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Abstract: Epilepsy is the second most common disease of the nervous system. Because of its high
disability rate and the long course of the disease, it is a worldwide medical problem and social
public health problem. Therefore, the timely detection and treatment of epilepsy are very important.
Currently, medical professionals use their own diagnostic experience to identify seizures by visual
inspection of the electroencephalogram (EEG). Not only does it require a lot of time and effort, but
the process is also very cumbersome. Machine learning-based methods have recently been proposed
for epilepsy detection, which can help clinicians make rapid and correct diagnoses. However, these
methods often require extracting the features of EEG signals before using the data. In addition, the
selection of features often requires domain knowledge, and feature types also have a significant
impact on the performance of the classifier. In this paper, a one-dimensional depthwise separable
convolutional neural network and long short-term memory networks (1D DSCNN-LSTMs) model
is proposed to identify epileptic seizures by autonomously extracting the features of raw EEG. On
the UCI dataset, the performance of the proposed 1D DSCNN-LSTMs model is verified by cross-
validation and time complexity comparison. Compared with other previous models, the experimental
results show that the highest recognition rates of binary and quintuple classification are 99.57% and
81.30%, respectively. It can be concluded that the 1D DSCNN-LSTMs model proposed in this paper is
an effective method to identify seizures based on EEG signals.

Keywords: depthwise separable convolution neural network (DSCNN); electroencephalography
(EEG); epileptic seizure recognition; long short-term memory networks (LSTMs)

1. Introduction

According to the World Health Organization (WHO), epilepsy is the second most
common disease of the nervous system after stroke, and there are about 50 million people
affected by this disease around the world [1]. Epilepsy is a transient central nervous
system dysfunction caused by the abnormal discharge of brain neurons [2]. Seizures can
lead to uncontrollable parts or the whole body, loss of consciousness, and even death.
However, seizures are unpredictable, which may have serious economic, physiological,
and psychological impacts for patients, and bring a huge burden to their families. The
Global Epilepsy Report, published by the WHO in 2019, points out that 25% of epilepsy
can be prevented early, and 70% of epilepsy patients can be seizure-free through low-cost
and effective drugs. Therefore, early detection and diagnosis are of great significance to
improve the effect of epilepsy treatment and the quality of life of patients.

Electroencephalography (EEG) is a method of recording brain activity using electro-
physiological indicators. It is formed by the sum of the postsynaptic potentials generated
synchronously by a large number of neurons during brain activity. Electroencephalography
is a commonly used non-invasive method to monitor and diagnose epilepsy. Thus, the
abnormal state of the brain [3] can be effectively identified. In order to diagnose a seizure,
doctors need to have a long record of the patient’s EEG signals. Electroencephalography
signals usually have many different channels and artifacts, which pose some difficulties
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and challenges for doctors in the diagnosis of seizures [4,5]. In addition, the diagnosis result
is easily influenced by the doctor’s diagnostic experience and professional level [6,7]. There-
fore, the development of an automatic and timely epilepsy diagnosis system can reduce
workload and improve diagnostic efficiency, which has important clinical significance [8,9].

There is much technical research based on artificial features and machine learning
classifiers [10]. Generally, traditional feature extraction methods include time domain [11],
frequency domain [12], and time-frequency domain [13], but these methods are time-
consuming and laborious with low accuracy. Machine learning classifiers include random
forest, support vector machine, and so on. In fact, feature classifier has been successfully
applied to epilepsy detection tasks [14]. However, features are extracted based on limited
and prior manual processing. Most importantly, the characteristics of epilepsy are different
between patients and even the same patient has changes over time; therefore, it is necessary
to automatically extract and learn information from EEG data. In recent years, many
studies have focused on the application of deep learning in EEG signal classification, and a
variety of detection methods based on EEG for automatic seizure recognition have been
proposed, including the convolutional neural network (CNN) [15–17], recursive neural
network (RNN), long short-term memory networks (LSTMs) [18,19]. Deep learning is
a powerful computing tool. Relevant studies show that the accuracy, specificity, and
sensitivity of the 13-layer-deep CNN algorithm in the public data of the University of Bonn
reached 88.67%, 90.00% and 95.00%, respectively [16]. In order to reduce storage space
and detection time, a one-dimensional pyramidal CNN model is proposed [20]. Deep
unsupervised neural networks such as denoising and sparse autoencoder (DSAE) are used
to automatically detect seizures in time, but important information may be missed due
to the sparse strategy [21]. These algorithms based on deep learning lay the foundation
for the study of seizure detection [22]. Although these methods have achieved very good
test performance, how to design a robust, accurate, real-time classification model is still
a great challenge. Compared with traditional machine-learning methods, deep learning
can automatically extract features from EEG data [23]. In addition, stacking multi-layer
deep convolutional neural networks [16] may lead to dimensional disasters, consume a
lot of time and space, slow down the training speed of the model, and affect the efficiency
and performance of the model. At present, the most commonly used method is the
convolutional neural network, which can deeply extract target features and is widely used
in the image field, so it is easier to establish and get familiar with in the research field.
Meanwhile, compared with the traditional RNN, the innovation of the LSTMs lies in solving
the problem of gradient disappearance, which enables the algorithm to more accurately
control what important information needs to be saved in memory and what information
must be deleted [24,25]. Researchers usually combine them to form the CNN-LSTMs model.
However, in general, the deep learning CNN model has a large number of parameters, a
large amount of calculations, and high requirements for equipment.

