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Abstract: Theta phase-gamma amplitude coupling (TGC) plays an important role in several different
cognitive processes. Although spontaneous brain activity at the resting state is crucial in preparing
for cognitive performance, the functional role of resting-state TGC remains unclear. To investigate the
role of resting-state TGC, electroencephalogram recordings were obtained for 56 healthy volunteers
while they were in the resting state, with their eyes closed, and then when they were engaged in
a retention interval period in the visual memory task. The TGCs of the two different conditions
were calculated and compared. The results indicated that the modulation index of TGC during the
retention interval of the visual working memory (VWM) task was not higher than that during the
resting state; however, the topographical distribution of TGC during the resting state was negatively
correlated with TGC during VWM task at the local level. The topographical distribution of TGC
during the resting state was negatively correlated with TGC coordinates’ engagement of brain areas
in local and large-scale networks and during task performance at the local level. These findings
support the view that TGC reflects information-processing and signal interaction across distant brain
areas. These results demonstrate that TGC could explain the efficiency of competing brain networks.

Keywords: electroencephalography; theta-gamma coupling; neuronal oscillations; resting state;

visual working memory; visual attention

1. Introduction

Clinical electroencephalography (EEG)—one of several methods of data acquisition
from the human brain—was introduced by Hans Berger, a German psychiatrist, in the
1930s [1,2]. Scalp EEG is a noninvasive method of detecting and registering electrical activity
in the brain using electrodes attached to the scalp that record changes in the electric potential
(neuronal oscillations) on the skin surface, resulting from the activity of cerebral neurons,
and after their amplification they are recorded [1]. The EEG rhythmical frequency bands
reflect the rhythmic and synchronized postsynaptic potentials that arise from the pyramidal
neuronal assemblies [3]. Neural activity is known to oscillate within the following discrete
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frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and
gamma (30-50 Hz) [4]. Distinct mechanisms may generate neural oscillations in different
frequency bands that are associated with a diverse range of cognitive functions [5,6].
Moreover, neuronal oscillations are predictive of information-processing and involved in
selective communication and information transmission [7,8], and the interplay between
these brain rhythms is hypothesized to underlie cognitive functions [9,10]. One possible
role of oscillatory activity is to assure the maintenance of information in working memory
(WM) [11].

WM is considered an essential component of cognitive functions [12-17]. WM refers
to the memory system with limited energy for short-term storage and processing of goal-
relevant information [13-18]. The reduced WM capacity is a common feature in many
diseases such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild
cognitive impairment, and Alzheimer’s disease (AD) [2]. The neural mechanisms that
contribute to WM have been a major focus in neuroscience for several years [18]. Recently,
studies have shown that theta and gamma oscillations play an important functional role in
WM [19-21]. Increased theta activity in frontal areas shows the involvement of frontal theta
activity in WM maintenance [12,22,23], and increased gamma activity in posterior regions
with WM load shows the control of attentional resources and visual processing [12,24].
Brain processes of WM involve oscillatory activities at multiple frequencies in local and
long-range neural networks [25]. A previous study reported that the synchronization of
the theta band can coordinate neural communication between multi-brain regions and con-
tribute to the maintenance of short-term memories [23]. Visual working memory (VWM)
relies on sustained neural activities that code information via various oscillatory frequencies.
However, previous studies have emphasized time-frequency power changes, while over-
looking the possibility that rhythmic amplitude variations can also code frequency-specific
VWM information in a completely different dimension [26].

Quantitative EEG (QEEG) data are categorized into power and phase via the Fourier
transform analysis. Power and phase provide information regarding the quantity of a
specific frequency and the timing of neuronal activity, respectively [27]. Power spectral
analyses quantify the power and voltage within the frequency bands [5]. Different EEG
oscillations in the frequency domain are not independent and regulate the integration
of multiple networks through the mutual interaction of cross-frequency oscillations [28].
Cross-frequency phase-amplitude coupling (CFC) was developed to address the limitations
of conventional QEEG analyses that focused only on power and disregarded phase when
assessing neuronal activity [29]. Unlike spectral analysis, CFC more accurately describes the
characteristics of functional brain activity by integrating phase information with power [29].
Cross-frequency coupling measures functional connectivity beyond single-frequency as-
sessments of oscillatory activity and provides insight into ways by which local neural
networks process information through the interactions or couplings of activities across
frequencies [30,31]. Phase-amplitude coupling (PAC) is a type of CFC, wherein oscillations
in different frequency bands can occur simultaneously and interact with each other, and the
phases of slow oscillations modulate the amplitude of faster oscillations [32,33]. PAC has
been reported across multiple brain regions under a variety of conditions, reflecting inter-
areal communication and interactions between cognitive functions [34,35]. Nesting of fast
rhythmical brain activity into slower brain waves has frequently been suggested as a core
mechanism of multi-item WM retention [36]. Theta phase-gamma amplitude coupling is
the best-known example of this interaction. Previous studies found an association between
TGC and WM [2,17,36-40], and it has been suggested that the power of gamma oscillations
is systemically modulated over the course of the theta cycle, and that this interaction is a
neurophysiologic process underlying WM [41,42].

