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Abstract: Brain neural activity decoding is an important branch of neuroscience research and a key
technology for the brain–computer interface (BCI). Researchers initially developed simple linear
models and machine learning algorithms to classify and recognize brain activities. With the great
success of deep learning on image recognition and generation, deep neural networks (DNN) have
been engaged in reconstructing visual stimuli from human brain activity via functional magnetic
resonance imaging (fMRI). In this paper, we reviewed the brain activity decoding models based on
machine learning and deep learning algorithms. Specifically, we focused on current brain activity
decoding models with high attention: variational auto-encoder (VAE), generative confrontation
network (GAN), and the graph convolutional network (GCN). Furthermore, brain neural-activity-
decoding-enabled fMRI-based BCI applications in mental and psychological disease treatment are
presented to illustrate the positive correlation between brain decoding and BCI. Finally, existing
challenges and future research directions are addressed.

Keywords: brain decoding; variational autoencoder (VAE); generative adversarial network (GAN);
graph convolutional networks (GCN); functional magnetic resonance imaging (fMRI); brain–computer
interface (BCI)

1. Introduction

In recent years, the concept of the brain–computer interface has gradually entered
the public’s field of vision and has become a hot topic in the field of brain research. Brain
neural activity decoding is a key technology for the brain–computer interface. Therefore,
this paper first surveys research in the field of visually decoding brain neuronal activity, ex-
plains the strengths and weaknesses of these studies, and updates recent research progress
and potential clinical applications of brain–computer interfaces in psychotherapy. Finally,
potential solutions are proposed for the problems existing in the current brain activity
decoding models. Functional magnetic resonance imaging (fMRI) is a new neuroimaging
method. Its principle is to use magnetic resonance imaging to measure the changes in
hemodynamics caused by neuronal activity. From the perspective of neuroscience and neu-
roimaging, functional magnetic resonance imaging can be used to decode the perception
and semantic information of the cerebral cortex in a non-invasive manner [1]. The spatial
resolution of fMRI is high enough, while the noise contained in the measurement of the
brain activity is relatively small [2]. The real-time fMRI monitors the activity state of the
cerebral cortex through the blood-oxygen-level-dependent (BOLD) variation induced by
brain neural activity and simultaneously collects and analyzes the BOLD signals of the
brain [3,4]. In recent years, more and more researchers have adopted real-time fMRI to in-
vestigate the brain’s self-regulation and the connection among different brain regions [5–7].
Compared with Electroencephalogram (EEG) [2,8–11], fMRI has higher spatial resolution
and suffers from lower noise. Therefore, decoding brain neural activity with fMRI data
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has become more popular [12–16]. Contrary to the visual encoding model [17–20], the
decoding model predicts the visual stimuli through the neural responses in the brain. The
current research on the decoding of visual stimuli can be divided into three categories:
classification, recognition, and reconstruction.

The difficulty in brain decoding is the reconstruction of visual stimuli through the
cognition model of the brain’s visual cortex, as well as learning algorithms [21–24]. The
initial research on reconstructing visual stimuli used retinal shadows [25,26] or fMRI [12]
to observe the response of the visual cortex and map a given visual stimuli to the brain
neural activity linearly. These studies considered the reconstruction of the visual stimulus
as a simple linear mapping problem between the monomer voxels and brain activities.
Then, the researchers further used multi-voxel pattern analysis (MVPA) combined with
the machine learning classification algorithms to decode the information from a large
number of voxel BOLD signals [14,16,27–29]. For example, multi-voxel patterns were used
to extract multi-scale information from fMRI signals to achieve a better performance of the
reconstruction [29]. According to the sparsity of the human brain’s processing of external
stimuli, ref. [14] added sparsity constraints to the multivariate analysis model of Bayesian
networks to quantify the uncertainty of voxel features [16]. Because of the diversity of
natural scenes and the limitations of recording neuronal activities in the brain, some studies
try to include the a priori of natural images in multiple analysis models to reconstruct some
simple images [23,30,31]. Using two different coding models to integrate the information
of different visual areas in the cerebral cortex and based on a large number of image priors,
ref. [31] reconstructed natural images from fMRI signals for the first time. In addition, the
researchers also used machine learning [32] to decode the semantic information of human
dreams [33] and facial images [34]. In order to trace the reversible mapping between
visual images and corresponding brain activity, ref. [22] developed a Bayesian canonical
correlation analysis (BCCA) model. However, its linear structure makes the model unable
to present multi-level visual features, and its spherical covariance assumption cannot
meet the correlation between fMRI voxels [21]. Ref. [24] introduced a Gaussian mixture
model to perform percept decoding with the prior distribution of the image, which can
infer high-level semantic categories from low-level image features by combining the prior
distribution of different information sources [24]. Moreover, ref. [35] explored the impact
of brain activity decoding in different cerebral cortex areas. Researchers believe that the
high-level visual cortex, i.e., the ventral temporal cortex, is the key to decoding the semantic
information and natural images from brain activity [31].

Significant achievements have been made in image restoration and image super-
resolution with deep learning algorithms. The structure of deep neural networks (DNN) is
similar to the feedforward of the human visual system [36], so it is not surprising that DNN
can be used to decode the visual stimulus of the brain activity [30,37,38] mapped multi-level
features of the human visual cortex to the hierarchical features of a pre-trained DNN, which
can make use of the information from hierarchical visual features. Ref. [37] combined deep
learning and probabilistic reasoning to reconstruct human facial images through nonlinear
transformation from perceived stimuli to latent features with the adversarial training of
convolutional neural networks.

Therefore, this paper surveys the deep neural networks used in visual stimulus decod-
ing, including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),
and Graph Convolutional Neural Networks (GCN). Deep neural networks, especially deep
convolutional neural networks, have proven to be a powerful way to learn high-level
and intermediate abstractions from low-level raw data [39]. Researchers used pre-trained
CNN to extract features from fMRI data in the convolutional layer [28,38,40]. Furthermore,
ref. [41] adopted an end-to-end approach and trained the generator directly using fMRI
data. The feature extraction process of RNN is similar to that of CNN, but the process is
not affected by the input time sequence [30]. The long short-term memory model (LSTM) is
a typical RNN structure and is also used to decode brain activity [42–44]. However, RNN
only considers the time series of the BOLD signal and ignores spatial correlations between
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different functional areas of the brain [30]. GCN can investigate the topological structure
of the brain functional areas and then predict the cognitive state of the brain [45,46]. With
limited fMRI and labeled image data, the GCN-based decoding model can provide an
automated tool to derive the cognitive state of the brain [47].

Owing to the rapid adoption of deep generative models, especially Variational Auto-
encoders (VAEs) and Generative Adversarial Networks (GANs), a large number of re-
searchers have been encouraged to study non-natural image generation through VAEs and
GANs [2,48].

