obtained
results over all the participants. The averaged AIC results with respect to the participants’
grade are summarized in the last column of Table 2. It can be clearly seen that, on average,
the sigmoidal model constituted the best fit for the data acquired in all age groups compared
to other models.

To examine the breakpoint differences between grades, we conducted a one-way
ANOVA (analysis of variance) with the breakpoint as the dependent factor and grade as
the independent factor with six levels (first through sixth grades). The results revealed
significant differences between grades, F(5, 175) = 21.59, p < 0.001, η2

p = 0.38; the mean
breakpoint of first grade was 6, which linearly decreased from second to sixth grade (5.6,
5.34, 5.28, 5.15, and 5.16, respectively), F(1, 148) = 94.37, p < 0.001, η2

p = 0.35.
The correlation analysis between the breakpoint and the overall accuracy in the CNP

task indicated significant negative regression, R2 = −0.71, t(1, 179) = 33.94, p < 0.001. For
the trend analysis of breakpoint differences between grades, Levene’s homogeneity test
was performed on the data. A significance of p < 0.05 demonstrated that variances were
not homogenous; thus, because the data had unequal variances, a Games–Howell multiple
comparisons test was performed.

The results of the one-way ANOVA showed significant differences, F(5, 180) = 21.59,
p < 0.001, η2

p = 0.37. To sum up, the trend analysis of breakpoint differences between grades
indicated significant changes between first graders and older groups and between second
graders and older groups; no changes were observed between grades beginning with
third grade.

Next, we examined the bias of each target number as the deviation between the
estimated position of each target number and its correct position (see Figure 6). A negative
bias meant underestimation of number positions, and a positive bias meant overestimation
of number positions. A two-way mixed ANOVA, with bias as the dependent measure,
grade (1–6) as a between subjects factor and target number (1–9) as a within subjects factor,
revealed a significant main effect for target number, F(8, 1400) = 77.13, p < 0.0001, η2

p = 0.31,
grade, F(5, 175) = 16.48, p < 0.0001, η2

p = 0.32, and the interaction between target number
and grade, F(40, 1400) = 6.45, p < 0.0001, η2

p = 0.16.
Further analyses showed a significant difference between first and second grade,

F(1, 175) = 4.9, p < 0.05, η2
p = 0.02, and between second and third grade, F(1, 175) = 7.7,

p < 0.01, η2
p = 0.04. First graders underestimated the position of all numbers except the

number 1. Second and third graders underestimated the position of numbers 1–6, and
fourth through sixth graders underestimated the position of numbers 1–5.
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2.2.2. The Estimated Position Accuracy Analysis

The percentage of absolute error of estimation (PAE) of the estimated position of each
target was calculated based on the deviation from the correct target position as a percentage
of the number line length [4]: 1− |Estimated position − correct target location|

10 , see Figure 7.
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The PAE was low for all grades: 12% in first grade, 10% in second grade, 8% in third
grade, 7% in fourth grade, and 5% in fifth and sixth grades. To test the effect of grade,
we conducted a two-way mixed ANOVA, with PAE as the dependent measure and with
grade (1–6) as a between subjects factor and target number (1–9) as a within subjects factor.
Consistent with the previous analyses, there was a significant main effect for target number,
F(8, 1400) = 39.2, p < 0.0001, η2

p = 0.18, grade, F(5, 175) = 19.7, p < 0.0001, η2
p = 0.36, and

the interaction between target number and grade, F(40, 1400) = 5.6, p < 0.0001, η2
p = 0.14.

Further analyses showed there were two significant accuracy leaps.
One leap occurred between first grade and second grade, F(1, 175) = 6.68, p < 0.05,

η2
p = 0.01, stemming mostly from the accuracy differences for the target number 5,

F(1, 175) = 54.42, p < 0.001, η2
p = 0.23, and a weaker accuracy difference for target numbers

2, 3, and 6, F(1, 175) = 7.9, p < 0.01, η2
p = 0.04; F(1, 175) = 4.45, p < 0.05, η2

p = 0.02; and



Brain Sci. 2022, 12, 335 10 of 22

F(1, 175) = 11.71, p < 0.001, η2
p = 0.06, respectively. A second leap occurred between

second and third grades, F(1, 175) = 6.69, p < 0.05, η2
p = 0.01, and stemmed from accuracy

differences for target number 4, F(1, 175) = 4.4, p < 0.05, η2
p = 0.02, target number 5,