Although the storage capacity of WM is inherently limited [17,18,43], several studies
have found that the WM capacity can be altered by training [44—46]. Neural activity in the
prefrontal cortex and the strength of connectivity between the prefrontal and parietal cor-
tices have been shown to be improved by training, as suggested by the studies in humans
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and non-human primates [47-50]. Active transcranial direct current stimulation (tDCS)
enhanced WM performance by modulating interactions between frontoparietal theta oscil-
lations and gamma activity [51]. A recent study using a rat AD model found that impaired
TGC between the hippocampus and prefrontal cortex was associated with the cognitive
deficits in the rats [52]. In humans, a functional MRI study demonstrated that hippocampus
and dorsolateral prefrontal cortex (DLPFC) coupling may illustrate a systematic mechanism
that implements WM [53]. Neural activities between the hippocampus and prefrontal cor-
tex are often synchronized in time and the interactions of both neuroanatomical structures
are required to coordinate the appropriate cognitive functions [54]. The hippocampus has
distinct electrophysiological characteristics of the TGC [55,56].

TGC is thought to play an important role in learning and memory, which is associ-
ated with neuroplasticity in the hippocampal-cortical network [37,57]. The perceptual-
cognitive approach to learning assumes behavior to be induced by way of representa-
tions that includes information on the perceptual effects of behavior [58]. In this respect,
perceptual-cognitive ability is considered one of the key factors related to high-level perfor-
mance [58,59]. For example, recent studies showed that practice has a significant influence
on the cognitive system underlying motor learning and that experts differ from beginners
in perceptual-cognitive background [58,59]. These findings suggest that perceptual and
cognitive adaptations co-occur over the course of motor learning. [59]. A recent review
suggested that ventromedial prefrontal cortex (vmPFC) subregions may underlie learning
processes, as well as their principal interactions, with the extended subcortical and cortical
components of the brain’s circuit. The anterior vmPFC is a central hub of metacognition and
the default mode network (DMN), and the authors emphasized that its role may represent
an attempt to restore equilibrium [60,61]. In 2021, Garofalo et al. employed tDCS over
the lateral prefrontal cortex to modulate brain activity choice and provided evidence for
the involvement of the lateral prefrontal cortex of human cue-guided choice. The study
provided causal evidence of the involvement of the DLPFC in human cue-guided choice
that relies on WM capacity, which has a decisive implication on processing the value of
outcomes, and indicates that the decision-making process relies largely on the computa-
tional availability of memory [59]. Regarding this, Garofalo et al. suggested that individual
differences in WM are closely related to human behavior and are decisively involved in
decision-making [62]. These findings suggest a reevaluation of working memory indicating
that WM should be denoted as a cognitive mechanism to define the best choice and guide
behavior for the most convenient choice [62].

Neuroscientists have recognized the importance of a WM to guide behavior with infor-
mation [63]. However, human cognitive function studies have traditionally focused on cog-
nitive task-induced brain activity rather than cognitive activity in the resting state [64,65].
The resting state is defined as a spontaneous cognitive state [66,67] in which one is not
engaged in any specific cognitive task [66-68]. Spontaneous neural activities also play an
important role in cognitive functioning [64,65], and task-evoked electrophysiological mea-
surements may harbor a component of spontaneous brain activity [69-71]. Resting-state
brain activity can be used to measure baseline brain states and has been associated with var-
ious aspects of behavior and cognitive processes serving as indices of brain function [72,73].
Functionally connected brain structures that are more active during rest than during tasks
that require attention to external events comprise the DMN [67,74,75]. Recent studies
have suggested that resting-state activity, which maximizes the efficiency of information
transfer with low physical connection costs, can serve as the foundation for underlying
brain functions [76]. Increasing evidence has shown that the resting state EEG rhythms may
reveal abnormalities of the basic neurophysiological mechanisms that underlie cognition in
AD subjects, and these abnormal EEG rhythms are thought to be associated with functional
cortical disconnections [77]. Abnormal resting-state network activity has been proposed
as a neural correlate of cognitive dysfunction in functional magnetic resonance imaging
(fMRI) studies [78]. Compared to fMRI, EEG shows lower spatial but higher temporal



Brain Sci. 2022, 12, 274

40f19

resolution. However, both techniques are regarded as useful for the assessment of brain
activity and connectivity [1].

Electrophysiological studies of WM have repeatedly revealed that prominent increases
in theta power, gamma power, and TGC are neural correlates of WM processing [79,80].
TGC has primarily been used to focus on brain activities during the performance of a
particular cognitive task, but the relationships with WM to the functional role of the resting-
state TGC while eyes are closed remains to be elucidated. The first aim of this study was to
investigate and compare TGC and power spectra, defined in terms of theta and gamma
oscillations, respectively, among healthy volunteers in both the resting state and during
VWM tasks. We hypothesized that theta power, gamma power, and TGC would be higher
during the retention interval period in the VWM task than in the resting state. The second
aim of this study was to compare the detailed topographical patterns and characteristics of
power spectra and TGC. We hypothesized that the topographical patterns of TGC would
differ from those of theta and gamma oscillatory activity. The third aim of this study was
to probe the neural correlates of clinical outcomes using TGC and power spectra of theta
and gamma in both resting state and during VWM tasks. We hypothesized that theta, and
gamma power, and TGC in the resting state would correlate with WM outcomes.