VAE has a theoretically backed framework and is easy to train. Traditional methods
usually separated encoding and decoding processes. The authors of [49] thought that the
encoding and decoding models should not be mutually exclusive, and the prediction can
be more accurate through an effective unified encoding and decoding framework. VAE
is such a two-way model, which composes of an encoder, a decoder, and latent variables
in between. VAE is trained to minimize the reconstruction error between the encoded–
decoded data and the initial data [19,23,38]. Instead of taking an input as a single point,
VAE takes the input as a distribution over the latent space [50] and naturally represents
the latent space regularization. The encoder learns latent variables from the input, and
the decoder generates an output based on samples of the latent variables. Given sufficient
training data, the encoder and the decoder are trainable altogether by minimizing the
reconstruction loss and the Kullback–Leibler (KL) divergence between the distributions of
latent variables and independent normal distributions. However, the synthesized image
derived from VAE lacks details [48]. At present, some researchers have tried to reconstruct
the visual stimuli from the associated brain activities based on VAE [21,38,48,51].

GAN is widely used for the images synthesization [52,53] and image-to-image con-
versions [54,55]. The advantage of GAN is that the Markov chain is no longer needed,
and the gradient can be obtained by back propagation. Various factors and interactions
can be incorporated into the model during the learning process without inference [56].
GAN can synthesize relatively clear images, but the stability of training and the diversity
of sampling are its major problems [48]. In brain decoding, researchers have successfully
applied GAN-based models to decode natural images from human brain activity [57–61].
Although GAN can be used to generate very good images, the quality and variety of the
images reconstructed from brain activity data are quite limited [62]. The significance of
the generative models lies in the representation and manipulation of the high-dimensional
probability distributions [63]. The generative model can be trained with lossy data (some
samples are unlabeled) and be performed by semi-supervised learning, which reduces the
difficulties of sampling the brain data [63].

Studying brain decoding intends to create brain–computer interfaces, which uses the
brain neuron signals to control the device in real time [30], such as controlling the robotic
arm or the voice generator. Another goal of studying brain neuron decoding is to better
understand the cognitive structure of the brain by constructing a decoding model [57]. For
people with mental illness, neuro-feedback therapy can help patients restore healthy cogni-
tion. The fMRI brain–computer interface (fMRI-BCI) collects signals in a single or multiple
regions of interest (ROI) in the brain; researchers used a linear discriminant classifier [64] and
a multi-layer neural network [14] to classify the scanned fMRI signals. Since the differences
in mental activity and physical structure between people results in differences in the number
and location of the active area of each person’s brain’s ROI, multivariate analysis is more
appropriate for decoding brain activity [13,29,65]. The analysis of multi-voxel patterns and
the development of neuro-imaging technology can be applied to the physical examination
and diagnosis and rehabilitation training [13,65]. In order to decode the spiritual and psycho-
logical information in fMRI, ref. [66] used the Support Vector Machines (SVM) to classify and
identify a variety of different emotional states. The participants’ brain state decoded from
fMRI signals can be regarded as a BCI control signal, which provides the neuro-feedback
to the participants [65]. However, many technical challenges still remain in fMRI brain



Brain Sci. 2022, 12, 228 4 of 24

decoding, i.e., the noise included in fMRI signals and the limited high-resolution fMRI signal
data set [67].

After determining the topic of this survey, we first conduct a literature search. The
database for the literature search is the Web of Science Core Collection, the keywords
are fMRI, Brain decoding, BCI, and the time span is 1995 to 2020. Then, we performed
literature screening. We imported the literature information retrieved in the previous step
into CiteSpace (data mining software) for clustering analysis, and then, according to the
high-frequency nodes (representing highly cited literature) in the clustering results and high
betweenness centrality nodes (representing documents that form a co-citation relationship
with multiple documents), we screened out 120 articles that met the requirements.

The rest of the paper is organized as follows. Section 2 introduces the basics of the
brain activity decoding model. Section 3 introduces the hot research interests and specific
examples in this area. Section 4 introduces the specific medical applications of fMRI-BCI.
Section 5 analyzes the current challenges in using fMRI to decode brain activity and possible
solutions. Section 6 is a summary of the survey.

2. Brain Decoding Based on Learning

Visual pathway is a typical illustration of brain encoding and decoding with regard
to visual stimuli. Visual pathway processes visual information after the retina receiving
a visual stimuli [68]. The optic nerve is responsible for transmitting the special sensory
information for vision. The optic nerves from each eye unite to form the optic chiasm,
then to the lateral geniculate body, which projects the visual information to the primary
visual cortex. Figure 1 illustrates how the visual cortex of brain encodes the visual infor-
mation and reflected by an fMRI. Additionally, the decoding process is the inverse of the
encoding process. In this section, we elaborate fMRI brain decoding models based on
machine learning.

Right visual field 

Left visual field Left eye

Right eye

Optic 

Nerve

Brain

Optic Chiasm

Lateral 

Geniculate Nucleus

Primary 

Visual Cortex

fMRI

Cortex Func.
Optic Nerve

Func.
Eye Func.

Brain encoding 

Brain decoding 

Figure 1. Visual pathway.

2.1. The Relationship between Brain Encoding and Decoding

The encoding and decoding of brain neuron activity are the two fundamental aspects
of human’s cognitive visual processing system [15,69]. The encoding process predicts
brain activities based on visual stimuli aroused by the external environment [21]. Contrary
to the encoding process, the decoding process analyzes brain activities to retrieve the
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associated visual stimuli [21]. The encoding process describes how to obtain information
in voxels corresponding to one region, and once the encoding model is constructed, one
can derive the decoding model using Bayesian derivation [15]. Moreover, decoding model
can be applied to verify the integrity of encoding process [15]. The encoding model
can be trained to predict the representations of neuronal activity, which in turn helps to
extract features from the decoding model, thereby improving the decoding performance of
brain activities [70]. Therefore, encoding and decoding models are not mutually exclusive
because the prediction can be performed more accurately by an effective unified encoding
and decoding framework. Theoretically, the general linear model (GLM) can be used to
predict the voxel activity, so GLM can be regarded as an encoding model [49]. The review
papers that survey brain activity encoding models are listed in Table 1.

Table 1. Brain encoding models.

Literature Objective Model/Method Explanation

[71] Predict cortical re-
sponses

A pre-trained DNN

Train a nonlinear mapping from vi-
sual features to brain activity with
a pre-trained DNN (i.e., AlexNet)
using transfer learning technique.

[15]
Representation of
information in the
visual cortex

GLM

A systematic modeling method is
proposed to estimate an encoding
model for each voxel and then to
perform decoding with the esti-
mated encoding model.

[18]

Predict responses
to a wide range of
stimuli of the in-
put images

Two-stage cascade model

This encoding model is a two-
stage cascade architecture of a lin-
ear stage and nonlinear stage. The
linear stage involves calculations
of local filters and division normal-
ization. The nonlinear stage in-
volves compressive spatial summa-
tion and a second-order contrast.

[72]

Predict the re-
sponse of a single
voxel or brain
neurons in a
region of interest
in any dimen-
sional space of the
stimulus

Receptive Field (rPF)

The encoding model quantifies the
uncertainty of neuron parameters,
rPF size, and location by estimating
the covariance of the parameters.

[20]
Map the brain ac-
tivity to natural
scenes

Feature-weighted
Receptive field

This method converts visual stim-
uli to corresponding visual features
and assumes that spatial features
are separable and uses visual fea-
ture maps to train deep neural net-
works. The pre-trained deep neural
network weights the contribution
of each feature map to voxel activ-
ity in brain regions.