F(1, 175) = 6.9, p < 0.001, η2
p = 0.04, and target number 6, F(1, 175) = 3.98, p < 0.05,

η2
p = 0.02. No significant differences were found between other consecutive pairs of

grades from third through sixth grades.
The following analyses examined whether the endpoints (0, 10) of the number line

and midpoint (5) served as anchor points, helping children better estimate where to place
numbers that are close to these anchors (see Figure 7). A quadratic contrast (including the
numbers 1–9) and a double-quadratic contrast (one between numbers 1 and 5, the other
between numbers 5 and 9) were conducted for each grade. The results revealed a significant
quadratic contrast, confirming that first graders tended to better estimate number positions
close to the endpoints than other numbers on the number line, F(1, 27) = 26.88, p < 0.001,
η2

p = 0.5.
Moreover, the double-quadratic contrast showed that the second through sixth graders

tended to significantly better estimate number positions close to the endpoints and the
midpoint: second grade, F(1, 26) = 30.59, p < 0.001, η2

p = 0.54; third grade, F(1, 30) = 55.18,
p < 0.001, η2

p = 0.65; fourth grade F(1, 28) = 31.55, p < 0.001, η2
p = 0.53; fifth grade,

F(1, 30) = 98.91, p < 0.001, η2
p = 0.77; and sixth grade, F(1, 34) = 55.63, p < 0.001, η2

p = 0.62.

2.3. Discussion

In order to demonstrate the internal representation of numbers on the MNL, we used
the computerized version of the number-to-position (CNP) task, which restricts response
time and is performed on a touchscreen. We found that the estimation pattern was best
fit by the sigmoidal function, which we termed the “sigmoidal model.” This model has
the advantage of combining both the proportion judgment model [11] and the two-linear
model with a flexible breakpoint [9].

Similar to the proportion-estimation model, the sigmoidal model elucidated the use of
anchor points during the estimation process. As in the two-linear model, it demonstrated
that participants tended to divide the number line by using different breakpoints. We found
that two developmental leaps occurred during elementary school. Both developmental
leaps were expressed in the division of the number line into two segments and consistent
use of different anchor points on the number line: the left endpoint in first grade, the right
endpoint in second grade, and the midpoint in third grade.

The next experiment included children from second and third grades, who (according
to the first experiment) showed a stable understanding of numbers (0–10) but still showed
significant developmental differences in their ability to place numbers on the number line.
The developmental differences between those two groups was expressed by the acquisition
of a midpoint as the additional anchor point that helped them more accurately estimate
the position of all target numbers on the number line. The aim of this experiment was to
validate the finding of the CNP task using the “classic” paper and pencil number line task,
similar to the one originally used by Sigler and Opfer [4].

3. Experiment 2
3.1. Method
3.1.1. Participants

The children in this experiment were recruited from schools that did not participate in
the first experiment, but they were from the same socioeconomic class (middle to upper
middle class) as the children in Experiment 1. This experiment included a total of 67 right-
handed children from second to third grades (31 second graders and 36 third graders).
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3.1.2. Materials and Procedure

The number lines were printed on white A4 paper and were the same length as the
number line in the digital task. The ends of the number line were marked (0 and 10), and
the numbers were presented above the middle of each number line (similarly to the digital
task). The target numbers were presented in the following order: 1, 9, 3, 8, 4, 6, 2, 7, and 5.
The participant was asked to put a mark on the printed number line corresponding to the
presented target number.

3.2. Results

We first analyzed the accuracy of the printed NP task (two third graders did not
complete the task). An ANOVA with two factors, grade (second, third) × target number
(1–9), revealed that the accuracy in second grade was lower (84.8%) than in third grade
(87.4%), F(1, 65) = 4.4, p < 0.05, η2

p = 0.06. The interaction between grade and accuracy of
each target number was significant, F(8, 520) = 3.12, p < 0.05, η2

p = 0.04. Planned comparisons
examining the grade effect of each target showed there was a significant difference between
grades for target numbers 5: F(1, 65) = 7.6, p < 0.05, η2

p = 0.01.
We then analyzed the under- and overestimation of numbers by examining the devia-

tion between the estimated position of each target number and its correct position for each
grade (see Figure 8).
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Next, we analyzed the differences in the breakpoint between grades (5.86 and 5.54 for
second and third grades, respectively). A one-way ANOVA revealed significant differences
between grades, F(1, 65) = 7.13, p < 0.05, η2

p = 0.09.