2. Materials and Methods
2.1. Study Subjects

A total of 61 healthy volunteers were recruited through posters at our hospital and an-
nouncements on a website. The number of subjects was estimated a priori using G*Power v.
3.1.9.7. paired t-tests (two-tail) for matched pairs, medium effect size (Cohen’s d = 0.50), and
a two-tailed alpha of 0.05. A sample of 54 participants was deemed necessary to generate a
strong statistical power (0.95). All subjects underwent diagnostic interviews. Psychiatric
diagnoses were assessed using the Mini-International Neuropsychiatric Interview [81],
which was administered by either a psychiatrist or by trained graduate-level psychologists.
The majority of subjects were right-handed, with three left-handed subjects, as indicated by
the Edinburgh Handedness Inventory [82].

Subjects were included in the study if they met the following criteria: (1) male or
female aged 19-65 years and (2) capable of completing all required study procedures as
determined by a psychiatrist. Subjects were excluded from participation if they met any of
the following exclusion criteria: (1) brain lesions, (2) diagnoses of neurological disorder(s),
or (3) incapability or unwillingness to give consent for the study participation. All subjects
had normal or corrected-to-normal vision and normal hearing.

All subjects were fully informed about the purpose and procedures of the study and
provided written informed consent. The Institutional Review Board of Gangnam Severance
Hospital, Yonsei University, reviewed and approved this study (No. 2016-0375-015).

2.2. Wender Utah Rating Scale

Subjects completed a 25-item self-administered questionnaire of childhood symptoms
designed to retrospectively assess the presence of childhood ADHD symptomatology,
developed by Wender in 1993. Each item is measured on a five-point Likert scale with 0
being “not at all” and 4 being “extremely”. The scale results in a score ranging from 0 to
100 [83].

2.3. Neuropsycological Test

Spatial span is a VWM test that measures spatial WM and consists of two subtests
from the Wechsler Memory Scale Third Edition, Spatial Span Forward and Spatial Span
Backward. The score ranges from 0 to 32 points [84]. Letter-Number Sequencing is a
measure of auditory WM in which subjects hear a series of numbers and letters in random
order and must then repeat the whole series, but with numbers in ascending order and
letters organized alphabetically. The total score ranges from 0 to 21 points [85].
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2.4. Experimental Procedures

The experiment consisted of a single session that lasted approximately 15 min; the
sessions started with 5 min of eyes-closed (EC) resting-state EEG recording that was,
followed by a 1 min break and then with 7 min of a VWM task during which EEG data were
recorded (Figure 1). Subjects were seated comfortably in a chair in a quiet room for all EEG
recordings. During the recording, subjects were encouraged to relax their jaw musculature
and to minimize ocular (e.g., try not to blink or move their eyes) and other movements.
Before the beginning of the EC condition, subjects were instructed to close their eyes, stay
seated in the chair, relax, and remain awake during the 5 min period of the EC resting state.
During the VWM task, subjects were presented with a paper containing 10 target items to
encode and were instructed to memorize them in 1 min. Next, the subjects were instructed
to close their eyes and retain the 10 target items in their minds for 5min. Finally, the subjects
were asked to indicate and match the 10 memorized target items to the 30 items presented
on the answer sheet within a minute. In this study, EEG parameters were compared
between the EC resting state and the retention interval period of the VWM task.

R ITEM RETENTION TARGET ITEM
A PREPARATION PRESENTATION INTERVAL MATCH
P Yem® § -
= et NWE 4o e
BREAK . M & ¥ |cood
i (8 | -
° - B P Rl
EYES CLOSED EYES CLOSED Y DmBEtS
5 min 1 min 1 min 5 min 1 min
Time >

Figure 1. A schematic of the eyes-closed resting electroencephalography (EEG) and memory test
protocol. The resting-state and retention interval (red squares) were used for analysis in the study.

2.5. Electroencephalogram Recording and Rreprocessing

Electroencephalogram data were continuously recorded using Netstation version 5.4
software (Electrical Geodesics, Eugene, OR, USA) and a 64-channel HydroCel Geodesic
Sensor Net (Electrical Geodesics, Eugene, OR, USA). The experiment lasted approximately
15 min and it started with 5 min of eyes-closed resting based on the modified international
10/20 system, known as the 10-10 system (Applied Neuroscience, St. Peterburg, FL, USA).
All EEG channels were referenced to the vertex electrode (Cz) of the scalp. All electrode
impedances were kept below 50 k() in accordance with Electrical Geodesics, Inc. guidelines.
The EEG data were digitized and amplified at a sampling rate of 1 kHz with a Geodesic
EEG system 400 (Electrical Geodesics, Inc.) and filtered online using a bandpass filter set at
0.1-100 Hz and notch filter set at 60 Hz.

Electroencephalogram data were pre-processed and analyzed offline using a custom-
written scripts in MATLAB 2016b (The MathWorks, Natick, MA, USA) and the EEGLAB
toolbox [86]. The Harvard Automated Processing Pipeline for EEG [87] was used to
automate preprocessing and artifact correction using Wavelet-enhanced independent com-
ponent analysis (ICA) and the Multiple Artifact Rejection Algorithm (MARA) [88]. The con-
tinuous EEG data were re-referenced to an average reference and filtered with a 1-240 Hz
bandpass filter and 60, 120, 180, and 240 Hz notch filters.