2.2. Machine Learning and Deep Learning Preliminaries

We briefly describe the traditional machine learning and deep learning methods used
in brain decoding models.

2.2.1. Machine Learning

The mapping of activities in the brain to cognitive states can be treated as a pattern
recognition problem. In this regard, the fMRI data are a spatial pattern, and thus a statistical



Brain Sci. 2022, 12, 228 6 of 24

pattern recognition method (e.g., a machine learning algorithm) can be used to map these
spatial patterns to instantaneous brain states. The machine learning algorithms are used to
learn and classify multivariate data based on the statistical properties of the fMRI data set.
Surveys on brain decoding models based on machine learning are listed in Table 2. In the
surveyed literature, we summarized the traditional machine learning methods applied to
brain decoding as follows:

(1) Support vector machine (SVM) is a linear classifier, which aims to find the largest
margin hyperplane to classify the data [64]. The distance between the data of different
categories is maximized through maximal margin. SVM can be extended to act as a
nonlinear classifier by employing different kernel functions. However, fMRI data are highly
dimensional with few data points, hence a linear kernel is sufficient to solve the problem.

(2) Naive Bayesian classifier (NBC) is a probabilistic classifier, which is based on
Bayes theorem and strong independent assumptions between features. NBC is widely used
in brain decoding models. When processing fMRI data, NBC assumes that each voxel’s
fMRI is independent. For instance, the variance/covariance of the neuronal and hemo-
dynamic parameters are estimated on a voxel-by-voxel basis using a Bayesian estimation
algorithm, enabling population receptive fields (pRF) to be plotted while properly repre-
senting uncertainty about pRF size and location based on fMRI data [72]. In addition, NBC
is often combined with other methods, such as Gaussian mixture models and convolutional
neural networks.

(3) Principal Component Analysis (PCA) maps data to a new coordinate system
through orthogonal linear transformation [73]. When processing high-dimensional fMRI
data, PCA is used as a dimensionality reduction tool to remove noise and irrelevant features,
thereby improving the data processing speed. In addition, the risk of over-fitting is avoided
due to the reduction in training data in order to improve the generalization ability of the
model [40].

Table 2. Brain decoding model based on machine learning.

Literature Objective Model/Method Explanation

[12] Classification of visual stimuli de-
coded from brain activity

GLM
For different types of stimuli (objects and pictures), the
cerebral cortex has different response patterns through
the fMRI of the abdominal temporal cortex.

[27] fMRI and brain signals classification MVPA
For fMRI in the pre-defined ROI of the cerebral cortex, the
activated mode of fMRI is classified by the multivariate
statistical pattern recognition.

[64] fMRI signals classification SVM
SVM classifier finds the best area in the cerebral cortex
that can distinguish the brain state, and then SVM is
trained to predict brain state through fMRI.

[14] Classify fMRI activity patterns MVPA
Bayesian method

The Gaussian Naive Bayes classifier has high classifica-
tion accuracy. Because it assumes that the importance
of each voxel is the same and it does not consider the
sparsity constraint, its interpretability is poor.

[29] Reconstruct geometric images from
brain activity

MVPA

Based on a modular modeling method, the multi-voxel
pattern of fMRI signals and multi-scale vision are used
to reconstruct geometric image stimuli that composes of
flashing checkerboard patterns.

[31] Reconstruct the structure and seman-
tic content of natural images

Bayesian method

Use Bayes’ theorem to combine encoding model and
prior information of natural images to calculate the prob-
ability of a measured brain response due to the visual
stimuli of each image. However, only a simple correla-
tion between the reconstructed image and the training
image can be established.
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Table 2. Cont.

Literature Objective Model/Method Explanation

[16] Improve fMRI Bayesian classifier
accuracy

MVPA
Bayesian method

The sparsity constraint is added to the multivariate anal-
ysis model of the Bayesian network to quantify the un-
certainty of voxel features.

[23] Reconstruct spatio-temporal stimuli
using image priors

Bayesian method
This method used a large amount of videos as a priori
information and combines the videos with a Bayesian
decoder to reconstruct visual stimuli from fMRI signals.

[33] Decoding human dreams SVM

SVM classifier is trained to map natural images to brain
activities, and a vocabulary database is used to label
the images with semantic tags to decode the semantic
content of dreams.

[22]
Decode the reversible map-
ping between brain activity and
visual images

BCCA

The encoding and decoding network is composed of gen-
erated multi-view models. The disadvantage is that its
linear structure makes the model unable to express the
multi-level visual features of the image, and its spherical
covariance assumption cannot understand the correla-
tion between fMRI voxels, making it more susceptible
to noise.

[34] Dimensionality reduction of high-
dimensional fMRI data

PCA

PCA reduces the dimensionality of the facial train-
ing data set, and the partial least squares regres-
sion algorithm maps the fMRI activity pattern to the
dimensionality-reduced facial features.

[24] Infer the semantic category of the re-
constructed image

Bayesian method

Propose a mixed Bayesian network based on the Gaus-
sian mixture model. The Gaussian mixture model rep-
resents the prior distribution of the image and can infer
high-order semantic categories from low-order image
features through combining the prior distributions of
different information sources.

[28] Predict object categories in dreams MVPA
CNN

Based on CNN, train a decoder with the data set of the
normal visual perceptions, and decode the neural activity
to the object category. This process involves two parts:
1. map the fMRI signal to the feature space; 2. using
correlation analysis to infer the object category based on
the feature space.

[44] Decode visual stimuli from human
brain activity

RNN
CNN

Use CNN to select a set of small fMRI voxel signals
as the input and then use RNN to classify the selected
fMRI voxels.

[41] Capture the direct mapping between
brain activity and perception

CNN The generator is directly trained with fMRI data by an
end-to-end approach.

[40] Reconstruct dynamic video stimuli CNN
PCA

The CNN-based coding model extracts the linear com-
bination of the input video features and then uses
PCA to reduce the dimensionality of the extracted high-
dimensional feature space while retaining the variance
of 99% of the principal components.

2.2.2. Deep Learning

The hierarchical structure of DNN is similar to the feed-forward of the human visual
system, and DNN can be used to encode external stimuli [36]. In particular, DNN is used
to explore how the brain maps the complex external stimulus to corresponding areas in the
cerebral cortex, which quantitatively shows that an explicit gradient for feature complexity
exists in the ventral pathway of the human brain [74]. In the surveyed literature, DNN
models are summarized as follows:

(1) Recurrent Neural Network (RNN) is a generalization of a feedforward neural
network that has an internal memory. The hidden nodes of a RNN form a cyclic structure,
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and the state of the hidden layer at each stage depends on its past states. This structure
allows RNN to save, memorize and process complex signals in the past for a long time. RNN
can process variable length sequences of inputs, which occurs in neuroscience data [30].
The main advantage of using RNNs instead of standard neural networks is that the weights
are shared between neurons in hidden layers across time. Therefore, RNN can process
the previously input sequence, as well as the upcoming sequence to explore the temporal
dynamic behavior. Therefore, RNNs can be applied to decode brain activity since they can
process correlated data across time [57].