3.3. Discussion

The second experiment included the “classic” paper and pencil NP task. The results
confirmed the trend observed in the digital task indicating that the differences between
the second and third graders were mainly related to the internalization of the midpoint
(number 5) as an additional anchor point, facilitating more accurate estimation of the
surrounding numbers.

The third experiment we performed examined the correlation between the ability to
place each number on the 0–10 number line and the performance of mental arithmetic.
Again, the experiment included second and third graders, who on the one hand, demon-
strated a solid sense of meaning in the MNL task (consistent with the findings of the first
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and second experiments), but on the other hand, still differed significantly in their ability
to accurately place the midpoint (number 5) on the number line.

4. Experiment 3
4.1. Method
4.1.1. Participants

A total of 111 right-handed children from the second and third grades were recruited
for this study. The second-grade sample consisted of 50 participants (M age = 7.46 years,
SD = 0.3; 27 females). The third-grade sample consisted of 61 participants (M age = 8.45 years,
SD = 0.29; 28 females).

The procedure was approved by the Ministry of Education. Participants were recruited
from a local elementary school. The children were predominantly from middle to upper
middle class families. Written informed parental consent was obtained for all participants.

4.1.2. Materials and Procedure

All the participants met one-on-one with the experimenter, and the experiments were
performed during the school day in a quiet room, in two different sessions. The first session
included the same CNP task as that of the first experiment.

The second session included the AF task. In the AF task, the true/false verification
task model was used. The task was conducted on a laptop computer with a 17-inch screen,
which was viewed from approximately 50 cm. E-Prime software controlled the presentation
of stimuli. The experiment started with 10 equation-training trials (that were not analyzed
and for which feedback was given). This was followed by 64 one-digit addition and
subtraction equations; 32 equations were correct, and 32 equations were incorrect, with four
different deviation levels (i.e., ±1, ±3, ±5, and ±7; termed “split”) from the correct value.

Each trial began with a fixation sign (500 ms), then a black screen (300 ms), and finished
with the stimulus, which was presented at the center of the screen and remained visible
until the participant responded. The trial finished with another black screen for 1000 ms.
Every seven trials, the participants were given a break until they were ready to continue
the task (see Figure 9). The “M” and “X” keys of a standard QWERTY keyboard served
for correct and incorrect key responses, respectively. The participants were instructed to
answer as accurately and as quickly as possible. Split-half reliability was calculated using
the Spearman–Brown coefficient [41] and was found to be adequate: r = 0.74.
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First, the analysis of the CNP task will be presented, followed by the analysis of the
AF task. Finally, the correlation analysis between these tasks will be described.
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4.2. Results
4.2.1. Analysis of the CNP Task

Similar to the first experiment, the analysis only included data acquired for the num-
bers 1–9. First, the differences in the accuracy of each target number estimation between
second and third graders were calculated. The PAE of second graders was 14% and for
the third graders was 11%. To test whether this difference was meaningful, we conducted
a one-way ANOVA, with PAE as the dependent measure and with grade (second and
third) as a between-subject factor and target number (1–9) as a within-subject factor. This
analysis revealed a significant main effect of grade, F(1, 109) = 19.41, p < 0.0001 η2

p = 0.15;
target number, F(8, 872) = 49.67, p < 0.0001 η2

p = 0.31; and the interaction grade × number,
F(8, 872) = 6.60, p < 0.0001 η2

p = 0.06 (see Figure 10).
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Next, to characterize the distribution patterns of number estimations on the number
line, we computed (for each participant) the R2 values of the fit for each possible model (the
two-linear model, the proportion-estimation model, and the sigmoidal model). We relied
on the following sigmoidal equation according to the Levenberg–Marquardt algorithm:
y = Bottom + (Top−Bottom)[

1+exp (breakpoint−estimated position)
slope

] .