In this paper, a classification model based on 1D DSCNN-2LSTMs is proposed. The
DSCNN is combined depthwise (DW) and pointwise (PW). Compared with conventional
convolutional operation, the number of parameters and operations is relatively lower.
Replacing original EEG signals with a simple network matrix as the input of DSCNN can
effectively reduce the input dimension and improve training efficiency. The LSTMs usually
perform better than the temporal recursive neural network and hidden Markov model
(HMM). The LSTMs can be used as a complex nonlinear element to construct a larger deep
neural network. The combination of DSCNN and LSTMs improves the prediction efficiency
while maintaining high accuracy.

The main contributions of this paper in the detection of epileptic seizures from EEG
signals are as follows:

(1) The DSCNN is used to extract spatial features from EEG signals, which can distinguish
signals to the greatest extent.

(2) The output of DSCNN is regarded as the input to train the LSTMs model, which
can solve the problem of gradient disappearance and gradient explosion in the long
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sequence training process. Moreover, the temporal characteristics of the EEG signals
can be extracted by LSTMs. These features are mainly needed for modeling calculation,
but also indirectly help neurologists in clinical diagnosis.

(3) The model has less pre-processing of raw data, and in the future, it may be combined
with existing wearable technology and smart phones, which can accurately detect and
predict the development of epilepsy seizures, providing more universal applications
for patients, caregivers, clinicians, and researchers.

2. Materials and Methods
2.1. EEG Data

The public UCI epilepsy recognition dataset was used in this paper [26]. In the UCI
dataset, there are five different folders, each containing one hundred files. Specifically,
each file represents an EEG record sample of the subject’s brain activity. Each file is
a 23.6 s record of brain activity. After visual examination of artifacts, such as muscle
activity or eye movements, these segments were selected and cut out from a continuous
multi-channel EEG signal. The corresponding time series were sampled as 4097 data
points. Each data point is the EEG recorded value at a different time point. Now, we have
23 × 500 = 11,500 continuous EEG samples, each containing 178 data points, lasting 1 s
(column), the last column representing the label Y{1,2,3,4,5}.

The EEG signals in Group A and Group B were recorded using standard cortical
electrode placement protocol in five healthy volunteers who were in awake and relaxed
state with their eyes open (A) and their eyes closed (B). Groups C, D, and E were obtained
from intracranial EEG from epileptic patients. Group C represents the interictal EEG data
from the hippocampal region. Group D represents the interictal EEG data from tumor
tissues. Only group E represents the seizure activity EEG data for epileptic patients. All
EEG signals were recorded using the same 128-channel amplifier system, with a standard
electrode position scheme designed according to the international 10–20 system, using
average common reference values. After the 12-bit analog-to-digital conversion, the data
were continuously written to the disk of the data acquisition computer system at a sampling
rate of 173.61 Hz. The bandpass filter was set to 0.53 to 40 Hz. The original datasets were
preprocessed by the UCI, which created the data in CSV file format to simplify access to
the data. This was described in detail in the literature [26].