(2) Convolutional Neural Network (CNN) consists of three parts: convolution layers,
pooling layers, and fully connected layers. CNNs can handle many different input and
output formats: 1D sequences, 2D images, and 3D volumes. The most important task of
the CNN is to iteratively calibrate the network weights through the training data, also
known as the back propagation algorithm. For decoding different neurons activities, it
can be realized via weights sharing across convolutional layers for learning a shared set of
data-driven features [30]. Moreover, the generative models VAE and GAN based on CNN
have attracted much attention recently. The deep generative models for brain decoding are
listed in Table 3.

Table 3. Deep generative models based on VAE or GAN.

Literature Objective Model/Method Explanation

[21] Reconstruct perception im-
ages from brain activity

Deep Generative Multiview
Model (DGMM)

DGMM first uses DNN to extract the image’s hi-
erarchical features. Based on the fact that the hu-
man brain’s processing model for external stimuli is
sparse, a sparse linear model is used to avoid over-
fitting of fMRI data. The statistical relationships be-
tween the visual stimuli and the evoked fMRI data
are modeled by using two view-specific generators
with a shared latent space to obtain multiple corre-
spondences between fMRI voxel patterns and image
pixel patterns. DGMM can be optimized with an
automatically encoded Bayesian model [32,75].

[37] Reconstruct facial images Deep Adversarial Neural De-
coding (DAND)

DAND uses the maximum posterior estimation to
transform brain activity linearly to the hidden fea-
tures. Then, the pre-trained CNN and adversar-
ial training are used to transform the hidden fea-
tures nonlinearly to reconstruct human facial images.
DAND showed good performance in reconstruct-
ing the details of the face’s gender, skin color, and
facial expressions.

[48] Improve the quality of recon-
structed images

Introspective Variational Au-
toencoders (IntroVAE)

IntroVAE generator and inference model can be
jointly trained in a self-assessment manner. The gen-
erator takes the output of the inference model noise
as the input to generate the image. The inference
model not only learns the potential popular structure
of the input image but also classifies the real image
and the generative image, which is similar to GAN’s
adversarial learning.

[59] Reconstruct natural images
from brain activity

Deep Convolution Genera-
tive Adversarial Network
(DCGAN)

DCGAN uses a large natural image data set to train a
deep convolutional generation confrontation network
in an unsupervised manner, and learn the potential
space of stimuli. This DCGAN is used to generate
arbitrary images from the stimulus domain.
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Table 3. Cont.

Literature Objective Model/Method Explanation

[60] Reconstruct the visual stim-
uli of brain activity GAN

They used an encoding model to create surrogate
brain activity samples, with which the generative
adversarial networks (GANs) are trained to learn a
generative model of images and then generalized to
real fRMI data measured during the perception of
images. The basic outline of the stimuli can finally be
reconstructed.

[50] Reconstruct visual stimuli
(video) of brain activity VAE

VAE is trained with a five-layer encoder and a five-
layer decoder to learn visual representations from a
diverse set of unlabeled images in an unsupervised
way. VAE first converts the fMRI activity to the latent
variables and then converts the latent variables to
the reconstructed video frames through the VAE’s
decoder. However, VAE could only provide relatively
lower accuracy in higher-order visual areas compared
to CNN.

[38] Reconstruct color images and
simple gray-scale images GAN

A pre-trained DNN decodes the measured fMRI pat-
terns into the hierarchical features that can represent
the human visual layering mechanism. The DNN
network extracts image features, and then compares
them with the decoded human brain activity features,
which guides the deep generator network (DGN) to
reconstruct images and iteratively minimizes the er-
rors of the two. A natural image prior introduced
by an enhanced DGN semantically details to the re-
constructions, which improves the visual quality of
generated images.

[51] Reconstruct the visual image
from brain activity

A structured multi-output re-
gression (SMR) model and In-
trospective Conditional Gen-
eration (ICG)

Decodes the brain activity to the intermediate CNN
features and then maps these intermediate features
to visual images. Combining maximum likelihood
estimation and adversarial learning, ICG model uses
divergence and reconstruction error for adversarial
optimization, which can evaluate the difference be-
tween the generated image and the real image.

[76]
Use semantic features
to add details to the
generated image

Shape-Semantic GAN

This framework consists of a linear shape decoder,
a semantic decoder based on DNN, and an image
generator based on GAN. The output of the shape
decoder and the semantic decoder are input to the
GAN-based image generator, and the semantic fea-
tures in GAN are used as a supplement to the image
details to reconstruct high quality images.

[57] Reconstruct natural images
from brain activity

Progressively Growing GAN
(PG-GAN)

This model adds a priori knowledge of potential fea-
tures to (PG-GAN). The decoder decodes the mea-
sured response of the cerebral cortex into the latent
features of the natural image and then reconstruct the
natural image through the generator.

[58] Reconstruct natural images
from brain activity

Similarity-conditions gener-
ative adversarial network
(SC-GAN)

SC-GAN not only extracts the response patterns of
the cerebral cortex to natural images but also captures
the high-level semantic features of natural images.
The captured semantic features is input to GAN to
reconstruct natural images.

(3) Graph Convolutional Network (GCN): At present, most deep-learning-based
brain decoding research has not considered the function correlations and dynamic temporal
information between human brain regions [45]. For brain decoding, GCN can consider
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the connections among brain regions when performing brain decoding via fMRI [77].
Unlike CNN, GCN extracts features effectively, even with completely random initialized
parameters [78]. Ref. [46] extracted fMRI data features with GCN to predict brain states.
Given labeled data, compared to the other classifiers, GCN performs better on a limited
data set. In this survey, GCN-based brain decoding models are listed in Table 4.

Table 4. GCN-based brain decoding.

Literature Objective Model/Method Explanation

[45] Localize brain regions and
functional connections

Spatio-Temporal Graph Con-
volution Networks (ST-GCN)

Based on ST-GCN, the representation extracted from
the fMRI data expresses both temporal dynamic infor-
mation of brain activity and functional dependence
between brain regions. Through training ST-GCN, this
method can learn the edge importance matrix on short
sub-sequences of BOLD time series to improve the pre-
diction accuracy and interpretability of the model.

[46]
Decode the consciousness
level from cortical activity
recording

BrainNetCNN
BrainNetCNN is a GCN-based decoding model, which
uses multi-layer non-linear units to extract features
and predict brain consciousness states.

[47] Predict human brain cogni-
tive state GCN

The brain annotation model uses six graph convolu-
tional layers as feature extractors and two fully con-
nected layers as classifiers to decode the cognitive
state of the brain, taking a short series of fMRI data
as the input, spreading the information in the an-
notation model network, and generating high-level
domain-specific graph representations to predict the
brain cognitive state.

3. Brain Decoding Based on Deep Learning

In this section, the principles and specific applications of VAE, GAN, and GCN that
have received the most attention in brain decoding are introduced.