General linear analysis showed that, in both grades, the sigmoidal model with a
flexible breakpoint fit the estimation patterns better than the two-linear model and the
proportion-estimation model, (see Table 3).

Table 3. Statistics of the various models by age group in Experiment 3.

Age Group Model R2
Model

Comparison
Repeated Contrasts

F df p η2

2nd grade 2L 0.883 2L vs. P 38.58
1, 49

<0.001 0.44
P 0.767 2L vs. S 63.07 <0.001 0.56
S 0.927

3rd grade 2L 0.936 2L vs. P 7.89
1, 60

<0.001 0.31
P 0.888 2L vs. S 18.8 <0.001 0.66
S 0.998

2L—Two-Linear, P—Proportion, S—Sigmoidal.

We then examined the breakpoint differences between grades. The results showed that
the mean breakpoint of second graders was 5.88, and for third graders it was 5.54. The t-test
of independent variables between groups showed significant differences, t(1, 109) = 3.4,
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p < 0.001, η2
p = 0.03. Next, we examined the accuracy of the numbers that were used as

anchor points (1, 9, and 5). There were no significant differences in the estimation accuracy
of number 1: 93.8% and 94.3%, for second and third graders, respectively, t(1, 109) = 0.69,
p = 0.48, η2

p = 0.006.
However, we found significant differences between grades in the estimation accuracy

of 9 and 5. We found that third graders (vs. second graders) were more accurate in
estimating the position of number 5: 82% versus 90%, respectively, t(1, 109) = 4.47, p < 0.001,
η2

p = 0.04. Third graders (vs. second graders) were also more accurate in estimating the
position of number 9: 91% versus 94%, respectively, t(1, 109) = 2.2, p < 0.05, η2

p = 0.02.
These results confirm our hypothesis that younger children use only the left endpoint as
an anchor while elder children use additional anchors, namely, the right endpoint and
the midpoint.

As shown in Figure 11, the second graders tended to underestimate all numbers in
contrast to the third graders, who underestimated small numbers and overestimated large
numbers. This observation was confirmed by analyzing the estimation bias from the correct
position (correct position − estimated position). We conducted a one-way ANOVA with
bias as the dependent measure and with grade (second and third) as a between-subject
factor and target number (1–9) as a within-subject factor. This analysis revealed a significant
main effect of grade, F(1, 109) = 8.47, p < 0.0005, η2

p = 0.07; target number, F(8, 872) = 54.1,
p < 0.0001, η2

p = 0.33; and the interaction grade × number, F(8, 872) = 3.71, p < 0.0001,
η2

p = 0.03.
Brain Sci. 2022, 12, x FOR PEER REVIEW 15 of 23 
 

 
Figure 11. The mean bias value: the deviation between the estimated position of each target number 
and its correct position for each grade. 

We then examined whether the children in each group had more success in placing 
the numbers closer to the number line ends (1, 9) compared to other number positions (2 
and 3 as well as 7 and 8). A quadratic contrast (including the numbers 1–9) conducted for 
each grade revealed that children in both groups more accurately placed numbers close 
to the endpoints than other number positions on the number line: in second grade, F(1, 49) 
= 92.12, p < 0.001, 𝜂  = 0.65, and in third grade, F(1, 60) = 58.77, p < 0.001, 𝜂  = 0.50. Ad-
ditional analysis showed significant differences between grades, F(1, 109) = 6.1, p < 0.05, 𝜂  = 0.05. 

4.2.2. Analysis of the AF Task 
First, general accuracy for identifying the correct equations for each grade was high, 

93% in second grade and 95% in third grade, and the difference between the grades was 
insignificant, F(1, 109) = 2.4, p = 0.12, 𝜂  = 0.002. However, the main effect for the split 
factor (split 0 refers to correct equations; the other splits of 1, 3, 5, and 7 refer to equations 
with an incorrect value that was larger or smaller than the correct one) was significant, 
F(1, 436) = 8.65, p < 0.0001, 𝜂  = 0.07. The interaction split × grade was insignificant, F(4, 
436) = 0.2, p = 0.93, 𝜂  = 0.001. 