We removed from analysis bad channels whose probability fell more than three stan-
dard deviations (SDs) from the mean. Bad-channel evaluation was performed twice per
data file. Channels that were removed as bad channels had their data interpolated from
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nearby channels in a later processing step. Any channels removed during the bad channel
rejection processing step were subjected to spherical interpolation (with Legendre polyno-
mials up to the 7th order) of their signal. ICA using MARA embedded in EEGLAB was
performed to eliminate components with artifact probabilities greater than 0.8. ICA has
been demonstrated to reliably isolate ocular, electromyographic, and electrocardiographic
artifacts. The processed clean data were saved in the EEGLAB file format (.set files). Nine-
teen electrode sites among 57 channels were analyzed (Fp1, Fp2, F7, F3, Fz, F4, F8, 17, C3,
Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2) based on a standard international 10/20 system.

2.6. Power Spectral Analysis

We used the signal processing toolbox in MATLAB to calculate the spectral power of
the EEG data for each subject by fast Fourier transformation. Time windows of 4000 ms
with an 8 ms overlap were used for the spectral analysis. The following five frequency
bands were defined for spectral analyses: delta (14 Hz), theta (4-8 Hz), alpha (8-13 Hz),
beta (13-30 Hz), and gamma (30-50 Hz). The absolute powers of the theta and gamma
bands were averaged over all the time windows and frequency bands for further analysis.

2.7. Modulation Index for Theta-Gamma Coupling

The intensity of CFC between the low-frequency theta (4-8 Hz) phase fp and the
amplitude of the gamma (30-50 Hz) oscillations f5 was analyzed as a modulation index (MI)
value [89,90]. To calculate the MI of TGC, we applied the standard Hilbert transform [91] to
time series for theta phase ¢, (t) and the gamma amplitude envelope ¢¢, (t). The composite
time series [dfp(t), Ag, (t)] was then constructed; this informs the gamma oscillation f4 at
each phase of the theta rhythm fp. The phase of theta ¢y, (t) was binned into 72 five-degree
bins spanning the (—180°-180°), degree interval and the corresponding mean amplitudes
of gamma oscillation were calculated for each phase bin and then normalized by dividing
the mean amplitudes by the sum over all bins, < A¢, >, o (j) the mean gamma value Ag,
at the phase bin j, and then normalized by dividing the mean amplitude in each phase by
the sum over all bins. The existence of PAC is characterized by a deviation of the amplitude
distribution P from the uniform distribution in a phase-amplitude plot [89].

< Ag, >, ()
P = T D 1)

N
;1 < AfA >¢)fP (])

J

The measure that quantified the deviation of P from a uniform distribution was defined
by applying the Kullback-Leiber (KL) distance [92], a parametric that is widely used to infer
the distance between two distributions. The KL distance formula resembles the definition
of the entropy of P, H(P) defined by [89]:

N
H(P) = — ) _P(j) log[P(j)] @

Dic (P, U) = log(N) — H(P) )

N is the number of phase bins, log(N) represents the entropy of a uniform distribution,
and H(P) is the entropy of P, where U is the uniform distribution. The MI (by Tort et al.)
was calculated as follows [89]:

_ log(N) —H(P) _ D (P,U)
MI= g™~ logN)

4)

The MI measures the divergence of the phase-amplitude distribution from the uniform
distribution (MI = 0). The further the MI value is from 0, the lower the entropy H(P)
and the greater the coupling. Simply put, this means that an MI value of 0 denotes that
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the phase-amplitude distribution is equal to the uniform distribution and that there is
an absence of PAC because the mean amplitude is the same for all phase bins. As the
distance between the amplitude distribution and the uniform distribution inferred by the
KL distance increases, so does the MI.

2.8. Statistical Analysis

Statistical analyses were carried out using MATLAB version R2016b statistical tool-
box (The MathWorks, Inc., Natick, MA, USA) and IBM SPSS Statistics version 25.0 (IBM
Corp., Armonk, NY, USA). Before undertaking the statistical analyses, we conducted the
Kolmogorov-Smirnov one-sample test to assess whether the data were normally distributed.
For descriptive statistics, means and SDs were calculated to demographic variables, clinical
variables, and electrophysiological variables, respectively. We used the paired t-test to
examine the differences between EC resting state and the retention interval of the VWM
task conditions on EEG data. Within the subjects, correlations between EEG data and
clinical data were analyzed using Pearson correlation coefficients. The problem of multi-
ple comparisons was corrected using a Benjamini-Hochberg False Discovery Rate (FDR)
control [93]. All p-values were two-tailed, and the statistical significance was defined
as p < 0.05. Topographic plots were depicted for the following: (1) the calculated MI of
TGC and average absolute power of theta and gamma oscillations obtained from the grand
average across all subjects during the EC resting state and the retention interval phase to
observe the topographical distribution; (2) results of the paired t-test in the MI of TGC
and absolute power of theta and gamma oscillations between resting state and VWM task
condition; and (3) results of the correlation coefficients between electrophysiological status
and clinical data. All topographic plot data were obtained from the grand average across
all subjects.

3. Results
3.1. Demograpic and Clinical Characteristics

Of the 61 subjects, five were excluded for missing data on a clinical measure, outliers in
the EEG data (more than three SDs from the mean), and/or medical condition (depressive,
hypomanic episode, highly alcohol-dependent). A total of 56 [31 (55.4%) male] healthy
volunteers completed the study, mean & SDs age was 23.9 & 4.0 years, and ages ranged
from 18 to 41 years. Demographic and clinical characteristics of healthy volunteers are
presented in Table 1.