3.1. VAE-Based Brain Decoding

VAE is a generative model that contains hidden variables, and it combines variational
Bayesian estimation with a neural network, which learns variational deduction parameters
and thus obtains the optimized inference through maximum likelihood (ML) or Max
a posteriori (MAP) [32,79]. Let x represent the input image and z represent the latent
variables. Latent variables can be considered as dependencies between features in multiple
dimensions. Latent variables reconstruct the data x through a generative network, while
generates new data that do not exist in the original data. For the image data set, latent
variables z are the implicit factors that determine the features of an image x. The inference
network in VAE infers hidden variables z. The process of variational inference is also a
process of dimensionality reduction [79]. The generative network in VAE uses the randomly
sampled latent variables z to generate an image x [32].

φ is an inferred model that x infers z; θ is a generative model where z generates x. The
marginal likelihood of an input image x can be written as:

logpθ(x) = DKL[qφ(z|x)‖pθ(x|z)] + L(θ, φ; x). (1)

Given x, the probability that φ infers z is qφ(z|x); given z, the probability that θ
generates x is pθ(x|z). The first term is a non-negative Kullback–Leibler (KL) difference,
so L(θ, φ; x) can be considered as the lower bound of Equation (1). The learning rules for
VAE are to maximize Equation (1), which is equivalent to maximizing L(θ, φ; x), as shown
in Equation (2):
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L(θ, φ; x) = −DKL[qφ(z|x)‖pθ(z)]

+ Ez∼qφ(z|x)[log(pθ(x|z))] (2)

In Equation (2), the first term is the Kullback–Leibler (KL) difference between the
distribution of latent variable z inferred from x and the prior distribution of z; the second
term is the expectation of the log-likelihood that the input image x is generated by z sam-
pled from the inferred distribution qφ(z|x). If qφ(z|x) follows a multivariate distribution
with unknown expectation µ and variance σ, the objective function is differentiable with
respect to (θ, φ, µ, σ) [32]. The parameters of VAE can be optimized by stochastic gradient
descent [75]. The brain learns from experience in an unsupervised way. Likewise, VAE
uses deep neural networks to learn representations from large amounts of data in such an
unsupervised way as the brain does [50]. Furthermore, VAE-based brain decoding models
can be found in [50,51,67].

Du et al. [51] proposed a structured deep generative neural decoding model, which
consists of a structured multiple-output regression model (SMR) and an introspective
conditional generation (ICG) model, to reconstruct visual images from brain activity, as
shown in Figure 2. This conditional deep generative model (DGM) combines the advantages
of VAE and GAN to reconstruct high-quality images with stable training. Specifically, SMR
calculates the correlation between fMRI voxels on the CNN units, as well as the correlation
between the output of each linear model. Then, the ICG model is proposed to decode these
correlated CNN features extracted by SMR, inspired by the IntroVAE [48].
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Figure 2. Structured deep generative neural decoding model [51].

The key point of ICG is the IntroVAE that modifies the LOSS function of VAE and
allows the encoder to perform a discriminator’s function in a GAN without introducing a
new network. The ICG model can estimate the difference between the generated image
and the training data in an introspective way. Similar to the original VAE, the training of
ICG is to optimize encoder φ and decoder θ iteratively until convergence:

θ̂ = arg min
θ

[LAE + αDKL(qφ(z|x f , h)‖p(z))], (3)

φ̂ = arg min
φ

[LAE + βDKL(qφ(z|x, h)‖p(z))− αDKL(qφ(z|x f , h)‖p(z))]. (4)

where h represents the output CNN features from SMR, x represents the input training
image, z represents the hidden variable, and z ∼ p(z) or z ∼ qφ(z|x, h). x f is a fake
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image generated by pθ(x|z, h). LAE is the error of VAE reconstruction. For real image
data points, Equations (3) and (4) cooperate with each other rather than conflict with each
other, which can be considered as a conditional variational autoencoder (CVAE) [80]. In
this case, DKL(qφ(z|x f , h‖p(z)) in Equations (3) and (4) does not work. The encoder and
decoder cooperates to minimize the reconstruction loss LAE. Equation (4) regularizes the
encoder by matching qφ(z|x, h) with p(z). For fake image data points, Equations (3) and (4)
confront with each other, which can be considered as a conditional generative adversarial
network (CGAN) [56]. From Equations (3) and (4), we can see that DKL(qφ(z|x f , h)‖p(z))
are mutually exclusive during the training process. Specifically, Equation (3) hopes to match
posterior qφ(z|x f , h) with prior distribution p(z) to minimize DKL(qφ(z|x f , h)‖p(z)), while
Equation (4) hopes to match posterior qφ(z|x f , h) with prior distribution p(z) to maximize
DKL. Generally, Equation (3) (generative model) tends to generate a realistic image as much
as possible so that Equation (4) (discrimination model) cannot discriminate its authenticity.
The α and β in Equations (3) and (4) are parameters, which balance CVAE and CGAN.

3.2. GAN-Based Brain Decoding

GAN consists of a generative network and a discriminant network, and tends to gener-
ate high-quality pictures through adversarial training of the discriminator [81]. Specifically,
the discriminator distinguishes whether the sample comes from the generated model or
the probabilistic model of the training data. The generator is trained to generate realistic
pictures for maximizing the error rate of the discriminator. The two models can theoretically
achieve the Nash equilibrium (the probability out of the discriminator is 0.5) for creating
a remarkably nature-like picture. Let D and G denote the discriminator and generator,
respectively. The optimization objective function of GAN can be expressed by Equation (5):

min
G

max
D

(D, G) = Ex∼pdata(x)[log D(x)] +En∼pn(n)[log(1− D(G(n)))]. (5)

The distribution of the real image data x is pdata(x), and the distribution of the artificial
noise variable n is pn(n). The input variable of G is n, which outputs the distribution of the
real data. The input of D is the real data x, which outputs a scalar D(x), a probability of
the data being real. The objective function maximizes D(x) by training D and minimizes
log(1− D(G(n)) by training G. Because G is a differentiable function, the gradient-based
optimization algorithm can be used to obtain a global optimal solution [82].

A shape-Semantic GAN is proposed in [76], which consists of a linear shape decoder, a
semantic decoder based on DNN, and an image generator based on GAN. The fMRI signals
are input into the shape decoder and semantic decoder. The shape decoder reconstructs the
contour of the visual image from the lower visual cortex (V1, V2, V3), and the semantic
decoder is responsible for extracting the semantic features of the visual image in the higher
visual cortex (FFA, LOC, PPA). The output of the shape decoder is input to the GAN-based
image generator, and the semantic features in GAN can compensate the details for the
image to reconstruct high-quality images.