Next, we calculated the difference in RT that was required for the identification of 
correctness/incorrectness at each split condition (see Figure 12). The two-factor between-
group ANOVA of grade (second and third) × split (0, 1, 3, 5, and 7) revealed a significant 
difference between grades, F(1, 109) = 9.36 p < 0.005, 𝜂  = 0.08, and between splits, F(4, 
436) = 14.12, p < 0.0001, 𝜂  = 0.11. The interaction split × grade was insignificant, F(4, 436) 
= 1.6, p = 0.16, 𝜂  = 0.01  

Figure 11. The mean bias value: the deviation between the estimated position of each target number
and its correct position for each grade.

We then examined whether the children in each group had more success in placing
the numbers closer to the number line ends (1, 9) compared to other number positions (2
and 3 as well as 7 and 8). A quadratic contrast (including the numbers 1–9) conducted
for each grade revealed that children in both groups more accurately placed numbers
close to the endpoints than other number positions on the number line: in second grade,
F(1, 49) = 92.12, p < 0.001, η2

p = 0.65, and in third grade, F(1, 60) = 58.77, p < 0.001, η2
p = 0.50.

Additional analysis showed significant differences between grades, F(1, 109) = 6.1, p < 0.05,
η2

p = 0.05.

4.2.2. Analysis of the AF Task

First, general accuracy for identifying the correct equations for each grade was high,
93% in second grade and 95% in third grade, and the difference between the grades was
insignificant, F(1, 109) = 2.4, p = 0.12, η2

p = 0.002. However, the main effect for the split
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factor (split 0 refers to correct equations; the other splits of 1, 3, 5, and 7 refer to equations
with an incorrect value that was larger or smaller than the correct one) was significant,
F(1, 436) = 8.65, p < 0.0001, η2

p = 0.07. The interaction split × grade was insignificant,
F(4, 436) = 0.2, p = 0.93, η2

p = 0.001.
Next, we calculated the difference in RT that was required for the identification of cor-

rectness/incorrectness at each split condition (see Figure 12). The two-factor between-group
ANOVA of grade (second and third)× split (0, 1, 3, 5, and 7) revealed a significant difference
between grades, F(1, 109) = 9.36 p < 0.005, η2

p = 0.08, and between splits, F(4, 436) = 14.12,
p < 0.0001, η2

p = 0.11. The interaction split× grade was insignificant, F(4, 436) = 1.6, p = 0.16,
η2

p = 0.01.
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To confirm our hypothesis according to which children with more mature representa-
tion of the number line are expected to quickly identify the correctness of each equation,
we performed a correlation analysis. In addition, it was important to figure out whether
the obtained correlation was reflected by the use of anchor points.

4.2.3. Correlation Analysis

Regression analysis between the overall RTs of the AF task and the percentage of
overall accuracy of the CNP showed significant regression in second grade, F(1, 49) = 4.8,
p < 0.05, R2 = 0.09, and in third grade, F(1, 59) = 4.09, p < 0.05, R2 = 0.06.

We next calculated each child’s correlation between their mean accuracy for each
number in the CNP task and their mean RT for each split (0, 1, 3, 5, and 7) in the AF task.
For the second graders, individual differences in the RT of the AF task were found to
be related to the estimation accuracy of numbers 1 and 8 on the number line, as seen in
Table 4. The negative correlations indicate that children who more accurately determined
the location of numbers 1 and 8 on the number line were faster at recognizing the correctness
of the arithmetic equations.

For the third graders, the individual differences in the RT of the AF task were found to
be only related to the estimation accuracy of the number 5 on the number line (see Table 4).
In other words, children who more accurately placed 5 on the number line were faster
at recognizing the correctness of the arithmetic equations. Notice, however, that these
correlations were not different between grades, when testing the significance using Fisher
R-to-z transformations.
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Table 4. Correlation between CNP task accuracy and AF task RT in Experiment 3.