Here are five states:

(a) First state: recording of EEG signals in healthy subjects while their eyes are open.
(b) Second state: recording of EEG signals in healthy subjects with their eyes closed.
(c) Third state: interictal EEG signals were recorded from the healthy hippocampal area

of the epileptic patients.
(d) Fourth state: interictal EEG signals were recorded at the site of the epileptic’s brain tumor.
(e) Fifth state: seizure activity EEG signals were recorded from the epileptic patients.

Groups A and B are scalp electroencephalograms. Groups C, D, and E are intracranial
implant electrodes. The difference between the original EEG signal waveform in the seizure
state and the normal state is easy to observe, while the difference between the original EEG
signal waveform in different normal states is difficult to observe.

Therefore, two and five groups of epilepsy recognition tasks are considered in this
paper. Binaries are divided into seizures and other states, and the five classifications are all
five states in the dataset. Therefore, in order to comprehensively evaluate the performance
of our approach, five EEG signals are visualized and shown in Figure 1, where the X-axis is
the time/s and the Y-axis is the amplitude/mV. The EEG signals from open or closed eyes
and healthy brain areas have good amplitude characteristics, whereas the EEG recorded
during seizures is the most periodic and high amplitude, caused by the hypersynchronous
activity of a large number of neurons [26].
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Figure 1. The raw electroencephalogram signal waveform of one epileptic seizure condition and four
normal conditions.

2.2. Data Pre-Processing

The UCI dataset has been pre-processed and reconstructed. Therefore, in the pro-
cess of data preprocessing, it is necessary to normalize the EEG signal data, which can
improve the convergence speed of the model. For normalization, the data are divided
by 255. This normalization ensures the same distribution of data in the input layer. In
addition, since computers cannot understand non-digital data, data labels are converted
to a unique thermal code that can convert classified data into a uniform numeric format.
The unique thermal coding solves the problem that the classifier is not good at process-
ing attribute data, and also plays a role in extending the feature to a certain extent. It
also facilitates the processing and computation of machine learning algorithms. After the
dataset is pre-processed, the training set and the test set are divided and input into the
deep learning model.

2.3. 1D-CNN and 1D-DSCNN

The CNN has been proven to achieve good results in decoding brain signals. As a
mature neural network architecture, CNN is very suitable for automatic feature learning. It
is an end-to-end learning method that can directly learn local patterns in data without any
feature engineering in advance. The CNN is a feedforward neural network. This special
network structure has great advantages in feature extraction and learning. The CNN has
excellent performance in many applications such as image classification, target detection,
and medical image analysis. The main idea of CNN is that it can take local features from
higher-level inputs and transfer them to a lower level to obtain more complex features. The
CNN is generally composed of convolution layer, pooling layer, and full connection layer.
The convolution layer contains a certain number of convolution kernels for convolution
computation of input signals. Then, the activation function is used to nonlinear the result of
convolution. In the one-dimensional CNN model, rectifying linear activation unit (ReLU)
is used. The pooling layer, also known as the down sampling layer, pools the output of the
convolution layer to maintain a higher level of representation. Pooling process including
maximum pooling and global average pooling is used in our model. After the signals pass
through the convolutional layer and the pooling layer, the advanced features are fed into
the fully connected layer for final classification.

The DSCNN is proposed in the literature [27]. There is a high-performance MobileNets
structure in the model, and its basic principle is that the standard convolution process is
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divided into the depth of the equivalent convolution and point by point convolution, then
through point by point convolution mixing output channel. The improved convolution
model can significantly reduce the computational complexity without losing accuracy of
convolution. The DSCNN can effectively decompose traditional convolution by separating
spatial filtering and feature generation mechanism. The production of DSCNN is defined
by two separate layers, that is, lightweight deep convolution for spatial filter and 1 × 1
point convolution for feature generation. Specifically, in depthwise separable convolu-
tion, there is only one dimension in one convolution kernel channel, and each channel
is responsible for the feature graph. One channel is convolved by only one convolution
kernel. After deep convolution, the number of channels in the output feature graph is
the same as that in the input layer. The 1 × 1 point convolution can reduce or raise the
dimension of the feature graph. The feature graph of the upper layer can be weighted and
combined in the depth direction. The size of the generated new feature graph is consistent
with the input data, and the main function is to combine the feature information of each
channel. Since the EEG signals in this experiment are all one-dimensional features, and
one-dimensional convolution filter and feature mapping are both one-dimensional, thus
one-dimensional convolution is adopted in this paper by using multiple filters to carry out
one-dimensional convolution.