The linear shape decoder trains models for the activities of V1, V2, and V3 viewed from
fMRI, and combines the predicted results linearly to reconstruct the shape of the natural
image. The combined training model of the shape decoder is shown in Equation (6):

rsp(i, j) = ∑ wk
ij p
∗
k (i, j), k = V1, V2, V3, (6)

where wk
ij represents the weight of the image pixel at position (i, j), and p∗k (i, j) represents

the predicted image pixel at position (i, j). It can be seen from Equation (6) that the decoded
image shape rsp is a linearly combination of image pixels p∗k (i, j). The semantic decoder,
consisting of an input layer, two intermediate layers, and an output layer, is a lightweight
DNN model. In the training phase, the high-level visual cortex activity recorded by fMRI is
the input. The Tanh activation function is used to extract semantic features in the middle
layer, and the sigmoid activation function is used to classify the images in the output layer.
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In the final image generation stage, the original GAN can extract high-level semantic
features. However, some low-level features (such as texture) may be lost in the process
of encoding/decoding, which may cause the reconstructed image deformed and blurred.
Therefore, U-Net [83] can be used as the generator, which consists of a pair of a symmetrical
encoder and decoder. The U-Net breaks through the bottleneck of the structure. The U-Net
does not require the low-level features necessarily to reconstruct the image, but it can
extract the high-level features of the image. Moreover, the semantic features can be input to
the U-Net decoder, which is equivalent to optimize a GAN generator with the constraints
of the semantic features and shape features. In particular, the output of the shape decoder
together with the output of the U-Net are input to the discriminator, which compares
the high-frequency structures of the two and thus guides the generator training. Let Gs
represent a U-Net generator, and Dt represent a discriminator. The conditional GAN model
is shown in Equation (7):

L(s, t) = Ladv(s, t) + λimgLimg(s), (7)

where s and t represent the parameters of the generator and discriminator, respectively.
Ladv(s, t) represents the adversarial loss, and Limg(s) and λimg represent the image loss
and weight, respectively. The conditional GAN discriminator is designed to model both
low-frequency structures and high-frequency structures, thereby guiding the generator to
synthesize images with more details.

3.3. Graph Convolutional Neural Networks

Unlike CNN and RNN, Graph Neural Networks (GNN) decode neuronal activity with
brain connectivity [77]. Recently, some researchers have used Graph Convolutional Neural
Networks (GCN) to predict [46] and annotate [47] brain consciousness and then predict the
gender and age of the subjects [45]. When the training data set is quite limited, GCN shows
better decoding performance than other classifiers.

GCN is first proposed in [78]. In the considered fMRI data, there are N nodes, and
each node has d-dimensional features. The nodes’ features form an N × d matrix X. The
relationships between the nodes form an N × N matrix A, known as an adjacency matrix.
X and A are the inputs to the model. The propagation of GCN feature layers can be shown
in Equation (8):

f (H(l), A) = σ(Q̂−
1
2 ÂQ̂−

1
2 H(l)W(l)), (8)

where l is an identity matrix; H represents the feature matrix of each layer; W represents
the initialized parameter matrix; and σ represents a nonlinear activation function. For the
input layer, X is H. The diagonal elements of the relationship matrix A is 0, that is, when
performing inner product with feature matrix H, the node’s own features will be ignored,
which can be solved by Â = A + I. The key of the GCN is the symmetric normalized
Laplacian matrix Q̂−

1
2 ÂQ̂−

1
2 in Equation (8), where the degree matrix Q̂ of Â can be directly

calculated. Therefore, when Â is multiplied by the feature matrix H, the distribution of the
features will not be changed.

However, the methods based on GCN [47] and RNN [43,84] ignore the details of the
fMRI signals and the dependence between different brain functional areas. Inspired by the
work of spatio-temporal graph convolutional network (ST-GCN) developed in [85,86] to
predict the graph structure, ref. [45] applied ST-GCN to brain decoding, where the temporal
graph explores the dynamics brain activity, and the spatial graph explores the functional
connectivity between different brain regions. The input of ST-GCN extracts d-dimensional
spatio-temporal features u from N ROI regions of the brain, thus, u ∈ RN×d. ST-GCN is
composed of three spatio-temporal convolution (ST-GC) layers. The time kernel size of
each ST-GC layer is Γ = 11; the step size is 1; and the drop rate is 0.5. Each ST-GC layer
outputs 64 channels. An edge importance matrix M ∈ RN×N is added between ST-GC
layers. Specifically, when a certain node is spatially convoluted, the contribution of its
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adjacent nodes will be redefined by the row of the edge importance matrix where the node
is located. Then, the 64-dimensional feature vector is generated through global average
pooling and fed into the fully connected layer. The sigmoid activation function is then
used to activate before the loss function calculated the classification probability. After
back propagation, the stochastic gradient descent with a learning rate of 0.001 is used to
optimize the weights in the ST-GC layer. Based on the ST-GCN model, the representation
extracted from the fMRI signal can not only express the variable temporal brain activity
but can also express the functional dependence between brain regions. The experimental
results show that ST-GCN can predict the age and gender of a subject according to the
BOLD signals. Although ST-GCN can consider both the temporal and spatial resolution of
the fMRI signals, they are rarely used in brain decoding [30].

4. fMRI-BCI Application to Psychopsychiatric Treatment

It has greatly promoted the development of fMRI-BCI that rt-fMRI has been widely
used to collect, analyze, and visualize the BOLD brain signals [3]. The fMRI-BCI outputs
the real-time response of the target brain area to the devices to learn the brain areas’
regulations [87]. Different from EEG-BCI, fMRI-BCI can obtain both the temporal and
spatial resolution of the brain neuron activity appropriately, then perform data analysis.
Moreover, fMRI-BCI can calculate the correlation coefficients between voxels in the regions
of interest (ROI) of the brain, as well as identify mental and psychological states [1]. The
fMRI-BCI is a closed-loop system composed of four components: participants, signal
acquisition, signal analysis, and signal feedback. In the signal acquisition stage, fMRI
signals of subjects’ brain activity are obtained by a magnetic resonance scanning machine.
The visual signal components perform fMRI data retrieval, correction processing, and
statistical analysis, and the ROI that needs to be selected on the function diagram will be
labeled. Afterwards, the ROI time series output of the visual signal component is imported
into the signal feedback component, which provides a real-time feedback to the subjects in
a certain way [87,88]. Since fMRI-BCI is able to target the diseased cerebral cortex, it can
be used to treat certain physical and physiological diseases, such as: rehabilitation, mood
disorders, and attention deficit and hyperactivity disorder (ADHD). Although Hinterberger
et al. have proven that visual feedback is the best option to predict brain activity patterns,
the BCI performance will not be affected by the type of feedback, whether it is touch or
hearing [89,90].

4.1. Stroke Rehabilitation

For stroke and epilepsy patients, fMRI-BCI is a potential clinical application in reha-
bilitation treatment to recover patients’ motor and cognitive functions [87,91]. fMRI-BCI
uses neurofeedback (NF) to learn the self-regulation ability of brain regions. The fMRI-BCI
will transfer to the EEG-BCI [92,93], which is more flexible and lower cost. The EEG-BCI
takes the patient’s EEG as the input to recover patients’ motion ability through real-time
brain ROI’s feedback [9,11,94]. In particular, Pichiorri et al. combined BCI with Motor
Imagery (MI) to help stroke rehabilitation using sensorimotor BCIs [95]. This combina-
tion allow one to control external devices through direct brain activity recognition by a
computer, bypassing neuromuscular-based systems (voice, use of a mouse, or keyboard).
Specifically, MI evokes an event-related desynchronization (i.e., a reduction in spectral
power) that occurs within a certain EEG frequency band and primarily in sensorimotor
cortical regions contralateral to the imagined part of the body. EEG signals of the two
groups of subjects are recorded and analyzed with power spectral density, i.e., stronger
desynchronization in the alpha and beta bands. The results showed the group of the
subjects with BCI supported MI had more changes in EEG sensorimotor power spectra,
occurring with greater involvement of the ipsilesional hemisphere, in response to MI of
the paralyzed trained hand. Through functional measurements for stroke recovery, such
as high-density EEG and single-pulse transcranial magnetic stimulation (TMS), visual
guidance, motion-oriented, event-related synchronization, or desynchronization feature
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signals are analyzed as rehabilitation exercise control signals. In addition, the connection
between post-stroke cerebral hemispheres in a certain frequency band is obtained by partial
directed coherence. FMRI-BCI provides patients and therapists with a means to monitor
and control MI, and through rich visual feedback consistent with the image content, it can
promote their adherence to brain exercises and help patients restore motor function.