Each Number of the CNP Task

1 2 3 4 5 6 7 8 9

2nd grade
Split 0 −0.326 ** −0.128 −0.022 −0.256 * −0.153 −0.004 −0.096 −0.440 ** −0.057
Split 1 -0.243 * −0.015 0.009 −0.080 −0.129 −0.057 −0.203 −0.387 ** −0.073
Split 3 −0.308 * −0.014 0.051 −0.132 −0.137 .023 −0.098 −0.272 * −0.112
Split 5 −0.380 ** 0.096 0.037 −0.248 * −0.232 −0.038 −0.042 −0.283 * −0.063
Split 7 −0.355 ** −0.078 −0.005 −0.225 −0.212 −0.053 −0.129 −0.274 * 0.093

3rd grade
Split 0 −0.133 −0.178 −0.144 −0.026 −0.326 ** −0.151 −0.103 −0.178 −0.072
Split 1 −0.072 −0.137 −0.130 −0.001 −0.279 * −0.191 −0.041 −0.192 −0.061
Split 3 0.010 −0.131 .040 −0.075 −0.288 * −0.184 0.041 0.046 −0.064
Split 5 −0.045 −0.188 −0.095 −0.053 −0.337 ** −0.217 * −0.050 −0.206 0.033
Split 7 −0.059 −0.131 −0.085 0.024 −0.249 * −0.135 −0.068 −0.205 0.039

* p < 0.05 and ** p < 0.01.

4.3. Discussion

In this experiment, we used two tasks: the computerized number-to-position (CNP)
task was used to reflect MNL representation; and the arithmetic facts (AF) task (with
numbers up to 10)—using the verification task model—was used to show the relationship
between MNL maturation and mental arithmetic performance. Both tasks had time restric-
tions, thus, revealing the intrinsic representations of numbers on the MNL on the one hand,
and the ability to retrieve arithmetic facts on the other.

Again, we found that the estimation pattern in the CNP task of both grades was best
fit by the sigmoidal function. The results showed that children tended to classify numbers
by their value (either small or large). Moreover, our findings indicated that second graders
used only the left endpoint (0) as an anchor and treated numbers 1–5 as “small numbers,”
yielding an underestimation pattern. In contrast, third graders used additional anchors:
the right endpoint (leading to overestimation of large (6–9) numbers) and the midpoint.

The AF task results showed differences between groups in the speed of the given
arithmetic equation. We found that third graders were generally faster in identifying
incorrect equations than second graders. These findings were anticipated because third
graders had more exposure to arithmetic. Both groups demonstrated the split effect.

Looking at the individual differences between the children of the same grade, we
found a relationship between the accuracy in the CNP task and the RTs of the AF task.
Second graders showed significant correlation between the accuracy of estimating numbers
1 and 8 in the CNP task and the speed of RT in verifying the accuracy of arithmetic equations
(Table 4). The correlations between the accurate estimation of numbers close to the left end
(number 1) and the high speed of responses in the AF task supports our hypothesis.

However, instead of the anticipated correlation with the number close to the right
endpoint (number 9), a correlation was found with the number 8. A possible explanation
for the above observation could be the fact that the second graders still used only the left
endpoint as an anchor, while the response speed in the AF tasks closely correlated with
their ability to place the number more accurately by basing their decision solely on the
left endpoint anchor. Most importantly, third graders showed a significant correlation
between their ability to accurately place the midpoint (number 5) in the CNP task and
faster performance in the AF task (see Table 4).

5. General Discussion

The main purpose of this study was to examine the developmental patterns of estimat-
ing number positions on a 0–10 number line in the first to sixth grades and to demonstrate
a correlation between MNL maturation and mental arithmetic performance. We chose to fo-
cus on the 0–10 number range in an attempt to avoid developmental differences that could
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stem from different encoding processes involved for multidigit numbers and for one-digit
numbers [10,24,25]. In the current study, we conducted experiments encompassing both
computerized (Experiment 1) and “classic” paper and pencil (Experiment 2) methodologies
to perform number-to-position (NP) tasks.

The computerized methodology was implemented on a touchscreen. Utilizing touch-
screens for performing the NP task was motivated by two reasons; first, the computerized
NP task (CNP) on a touchscreen restricted the response time, which allowed revealing
the immediate and internal representation of numbers on the MNL. Second, recent stud-
ies [45,46] demonstrated that ballistic tasks—in our case, the NP task—yield better perfor-
mance when using a touchscreen compared to that observed in “classic” experiments based
on paper and pencil methodologies.

This observation can be explained by the fact that the modern generation of children
is growing up in a world saturated with digital technology and media where smartphones
and touchscreens are increasingly replacing traditional paper and pencil tools. Thus, the
touchscreen tasks enable children to overcome the hand–eye coordination problem and
“directly” interact and manipulate objects via their fingers. Nonetheless, we conducted
the second number line task experiment by employing the “classic” paper and pencil
methodology, similar to that originally used by Siegler and Opfer [4], in order to formally
validate the findings of the CNP task.