For standard convolution, the dimension of input feature graph is (DF, DF, M), convolu-
tion kernel is (N, DK, DK, M), the dimension of output feature graph is (DG, DG, N), standard
convolution computation quantity is (DG × DG × DK × DK ×M × N). Depthwise convo-
lution is composed of depthwise convolution and pointwise. The computation amount
of depthwise convolution is (DG × DG × DK × DK ×M + DG × DG × 1 × 1 ×M × N).
The process of standard convolution and depthwise separable convolution is shown in
Figure 2 and Formula (1); it can be concluded that depthwise separable convolution is a
much lighter convolution network.

DG × DG × DK × DK ×M + DG × DG ×M× N
DG × DG × DK × DK ×M× N

=
1
N

+
1

DK × DK
(1)
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2.4. Long Short-Term Memory Networks

Long short-term memory networks are a special kind of recurrent neural network
(RNN). With the increase in training time and network layers, the problem of gradient
explosion or gradient disappearance occurs easily in the RNN, which may lead to the
inability to process long sequence data and thus an inability to obtain the information of
long-distance data. Long short-term memory networks can be used in text generation,
machine translation, speech recognition, generating image descriptions and video tags, and
so on. As shown in Figure 3, LSTMs mainly have three gates, namely, input gate, output
gate, and forget gate. At each moment, input information from the input layer will first
pass through the input gate. The opening and closing of the input gate determines whether
any information will be input to the memory cell at that moment. Whether information is
sent out of the memory cell at any time depends on output gate. Every time a value in the
memory cell is forgotten, it is controlled by forget gate. If you punch the clock, the value in
the memory cell will be cleared.
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The first step in LSTMs is to determine what information will be discarded from the
cellular state. This decision is made through a layer called forget gate ƒt. The gate reads in
ht−1 and xt, usually using sigmoid as the activation function, and outputs a value between
0 and 1 for each number in the cell state Ct−1. A reading of 1 means completely retained,
0 means completely abandoned, and most of the values of a trained LSTMs gate are very
close to 0 or 1, and the rest are few. The second step is to determine what new information
is stored in the cellular state. There are two parts in this step. First, the sigmoid layer,
called the input gate layer, decides what value to update, and here it is regarded as the
input of input gate. Then, a tanh layer creates a new candidate vector C̃t, which is obtained
from input data xt and hidden node ht−1 through a neural network layer, and is added
to the state. If the previous steps have determined whether to update the old cell state,
update Ct−1 to C̃t. The updating operation is to multiply the old state with ƒt, to discard
the unwanted information, and to add it × C̃ to obtain the new candidate value. Finally, it
needs to determine what the output value is, and here ot represents the output gate. This
output is based on cell state, but also is a filtered version. First, a sigmoid layer is run to
determine which part of the cell state will be output. Next, tanh is used to obtain the cell
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state, a value between −1 and 1, and then multiply it by the output of the sigmoid gate.
Finally, ht is obtained from ot of output gate and Ct of unit state, wherein the calculation
method of ot is the same as ƒt and it.

The mathematical expressions of LSTMs units are defined as follows.

ft = σ(w f × [ht−1, xt] + b f ) (2)

it = σ(wi × [ht−1, xt] + bi) (3)
∼
Ct = tanh(wc × [ht−1, xt] + bc) (4)

Ct = ft × Ct−1 + it ×
∼
Ct (5)

ot = σ(wo × [ht−1, xt] + bo) (6)

ht = ot × tanh(Ct) (7)

2.5. 1D DSCNN-2LSTMs Model

The one-dimensional DSCNN-2LSTM model proposed in this paper consists of one
input layer, one depth-separable convolution layer, one pooling layer, two full connection
layers, two LSTM layers, and one output layer. In order to prevent excessive fitting,
drop layer is added. The detailed model structure is shown in Figure 4. It can be seen
that the DSCNN-2LSTM model proposed in this paper uses very few neurons, which is
the advantage of depthwise separable convolution. Table 1 shows the parameters of the
DSCNN-2LSTM architecture.
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Table 1. Parameters of the DSCNN–2LSTM architecture.