4.2. Chronic Pain Treatment

Many patients suffering from chronic pain felt that the original pain had not disap-
peared even after the disease was cured. This might be attributed to the function of memory.
Once the memory nerve channel is formed, it is difficult to erase. Therefore, a psychological
treatment plan must be designed to cope with the pain [96]. Rostral Anterior Cingulate Cor-
tex (rACC) is the brain area responsible for the pain perception and regulation. The subjects
can thus control the rACC activation through fMRI feedback learning [97]. Through fMRI
feedback training, the subjects adjust the activity of voxels in rACC, and the degree of pain
will also vary with the activation of the cerebral cortex. The experiments showed that when
there was no fMRI feedback training, the pain of the subjects did not decrease. Guan et al.
set up the comparative experiments to verify the adjustment effect of fMRI-BCI therapy
on pain [98]. They divided the subjects into a testing group and a reference group. In the
testing group, the subjects adjusted the activation of rACC through neurofeedback training,
and the subjects in the reference group received neurofeedback in posterior cingulate cortex
(PCC). The experimental results showed that the subjects in the neurofeedback training
of the rACC area had reduced pain. Therefore, it can be concluded that neurofeedback
training based on fMRI-BCI may be an effective way to relieve chronic clinical pain.

4.3. Emotional Disorders Treatment

Whether in studying, living, or working, one must master the ability to regulate
emotions and respond to setbacks and failures with a positive attitude; otherwise, emotional
disorders may occur. In [99], the participants can regulate BOLD-magnitude in the right
anterior insular cortex. Two different control conditions of non-specific feedback and mental
imagery were set up to confirm that rtfMRI feedback is area-specific. The experiment
of [100] once again verified this conclusion. Twenty-seven participants were divided
into three groups, equally, and the three groups received specific feedback, non-specific
feedback, and no feedback, respectively, of BOLD in the insular area. After each group
received several fMRI training sessions, each group evaluated the disgusting images. The
results of the experiment showed that the participants who received the BOLD feedback
in the insular area had the highest scores on the disgusting images, while the other two
groups did not change significantly, so the mood did not change much. The insular
area plays an important role in mood regulation and may be used in the treatment of
clinical emotional disorders. In addition to the insular area related to emotion regulation,
it has been proved that through behavioral tests, the activity of the amygdala in the
brain is closely related to the generation, recognition, and regulation of emotions and can
autonomously regulate the BOLD activity in the amygdala through fMRI neurofeedback
learning [101,102]. In recent years, a connectivity-neurofeedback method based on fMRI has
been proposed in [103]. After neurofeedback training, participants can automatically adjust
the connectivity between the amygdala and other areas of the brain to enhance their ability
of emotion regulating. Unlike the aforementioned reduction in negative emotions, the
research in [103] aims to enhance positive emotions. Furthermore, fMRI neurofeedback is
used to treat eight patients with major depression [104], which confirmed that fMRI-based
neurofeedback was an effective aid to the current treatment of depression.

4.4. Criminal Psychotherapy

Although more and more researchers have achieved many promising results in the
treatment of mental illness [103,104], however, in modern society, patients with criminal
psychology have a much higher crime rates than mental patients [105]. The current neu-
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robiology field cannot explain the neural mechanism of this disease [87]. It is believed
that regulating the emotion-related areas (such as the amygdala) may cause changes in the
patient’s mental state [106,107]. The development of the new fMRI-BCI to enable criminal
mental patients to self-regulate BOLD activity in their cerebral cortex requires the joint
efforts of neuroscience, psychology, and computer science.

5. Future Directions and Challenges

The challenges to brain decoding can be summarized in three aspects: 1. the ability
of the mapping model between brain activity and visual stimuli; 2. not enough matching
data between visual stimuli and brain activity; 3. fMRI signals interfered by noise [108].
Although previous studies on decoding visual stimuli of brain activity have made great
achievements in classification and recognition, the performance of image reconstruction
needs to be improved [21]. The following sections will indicate possible solutions and
future development directions for the challenges.

5.1. Mapping Model Capabilities
5.1.1. Multi-Analysis Mode and Deep Learning

In recent years, the combination of multi-voxel analysis mode and deep learning
has drawn much attention to identify brain states. By using deep neural networks, fMRI
signals can be decoded to reveal brain activities. The performance of brain decoding
has been further improved [30,47]. Although a decoding model based on MVPA has
been proposed [65], the multi-voxel-based decoding model presents poor interpretability,
especially when the decoding model uses linear kernels. In addition, this technique is
susceptible to image artifacts, such as eye movement and cardiopulmonary artifacts. In
addition, the speed of neuron vascular coupling, the sensitivity of BOLD activity, and
the signal-to-noise ratio of fMRI signals should also be considered. In addition to the
efficiency of the algorithm and the processing speed of the hardware, we should also
consider the blood coupling delay in the brain [66]. The existing deep-learning-based
decoding models [49] have achieved satisfactory results. Furthermore, ref. [109] correlate
fMRI activity with multiple modalities, both visual and semantic features extracted from
the viewed images. However, in order to obtain a higher-precision decoding model, there
are still many challenges to reconstructing the corresponding visual stimuli from fMRI data
by deep learning algorithms.

5.1.2. ROI and Feature Selection

The sample size of the fMRI signal and image pairing is small, while the dimensionality
of the fMRI signal is higher. When the model is trained with limited high-dimensional
data samples, it is easy to produce dimensionality [65]. The traditional methods are in
danger of overfitting on small data sets [49]. The efficiency of deep-learning-based models
depends on the number and reliability of training samples. Therefore, a large number of
neural activities and corresponding images can improve the quality of the reconstructed
image [77]. However, the running time of the experiment should be proportional to the
efficiency, so it is particularly important to select the key features that contribute most
to the image reconstruction and further to improve the feature extraction ability of the
decoding model for neuroimaging data [30,62]. The visual attention [110] and axiomatic
attribution [111] methods in computer vision can be utilized to determine which voxels of
neurons contribute most to decoding visual stimuli.

In addition, the connection of the brain network of human cognition has become
one of the major interests in neuroscience research [47]. The current decoding of brain
activity is usually limited to the specific cognitive areas that humans can understand, and
it takes a relatively long time to collect and record fMRI signals of brain activity in these
areas. Moreover, most of the current deep learning-based research cannot simultaneously
consider the functional dependence and time-variant information between different regions
of the brain [45]. In order to use the dependency between the ROI regions of the brain to
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decode the brain activity, GCN is explored to predict or annotate the cognitive state of the
brain [46,47]. In particular, based on the ST-GCN model, the representation extracted from
the fMRI signal contains both the temporal information of brain activity and the functional
dependence between the brain regions. This method of integrating edge importance and
spatio-temporal map may have potential effects on the development of neuroscience [45].