Table 1. Demographic and clinical characteristics of healthy volunteers.

Variables Mean SD Min Max
Age (year) 239 4.0 18 41
Sex
Male, N (%) 31 (55.4)
Female, N (%) 25 (44.6)
Handedness, N (%)
Right, N (%) 53 (94.6)
Left, N (%) 3(5.4)
Education (year) 13.2 1.7 12 16
WURS 20.9 14.3 0 63
LNS 11.8 2.6 7 18
Spatial Span 20.5 3.8 14 29

SD: Standard Deviation, WURS: Wender Utah Rating Scale, LNS: Letter Number Sequencing.

3.2. Power Spectra

The retention interval period of the VWM task demonstrated significantly increased
absolute theta power compared to the resting state at eight of the electrodes: Fz (t = —3.05,
p =0.036), F7 (t = —2.56, p = 0.036), T3 (t = —2.70, p = 0.036), T5 (t = —2.59, p = 0.036), O1
(t=—2.90,p =0.036), 02 (t = —2.74, p = 0.036), C4 (t = —2.59, p = 0.036), and T4 (t = —2.46,



Brain Sci. 2022, 12, 274

8 of 19

p = 0.040). All significant differences were FDR corrected (Table 2). The topographical
features of the paired t-test results are also presented in Figure 2.

Table 2. Comparisons of absolute theta power during the resting state and the retention interval of
the VWM task in healthy volunteers.

Resting State VWM Task
Lead (uV?) t PFDR
Mean SD Mean SD
FP2 0.97 0.33 1.06 0.40 —2.07 0.066
Fz 0.99 0.38 1.13 0.44 —3.05* 0.036
FP1 0.98 0.37 1.07 0.40 —2.01 0.066
F3 0.88 0.32 0.96 0.36 -2.19 0.058
F7 0.84 0.33 0.94 0.37 —2.56 * 0.036
C3 0.60 0.25 0.65 0.26 —1.94 0.072
T3 0.71 0.33 0.82 0.36 —2.70* 0.036
P3 0.52 0.24 0.57 0.25 —1.69 0.102
T5 0.74 0.36 0.82 0.38 —2.59*% 0.036
Pz 0.55 0.24 0.58 0.23 —1.63 0.108
o1 0.72 0.33 0.79 0.35 —2.90* 0.036
(0 0.69 0.32 0.76 0.33 —2.74*% 0.036
P4 0.49 0.25 0.55 0.25 —2.18 0.058
T6 0.73 0.40 0.81 0.43 —1.87 0.079
C4 0.56 0.25 0.62 0.26 —2.59*% 0.036
T4 0.67 0.35 0.76 0.38 —246* 0.040
F8 0.81 0.33 0.89 0.40 —2.19 0.058
F4 0.87 0.33 0.96 0.39 —2.03 0.066
Cz 0.71 0.31 0.77 0.33 -1.71 0.102

VWM: Visual Working Memory, SD: Standard Deviation, FDR: False Discovery Rate. * p < 0.05.

For the absolute gamma power, the retention interval period of the VWM task had
significantly increased at five of the electrodes: Fz (t = —2.95, p = 0.044), O2 (t = —2.70,
p =0.046), P3 (t = —2.66, p = 0.046), C3 (t = —2.60, p = 0.046), and Cz (t = —3.20, p = 0.043).
All significant differences were FDR corrected (Table 3). The topographical features of the
paired t-test results are also presented in Figure 3.

3.3. Theta-Gamma Coupling

The MI of TGC increased during the VWM task compared to the resting state in FP1,
F3, C3, T3, T5, 02, T6, T4, F8, and Cz. In contrast, the MI of TGC decreased during the
retention interval period of the VWM task compared to the resting state in FP2, Fz, F7, P3,
Pz, O1, P4, C4, and F4. However, significant differences were not found to fall below the
FDR threshold (Table 4). The topographical features of the paired t-test results are also
presented in Figure 4.

3.4. Correlation between Absolute Gamma Power and Clinical Measures

Pearson’s correlation coefficients were used to establish the correlation between the
absolute gamma power and WURS. Absolute gamma during the retention interval period
of the VWM task was significantly and positively correlated with the WURS in the occipital
area (O1, r = 0.34, p = 0.010; O2, r = 0.46, p < 0.001). Results of the Pearson’s correlation
analysis between the absolute gamma power during the VWM task and WURS scores are
presented in Table 5. The topographical features of the correlation are presented in Figure 5.

3.5. Linear Regression

Linear regression was conducted to determine whether absolute gamma power was
associated with WURS score independent of age and sex. A significant regression equation
was found at O2 (F(4,55) = 3.72, p = 0.010; R2 = 0.23). In the linear regression models,
WURS was independently and positively associated with the absolute gamma power at
O2 (p = 0.012) but not with age (p = 0.657), sex (p = 0.813), or the absolute theta power at
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O1 (p = 0.399). The absolute gamma power at O2 was the only significant predictor of the
model ( = 0.38, p = 0.012) (Table 6, Figure 6).