Layer Type Output Shape Parameters

separable_conv1d Separable_Conv1d (None, 176, 64) 131
max_pooling1d MaxPooling1D (None, 88, 64) 0

dense_1 Dense (None, 88, 256) 16,640
dropout Dropout (None, 88, 256) 0
lstm_1 LSTM (None, 88, 64) 82,176
lstm_2 LSTM (None, 64) 33,024

dense_2 Dense (None, 64) 4160
dense_3 Dense (None, 6) 390

Firstly, the pre-processed 1d EEG data are directly input into the input layer of the
model, and the dimension of the input data is 178 × 1. Then, one-dimensional depth-
separable convolution operation is performed on the input data to extract the extract
features of EEG signals. The specific convolution operation is as follows: in separable
Conv1D Layer1, the number of one-dimensional convolution kernels is 64, the size of
convolution kernels is 3 × 1, and the step size is 1. The convolution kernels represent the
sensory field of convolution. If the convolution kernels are too small and the sensory fields
are insufficient, it is unable to effectively extract the association features between adjacent
characters in a larger range. It is easy to ignore the association features between local adja-
cent characters, and the convolution kernel is too small or too large, which will adversely
affect the classification results. In many tests, the appropriate convolution kernel size is
3 × 1, and the nonlinear rectification linear unit is ReLU. The ReLU activation function
helps to avoid the over-fitting problem. The ReLU formula is shown in Equation (8):

σ(x) = {0,x≤0
x,x>0 (8)

After passing through the one-dimensional convolution layer, it enters the pooling
layer, whose function is to retain the main features while reducing parameters (lowering
latitude) and computation, so as to prevent over-fitting. The pooling layer then moves to the
fully connected layer, where a dropout layer is added to prevent overfitting. After passing
through FC Layer1, the output features are fed into the LSTMs layer, which is capable of
learning useful information from EEG time series data. There are 64 neuron units in both
LSTMs Layer1 and LSTMs Layer2. After the characteristics pass through the LSTMs layer,
the output characteristics are sent to another FC Layer2. The FC Layer2 has 32 neurons,
and finally retains the final data extracted from the whole model to the features, and then
inputs the features to softmax layer for classification. Softmax classifier first converts the
prediction results of the model to the exponential function, so as to ensure the non-negative
probability. To make sure that the sum of the probabilities of each prediction is equal to 1,
normalization needs to convert the result. The method is to divide the converted result by
the sum of all the converted results, which can be understood as the percentage of the total
number of converted results. That gives an approximate probability. In this way, the final
feature vector will be mapped to the value of (0,1), and the cumulative sum of these values
is 1, satisfying the nature of probability. When the output node is finally selected, the node
with the maximum probability will be output as the target result of prediction. Softmax is
shown in Equation (9).

P(y| x) =
eh(x,yi)

∑n
j = 1 eh(x,yi)

(9)

In this experiment, categorical_Crossentropy Loss and Adam Optimizer algorithms are
used, where crossentropy is used to evaluate the difference between the probability distri-
bution obtained by training and the real distribution. It describes the distance between the
actual and the expected output probability; that is, the smaller the value of cross entropy, the
closer the two probability distributions will be. Adam optimizer combines the advantages
of AdaGrad and RMSProp, two optimization algorithms. The update step size is calculated
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by considering the First Moment Estimation and Second Moment Estimation. Adam is
chosen as the optimizer because it is a simple and computationally efficient stochastic
gradient descent technique [28,29]. The empirical results show that Adam is more effective
than other stochastic optimization methods. The detailed configuration of the model can
be adjusted according to the specific situation of the identification task. The formula of the
cross entropy loss function is as in Equations (10)–(13), the derivative transformation.

α = σ(z), where z = ∑ wj× xj + b (10)

C = − 1
n∑

x
[ylna + (1− y)ln(1− α)] (11)

where y is the expected output; a is the actual output of the neuron.