Our study generated several important findings. First, we found that the sigmoidal
function model best fit the pattern of estimated number positions for second through
sixth graders. This model incorporates both the proportion judgment model [11] and the
two-linear model with a flexible breakpoint [9]. The results of estimated positions of each
number revealed that the second through sixth graders showed more accurate placement
of numbers close to the endpoints (1, 9), underestimated the position of small numbers
(2–5) and overestimated the position of large numbers (7–8).

However, the first graders showed more accurate placement of number 1 only (close to
the left edge) and underestimated the position of numbers 2–9. These results demonstrate
the developmental change in the use of endpoints as anchors: first the left endpoint,
then the right endpoint. Consistent with the two-linear model with a flexible breakpoint,
the examination of breakpoints showed that the breakpoint of first graders was 6, and
then in the subsequent grades, the breakpoint linearly decreased until it stabilized at 5.16
in sixth grade. The stabilization of a breakpoint close to 5 indicates the establishment
of an additional anchor point, namely, the midpoint, which is crucial for 0–10 number
representation [47].

The regression analysis between the breakpoint and overall accuracy showed that
once the breakpoint decreased to 5, children better estimated the position of all numbers.
Such a developmental change in the establishment of anchor points can be an index of
the maturation of proportional reasoning [48], resulting in more mature MNL represen-
tation [11]. These results are supported by other studies; for example, a study by Huber
and colleagues [49] showed an improvement in performance in adults with developmental
dyscalculia (DD) once an anchor point on the number line was presented to the participant.

Reid and colleagues [18] investigated estimation strategies that children used when
placing numbers 1–9 on a 0–10 number line. They found that children tended to count
from 0 (left anchor) for the first six numbers; in contrast, when estimating the position of
numbers 7–9 on a number line, the children often used backward counting, using the right
anchor point.

It should be noted that the same trends were observed in the “classic” NP task, confirm-
ing the findings of this study, as well as confirming the statement that the ability to more
accurately estimate the position of each number is due to the use of additional anchor points.
These observations make us more confident that the results obtained by the computerized
task are not due to the motor skills requirements of the touch-screen methodology.

It is interesting to note that similar strategies based on the proportional reasoning and
the gradual acquisition of breakpoints, as we have demonstrated in the NP tasks, have
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been suggested in additional areas of cognitive developments; for example, in the area of
spatial cognition [50–54]. Similarly to what we showed regarding the development of the
MNL, it has been found that when mapping distances, children and adults also visualize
visible midline boundaries that divide larger spaces in half. In particular, they reduce the
size of the space, thereby, facilitating accurate scaling of larger test spaces [55,56].

Next, the AF task results showed differences between groups in the speed required to
verify the accuracy of an arithmetic equation. We found that third graders were generally
faster in identifying incorrect equations than second graders were. These findings are
reasonable and not unexpected because third graders have had more exposure to arithmetic.
Both groups showed the split effect.

Looking at the individual differences between children in the same grade, we found
a relationship between the accuracy in the CNP task and the RTs of the AF task. Second
graders showed significant correlations between the accuracy of estimating numbers 1 and
8 in the CNP task and the speed of RT in verifying the accuracy of arithmetic equations.
The correlations between the accurate estimation of numbers close to the left end (number
1) and fast responses in the AF task correspond with our hypothesis.

However, an additional correlation was expected with the number close to the right
endpoint (number 9); instead, a correlation was found with the number 8. Perhaps these
results show that second graders struggle more with the position of 8 because they still
use only the left endpoint as an anchor, and once they are able to place this number more
accurately, it correlates with speed in the AF tasks.

Most importantly, with third graders, there was a significant correlation between the
ability to accurately place the midpoint (number 5) in the CNP task and faster performance
in the AF task. This is consistent with the idea that the establishment of 5 as a midpoint an-
chor in the 0–10 number line reflects the development of more mature MNL representation,
which could explain the faster performance in the arithmetic fact retrieval task.