Absolute Theta Power
Resting state (EC)

t—values (paired t—test)

| .i

o

N =

w

(d)

Memory retention (EC)

0.8

0.6

0.4

0.2
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0.03
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0.01

0

Figure 2. Topographies of absolute theta power during eyes-closed resting state and the retention in-

terval of the visual working memory (VWM) task, t-map, and pppr-map. (a) Absolute spectral power

of theta band during the resting state (b) Absolute spectral power of theta band during the retention

interval of VWM task (c) Topographical distribution of t-values (paired t-test) (d) Topographical

distribution of the corresponding False Discovery Rate corrected p-values (paired t-test). EC: eyes

closed, FDR: False Discovery Rate.

Table 3. Comparisons of absolute gamma power during the resting state and the retention interval of
the VWM task in healthy volunteers.

Resting State VWM Task
Lead (uV?) t PFDR
Mean SD Mean SD
FP2 0.21 0.04 0.22 0.06 —1.15 0.286
Fz 0.18 0.04 0.20 0.05 —2.95* 0.044
FP1 0.21 0.05 0.22 0.06 —2.22 0.083
F3 0.18 0.03 0.19 0.04 —2.15 0.085
F7 0.20 0.05 0.21 0.05 —1.69 0.143
C3 0.13 0.03 0.14 0.03 —0.64 0.523
T3 0.18 0.07 0.20 0.07 —1.81 0.119
P3 0.12 0.03 0.12 0.03 —1.49 0.181
T5 0.16 0.05 0.17 0.05 —-1.93 0.102
Pz 0.11 0.03 0.11 0.04 —-1.99 0.097
01 0.17 0.10 0.19 0.12 —1.51 0.181
02 0.15 0.07 0.18 0.08 —2.70* 0.046
P4 0.11 0.03 0.12 0.03 —2.66* 0.046
T6 0.16 0.05 0.17 0.06 —2.08 0.089
C4 0.12 0.03 0.13 0.03 —2.60* 0.046
T4 0.16 0.05 0.18 0.07 —2.31 0.078
F8 0.19 0.05 0.20 0.05 -1.15 0.286
F4 0.18 0.04 0.18 0.04 —0.69 0.520
Cz 0.12 0.03 0.13 0.04 —3.20* 0.043

VWM: Visual Working Memory, SD: Standard Deviation, FDR: False Discovery Rate. * p < 0.05.
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Absolute Gamma Power
Resting state (EC) Memory retention (EC)

(b)

0.2
0.15
0.1

0.05

(d)

Figure 3. Topographies of absolute gamma power during eyes-closed resting state and the retention
interval of the visual working memory (VWM) task, t-map, and pgpr-map. (a) Absolute spectral
power of the gamma band during the resting state. (b) Absolute gamma power during the retention
interval of the VWM task. (c) Topographical distribution of t-values (paired t-test). (d) Topographical
distribution of the corresponding False Discovery Rate corrected p-value (paired t-test). EC: eyes
closed. FDR: False Discovery Rate.

Table 4. Comparisons of the MI of TGC during the resting state and the retention interval of the
VWM task in healthy volunteers.

Lead Resting State VWM Task
(x10-3) Mean SD Mean SD ‘ ProR
FP2 131 0.31 1.28 0.29 0.58 0.942
Fz 1.33 0.28 1.30 0.34 0.57 0.942
FP1 1.30 0.31 1.33 0.32 —0.49 0.942
F3 1.27 0.33 1.30 0.28 —0.35 0.946
F7 1.32 0.30 1.31 0.31 0.18 0.946
C3 1.30 0.32 1.41 0.32 —2.07 0.413
T3 1.27 0.34 1.33 0.29 —1.03 0.942
P3 1.33 0.31 1.25 0.32 1.34 0.877
T5 1.32 0.28 1.36 0.34 —0.63 0.942
Pz 1.43 0.78 1.38 0.44 0.46 0.942
01 1.44 0.45 1.44 0.55 0.04 0.969
02 1.43 0.57 1.44 0.38 —0.13 0.946
P4 1.37 0.40 1.36 0.44 0.22 0.946
T6 1.40 0.43 141 0.37 —0.26 0.946
C4 1.34 0.36 1.23 0.23 1.86 0.434
T4 1.25 0.32 1.31 0.32 —1.01 0.942
F8 1.27 0.32 1.44 0.32 —2.71 0.174
F4 1.33 0.31 1.28 0.31 0.74 0.942
Cz 1.25 0.29 1.28 0.34 —0.53 0.942

MI: Modulation Index, TGC: Theta-Gamma Coupling, VWM: Visual Working Memory, SD: Standard Deviation,
FDR: False Discovery Rate.
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Theta-Gamma Coupling
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Figure 4. Topographies of theta-gamma coupling (TGC) during eyes-closed resting state and the
retention interval of the visual working memory (VWM) task, t-map, and pppr-map. The topographic
maps represent the probability of paired ¢-test between resting state and VWM task. (a) Modulation
index (MI) of TGC during the resting state. (b) MI of TGC during the retention interval of VWM
task (c) Topographical distribution of t-values (paired t-test). (d) Topographical distribution of the
corresponding False Discovery Rate corrected p-value (paired t-test). EC: eyes closed, FDR: False

(d)

Discovery Rate.

Table 5. Pearson’s correlation coefficients between the absolute gamma power and WURS in
healthy volunteers.