5.1.3. Unsupervised Learning and Prior Knowledge

To learn an abstract representation of the brain activity in an unsupervised way should
be fully studied in the future. Researchers’ exploration of the unsupervised learning meth-
ods led to the emergence of bidirectional generative models. For example, VAE is an
unsupervised learning model. However, in the design of the VAE computing components,
the encoder and the decoder are not related, but in the activities of the cerebral cortex, the
feedforward and feedback processes are always related [50]. In addition, VAE does not have
the ability to process dynamically and cyclically, but video information can be transmitted
in both temporal and spatial space [50]. Reconstructing the dynamic features from brain
activity is a huge challenge [21]. Some researchers used a large number of image priors to
reconstruct visual stimuli [23]. When there is a priori knowledge, the decoder is a function
of both brain neuron activity and prior knowledge. It is difficult to determine which infor-
mation of the brain is decoded [30]. Therefore, the prior knowledge used in brain decoding
still requires constant investigation of the researchers [31]. In recent years, an encoding
model based on deep learning has emerged, which trains deep neural networks to perform
representation learning that can predict neuronal activity [70]. Specifically, these deep
learning based encoding models used visual stimuli to predict the neural response of the
brain and served as a priori knowledge for the decoding model. The advancement of brain
encoding has practical significance for brain enhanced communication, brain controlled
machines, and disease state monitoring and diagnosis [31]. In summary, complementary
model of encoding and decoding is a promising direction [30].

5.2. Limited fMRI and Image Data
5.2.1. Few-Shot Learning

Due to the high cost of fMRI research and the complicated research process, the collection
of paired fMRI signals and image samples is almost an mission impossible, so the data amount
is quite small [65,77,87]. Inspired by the field of computer vision, the few-shot learning for
brain activity decoding is proposed in [77], which is promising in solving the data problem
of neuroimaging. There are three ways to learn few-shot: the representation-based paradigm,
the initialization-based paradigm, and the illusion-based paradigm.

The Representation-based paradigm aims to learn the representation of fMRI signals,
which regards the first layer of the neural network as a feature extractor and the last layer
as a classifier. A large amount of training data is used to train the neural network to extract
relevant hidden representations and complete the training of the classifier. Later, when a
limited number of training examples are available, the classifier extracts a small amount of
data characterization and complete the classification of the new data.

The Initialization-based paradigm is also called meta-learning, the idea of which is
to learn how to learn. This method aims to learn good initialization parameters so that the
model can cope with various new data sets. In the process of meta-learning, the previous
neural network can be understood as a low-level neural network, and the meta-learner is
used to optimize the weights of the low-level neural network. The meta-learner inputs a
list of samples and their corresponding labels. When training the meta-learner, the meta-
loss (the error between the prediction and the target label) can be used to measure the
performance of the meta-learner on the target task. Then, another meta-learner is needed
to update the weight of the current meta-learner.

The Illusion-based paradigm is to perform a series of deformation operations such as
rotation or combination of the samples in the original data set to increase training examples.
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5.2.2. Transfer Learning

When the amount of data is limited and the prior knowledge is sufficient, sometimes
the functions designed by hand are better than the neural network models learned from
the data [30]. As the data amount in the fMRI data set continues to increase, manually
designed functions will be replaced by the data-driven methods in the future. However, in
neuroimaging, there is always a lack of data sets with large enough samples for specific
experiments [112]. Most of the current transfer learning is to learn the data representation of
the image in ImageNet and then build a model to adjust the medical image [73] or classify
behavioral tasks from brain signals [113]. Although transfer learning can effectively make
up for insufficient training data, natural images and medical images are quite different in
nature [112]. For example, Gabor filters are often used for edge detection of natural images
but have never been used in medical images. More and more studies have shown that the
human cognitive system is a function of multiple functional areas of the brain [114]. Graph
convolutional network models were trained with a a large number of medical imaging
data sets in different experimental tasks and environments [112]. The experiments showed
that the representation of the brain dynamics could be transferable between different ROI
regions and different cognitive domains and even between different scanning sequences.
Through fine-tuning, more can be learned about the high-level representation of brain
functional areas, while preserving the low-level representation of the brain dynamics [47],
which proved that transfer learning can not only improve decoding performance but also
play a potential role in neuroimaging.

5.2.3. Graph Convolutional Networks

Ref. [115] used spatiotemporal convolution neural network to jointly extract spatiotem-
poral features from the target network. However, if CNNs are not trained, no effective
features can be obtained at all. If GCNs are not trained and use completely randomly ini-
tialized parameters, the features extracted by GCN are still effective. If labeled information
is given, GCNs will perform even better [78]. Compared with other classifiers, GCNs have
better performance on a limited data set [77]. The fMRI signal can represent the spatial
structure of brain activity, and GCNs can consider the connectivity of the brain to perform
decoding, which has the potential to solve the problem of limited data [47,77,116,117].

5.3. fMRI Noise
5.3.1. Hemodynamic Delay

The spatial resolution of fMRI is very high, but its time resolution is relatively limited.
It can only collect the average activities in about two seconds, and there is a certain delay
in the detection of neural activity [3]. The fMRI signal contains the position information in
the brain voxels, but due to its limited time resolution, sometimes the time series cannot
be used to decode brain activity [30]. Because of the neurovascular coupling, the fMRI
response is delayed after the neurological response [50]. Therefore, when fMRI signals
are decoded into the latent variables of visual stimulation, the delay of the neurovascular
dynamics should also be considered [50].

5.3.2. Brain Cognitive Limitation

FMRI-based BCI learns the self-regulation ability of ROI in the way of neural feedback.
Due to the high cost of fMRI research and the complex research process, fMRI-based
BCI can be transferred to the more flexible and lower cost EEG-BCI [92,93]. VAE and
GAN can be combined to use fMRI data as the supplement of the EEG data, and then
encode conditional vectors with less noise [2]. In addition to decoding low-level visual
stimuli, researchers [118–120] decode the brain activity into low-level pixel space and
high-level semantic space at the same time. Due to the inadequacy of human research
on visual mechanisms, the current reconstruction methods are under exploration. In the
reconstruction process, the decoded noise may be the true response of the brain’s visual
cortex to the outside world, while the reconstructed clear image may be the noise [59].
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6. Conclusions

This survey investigates brain activity decoding models based on machine learning
and deep learning algorithms via fMRI. The relationship between the brain activity de-
coding model and the brain–computer interface is closely related to the development of
the brain activity decoding model and promotes the development of fMRI-BCI. Further-
more, the specific application of fMRI-BCI in the treatments of mental and psychological
diseases have been investigated. Finally, it outlines the current challenges in reconstructing
visual stimuli from brain activity and potential solutions. With the advancement of brain
signal measurement technology, the development of more complex encoding and decoding
models, and better understanding of the brain structure, “mind reading” will become
true soon.
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