Still, the present design, which is correlational in nature, does not enable such a causal
conclusion. At this point, we cannot determine whether the faster RTs in determining
correct and incorrect arithmetic equations were indeed affected by MNL development,
or rather, were a consequence of the development of other factors, such as practice and
exposure to the numbers 0–10 (e.g., [5,9]), which might impact arithmetic performance.
Further research would be needed to explore this idea.

To conclude, the present study presents an alternative model to represent the develop-
mental patterns in estimating number position along the 0–10 number line. We propose the
sigmoidal curve as the best fit to represent the estimated positions of numbers 0–10. This fit
indicates the differences between the breakpoints, which reflect whether the children use
the midpoint as an additional anchor point along with the use of endpoints. Examining the
estimated position of numbers of first through sixth graders, we found two developmental
leaps: one that occurred between the first and second grades; this leap is characterized by
the use of the right endpoint as an additional anchor point.

The other leap occurred between second and third grades when children began to use
the midpoint as a third anchor point. Our results showed that using the midpoint as an
anchor is critical for more accurate estimation of all numbers on the number line and in the
performance of the mental arithmetic task both indicates more mature representation of
the MNL.

The changes in the breakpoints that divide the number line into two segments may
have been affected by the association between fingers and numbers and can be explained
by the sub-base 5 finger theory [57]. The sub-base 5 finger theory claims that children
use fingers to represent numbers up to 10; to represent numbers 1–5, they usually count
the fingers on one hand first, and to represent numbers 6–10, they count on the other
hand [58–60]. Our results, which are consistent with this theory, show that children who
did not use the number 5 as an anchor point, compress the position of numbers 1–5 that
represent one hand and relatively compress the position of numbers 6–9 that represent the
other hand, which is crucial for many arithmetic competences (e.g., [61,62]).
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To avoid any differences in the encoding process of multiple digit numbers, our study
used a narrow range of numbers. Future studies should test number lines with a wider
range of numbers or with different endpoints (e.g., 3 and 23). This would enable a test of
whether the proposed model providing the best fit for estimated number position in the
0–10 range would also provide the best fit for other ranges of the number line. Moreover,
future studies should focus on the examination of how children divide different ranges
and the way they use the anchor points. Understanding the developmental process of
employing the anchor points will contribute to the progress in promoting maturation of
MNL representation.

Implication for Elementary School Math Teachers

In recent years, there has been growing interest in the number line model to help
children in their development of a number sense and mathematical concepts. In particular,
the emphasis was set on helping the children to develop greater flexibility in mental
arithmetic by focusing on active construction of mathematical meaning, on the number
sense, and on the understanding of number relationships.

Most often, the 0–10 number line is displayed above the whiteboard right above the
alphabet and is used to help young children to memorize and to practice counting with
ordinal numbers. The current study sheds light on the development process in utilizing
the number lime model. We suggest that the observed division of a number line into
two segments may have been affected by the finger counting and “ten-frame” models, to
visualize the concrete number of objects up to 10. Both models are based on the sub-base
5 [63–65], according to which one hand or a half frame represents numbers in the range of
1–5 and other hand or the other half frame represents numbers in the range of 6–10.

Using of the above sub-base is typical of first and second graders and is consistent
with the results obtained in the current study indicating that first and second graders make
the breakpoints close to number 6. This means that children mentally create two groups of
numbers lying in the ranges of 1–5 and 6–9, respectively. Such a division apparently occurs
as a result of transferring the concrete visualization of numbers from the finger-counting
and the ten-frame models to the number-line model. Third graders, however, begin to
move away from the use of concrete models, and instead use the number line as a tool for
better understating of mental arithmetic, number sense, and number relationships.

Moreover, the currently presented results showed that a more mature representation of
a MNL, which is characterized by the consistent use of anchor points (first the endpoints and
then the midpoint), related to faster performance in the AF retrieval task. Unfortunately,
at this point, we cannot distinguish whether the faster RTs in determining correct and
incorrect arithmetic equations are indeed affected by MNL development or, rather, are
a consequence of the development of other factors, such as practice and exposure to the
numbers 0–10 (e.g., [5,9]). Further research would be needed to explore this correlation. An
additional promising direction for future studies could be to look for correlations between
individual differences in mathematical performance and in the CNP tasks, taking into
consideration individual differences in motor skills. This issue is a limitation and was
beyond the scope of the present study.
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