WURS
Lead
r PFDR
FP2 0.25 0.067
Fz 0.23 0.089
FP1 0.24 0.071
F3 0.18 0.189
F7 0.20 0.133
C3 0.06 0.686
T3 0.03 0.806
P3 —0.06 0.677
T5 —0.10 0.487
Pz 0.24 0.080
01 0.34 % 0.010
02 0461 <0.001
P4 0.02 0.901
Té6 0.16 0.252
C4 0.15 0.257
T4 —0.09 0.535
F8 0.19 0.168
F4 0.20 0.149
Cz 0.11 0.424

Values are Pearson’s correlation coefficients. * p < 0.05, * p < 0.001. WURS: Wender Utah Rating Scale, FDR: False
Discovery Rate.
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Figure 5. Topographical representation of the statistical results of the Pearson’s correlation analysis
between the absolute gamma power and Wender Utah Rating Scale. (a) Pearson’s correlation
coefficients. (b) Topographical distribution of the corresponding False Discovery Rate corrected
p-value. FDR: False Discovery Rate.

Table 6. Linear regression models of WURS as predicted by the absolute gamma power during the
VWM task over the occipital scalp sites in healthy volunteers.

B B (SE) t p
Model 0.010
(Constant) 12.46 (13.90) 0.90 0.374
Age —0.06 —0.21 (0.46) —0.45 0.657
Sex —0.03 —0.95 (3.98) —0.24 0.813
Absolute Gamma Power at O1 0.14 16.38 (19.24) 0.85 0.399
Absolute Gamma Power at O2 0.38 64.46 (24.88) 2.59 * 0.012

Linear regression analyses were performed with the WURS as a dependent variable, and age, sex, and absolute
gamma power as independent variables. Standardized regression coefficients (3), Unstandardized coefficients (B)
and Standard Errors (SE). * p < 0.05. WURS: Wender Utah Rating Scale, VWM: Visual Working Memory.

il
050

0.60 .

0.40

0.40

Absolute Gamma Power at 02 during Memory Task

0.00

0.00

WURS score WURS score
(a) (b)

Figure 6. Relationship between the Wender Utah Rating Scale scores and the absolute gamma power
at electrodes (a) O1 and (b) O2 during the retention interval period of the visual working memory
task (n = 56, R? =0.23, p = 0.399 and p = 0.012, respectively). Mean absolute power in pV2. WURS:
Wender Utah Rating Scale.

4. Discussion

In this work, we compared absolute theta power, absolute gamma power, and TGC
during the VWM task to those of the resting state. Theta and gamma power were signif-
icantly higher in the frontal areas during the retention interval period of the VWM task
compared to the resting state, lending support to our first hypothesis as described earlier in
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this paper. This result was consistent with previous findings that these bands are involved
in memory processes [34,94]. Theta and gamma activity are more involved in WM mecha-
nisms than in other types of mechanisms [79]. A prominent increase in theta and gamma
power represents the neural correlates of WM processing. Thus, the increase in theta and
gamma power in the frontal area observed in this study may reflect the engagement of the
neurophysiological mechanism of attention or VWM [29].

The positive correlation between TGC and task complexity may be a result of increased
cognitive load [95]. TGC may reflect the subjective effort being made or cognitive resources
being expended during cognitive performance [34]. However, in this study, the difference
in TGC between the resting state and the VWM task was not observed to be statistically
significant. This result may be interpreted to mean that TGC is affected by high memory
load, given that TGC decreases during periods with low cognitive control demands [96].
We demonstrated that the topographical features of TGC vary across different conditions.
The theta and gamma powers’ topographies were smooth and relatively unchanging, but
the topography of TGC exhibited local alterations that were negatively correlated between
conditions. The MI of TGC during the VWM task was higher than in the resting state in
FP1, F3, F8, C3, Cz, T3, T5, T6, T4, and O2; but it was lower during the VWM task than in
the resting state in FP2, Fz, F4, F7, C4, P3, Pz, P4, and O1. These findings are similar to
those obtained through fMRI, suggesting that the resting-state brain activity of the DMN is
negatively correlated with that of the task-positive network [97]. The DMN is commonly
deactivated during attention-demanding cognitive tasks, while the task-positive network
is activated during cognitive and attentional tasks [98].

We found that absolute gamma power measured by the occipital electrodes in healthy
volunteers during the retention interval period of the VWM task was strongly correlated
with WURS scores. The WURS has been widely used to measure ADHD-related charac-
teristics, such as impulsivity, defiant behavior, mood instability, anxiety, and inattention,
which are common to a broad range of psychiatric diagnoses [99]. The WURS was devel-
oped to retrospectively assess the presence and severity of childhood symptoms of ADHD
including both inattentive and hyperactive symptoms in adult patients [83,100]. Gamma
oscillations in the occipital area are important in VWM processes and visual selective
attention [101]. The level of interference is correlated with occipital gamma oscillatory
power, a known index of selective visual attention. Therefore, our finding of the enhanced
absolute gamma power in the occipital area, related to a higher score in WURS, suggests
distracted interference control during WM. This interpretation is consistent with previous
findings that ADHD patients, as compared to controls, are more distracted by interfering
stimuli accompanied by an increased occipital evoked 40 Hz-gamma band response during
visual distraction [102].

We identified a significant relationship between absolute gamma power and the
WURS score but failed to identify a relationship between TGC and WM scores. To un-
derstand this lack of correlation between WM results and resting-state TGC in this study,
it should be noted that WM and attention are closely linked and have a bidirectional
relationship [103-105].

In this study, resting-state EEG results were compared to EEG results during goal-
directed cognitive processing using the VWM task, in which subjects” attention is focused
on retaining an external image in their memory. Resting-state EEG power spectral and
TGC analyses were carried out to determine the subjects” baseline neurophysiological
states. We were able to successfully demonstrate that neither cortical electrical activity nor
TGC reflected externally focused cognitive processing as they did during a task involving
subjects forming memories of presented images and when subjects’ eyes were closed, and
they were in a resting state. Thus, TGC did not occur only at specific points in time to
support goal-related cognitive processes.

Patterns of cortical electrical activity and TGC differed across the resting state and
during focused cognitive processing. This difference may have resulted from the fact
that TGC analysis assesses the amount of timing information gathered from interacting
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functional systems across multiple spatiotemporal scales, while spectral analysis probes the
degree of excitation of the functional neuronal system [78]. This finding indicates that TGC
may reflect a mechanism of information transfer among functionally connected networks
that may have high inter-regional correlations. In this study, we identified the brain regions
that were differentially involved in the resting state and the VWM task. Our results show
that the resting state and focused attention used different cognitive resources, and thus
may reflect the fact that the resting-state brain activity of the DMN is negatively correlated
with that of the task-positive network.

Resting-state activity can be decomposed into a number of separate networks, some of
which are recruited when performing attention-demanding tasks. Spontaneous thought
during rest may engage additional brain areas that are not active during task performance
and are not part of the default mode network, and therefore are not attenuated during task
engagement. The medial prefrontal cortex (mPFC) may encode predictions and prediction
errors even when the predicted outcomes are not contingent on prior actions [106,107].
Garofalo et al. [106] revealed that the mediofrontal negativity encodes the unexpected
timing of outcomes during a task with no action requirement. The fronto-striatal loops
involved in flexible behavioral adaptation could be differentiated in a cortical and subcorti-
cal component. Future studies might explore whether these differences can be related to
the activation of different brain networks [108]. Furthermore, recent findings have shown
that DMN maintains both stability and flexibility naturally and during task-based recog-
nition, and DMN is a causal outflow network in both memory encoding and recall [109].
These findings provide new insights into the electrophysiological foundation of DMN and
demonstrate the electrophysiological composition of DMN during cognitive work in a
common large network framework.

QEEG during the resting state can provide information about the balance between
large-scale functional brain networks [110]. TGC can play a functional role in multi-scale
neuronal communication coordination as a neural correlate that provides information from
large-scale functional brain networks to local cortical processing regions [111]. Therefore,
our results suggest that resting-state activation and task condition deactivation can be
tracked by shifts in TGC at the cortical surface and can reflect the degree of interactions
across active neuron clusters of brain network [111,112].

5. Limitations and Future Directions

This study has certain limitations, including the wide age range (1841 years old), and
the subjects all being healthy adults, meaning children and adolescent were not assessed.
Thus, our results may not be applicable to other populations. Although no significant age
effects were observed in the data, future studies with children and adolescent participants
remain an important target for research. Since this study investigated neuronal interactions
in healthy participants, TGC for clinical symptoms was not evaluated. Future studies in
patient groups com-pared to controls are needed to confirm the relationship between TGC
and working memory performance in clinical samples.

Complex measures of WM recruit multiple subprocesses, making it difficult to isolate
specific contributions of putatively independent subsystems [113]. As different EEG fea-
tures are thought to index different WM processes [114,115], we evaluated an independent
single memory subprocess using the TGC measured at the maintenance stage to distinguish
these functions. In this way, when process-separated VWM tasks are used, EEG features
can be evaluated more specifically, and different results can be yielded when evaluating
their relationship to WM performance. For example, TGC is proposed to be involved in
encoding of WM items. This study remains limited in that its results cannot be generalized
to all kinds of memory processes, as it focused solely on the maintenance of VWM. There-
fore, future studies are necessary to validate these findings by employing additional single
domain WM tasks and to investigate other forms of cross—frequency coupling, not focusing
exclusively on gamma and theta bands.
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6. Conclusions

Few research studies have focused on the relationships between cognitive function
and the functional role of resting-state TGC. This study investigated neuronal interaction
in healthy participants using an evidence-based, neurophysiological measure of TGC. This
is the first study to demonstrate that different analyses of power spectra and TGC evaluate
different aspects of cognitive processes. Through posterior fast oscillatory activity nesting
into the phase of frontal theta wave, long-range networks can be efficiently either coupled or
decoupled, respectively. Based on this mechanism, our results identify neural mechanisms
for efficient coordination of competing brain networks in the human brain. Our results
provide evidence that TGC may constitute a mechanism for neuronal communication
between distant brain regions and frequencies not only during WM maintenance but also
during resting-state. The TGC appears to reflect the switching that reflects the balance
of resting state and task-related brain networks activity. We suggest that the degree of
interactions between active neuron clusters of brain networks can be evaluated through the
MI of TGC and resting-state activation and task dependent deactivation can be tracked by
shifts in TGC at the cortical surface.
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