∂c
∂wj

=
1
n∑

x
xj(σ(z)− y) (12)

∂c
∂b

=
1
n∑

x
(σ(z)− y) (13)

2.6. Evaluation Indicators

Now, suppose that our classification target has only two categories, which are counted
as positive and negative, respectively. True positives (TP): The number of positive examples
that are correctly divided; that is, the actual positive examples and the negative examples.
The number of instances (number of samples) classified as positive by the classifier. False
positives (FP): The number of false positives; that is, the number of instances that are actu-
ally negative but classified as positive by the classifier. False negatives (FN): The number of
wrongly classified as negative examples; that is, the number of instances that are actually
positive examples but classified as negative examples by the classifier. True negatives (TN):
The number of correctly classified as negative examples; that is, the number of instances
that are actually negative and are classified as negative by the classifier. Precision is a
measure of precision and represents the proportion of examples classified as positive that
are actually positive. The accuracy rate is our most common evaluation indicator. The
number of pairs of samples is divided by the number of all samples. Generally speaking,
the higher the accuracy, the better the performance of the model. Recall is a measure of
coverage, and the measure has multiple positives that are classified as positives. F1-Score
is the harmonic mean of precision and recall. The four evaluation indicators are shown in
Formulas (14) to (17).

precision =
TP

TP + FP
(14)

recall =
TP

TP + FN
(15)

accuracy =
TP + TN

TP + FP + FN + TN
(16)

f 1− score =
2

1
precision + 1

recall
(17)

3. Experimental Results and Analysis
3.1. Experimental Setup

In this experiment, the dataset was split into 90% and 10% for training and testing,
respectively. The proposed model was compared with DNN, CNN, DSCNN, LSTMs, and
Bi-LSTMs and their combination models. The number of training was 100 times, and the
batch size was 32. The pre-training data were all set to the same random seed and randomly
shuffled and sent to the network model. Ten-fold cross-validation was also used to validate
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the performance of each model. The data were divided into ten parts, and take nine of
them as the training set and one as the test set in turn, and the mean results of the ten
times is used as the estimation of the algorithm accuracy. Both DSCNN-LSTMs and the
above networks are implemented on a 12th Gen Intel (R) Core (TM) i9-12900KF 3.19 GHz
processor using Python3.7.

3.2. The Results Analysis
3.2.1. LSTMs Layer Selection

The original LSTMs model consists of a single LSTMs layer followed by an output
layer. Stacking LSTMs is actually to take the output of the previous layer of the LSTMs as
the input of the next layer of LSTMs, which can make the model deeper and the extracted
features deeper, resulting in more accurate prediction. In order to choose the appropriate
number of LSTM layers, the one-, two-, and three-layer LSTMs through 10-fold cross-
validation are compared, as shown in Tables 2 and 3. It can be seen from Tables 2 and 3 that
the average accuracy of stacking two layers of LSTMs in the two- and five-class tasks is
the highest, with an average accuracy of 99.46% and 77.58%, respectively, and the accuracy
begins to decline after more than two layers. Therefore, it can be concluded that DSCNN
with two-layer-stacked LSTMs achieves the highest classification accuracy.

Table 2. The performance of DSCNN-1LSTM, DSCNN-2LSTM, and DSCNN-3LSTM model on the
binary classification task.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean

DSCNN-1LSTM 97.65% 98.26% 98.00% 97.91% 98.43% 98.35% 98.17% 98.43% 98.70% 80.00% 96.39%
DSCNN-2LSTM 99.57% 99.13% 99.57% 99.65% 99.13% 99.30% 99.48% 99.39% 99.48% 99.91% 99.46%
DSCNN-3LSTM 98.78% 98.26% 98.70% 98.26% 97.91% 98.35% 98.7% 81.22% 98.87% 98.61% 96.76%

Table 3. The performance of DSCNN-1LSTM, DSCNN-2LSTM, and DSCNN-3LSTM model on the
five-class classification task.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean

DSCNN-1LSTMs 70.52% 72.78% 72.87% 72.00% 77.22% 76.00% 74.78% 78.52% 75.48% 74.52% 74.46%
DSCNN-2LSTMs 75.91% 75.48 77.39% 77.74% 80.78% 76.43% 79.65% 74.96% 76.35% 81.13% 77.58%
DSCNN-3LSTMs 76.52% 68.61% 79.04% 73.04% 74.09% 78.09% 74.09% 78.00% 77.22% 81.30% 76.00%

3.2.2. Resolve Class Imbalances

Class imbalance refers to the situation in which the number of training examples of
the different classes in a classification task varies greatly. In general, if the proportion of
class imbalance is quite different, then the classifier will be greatly unable to meet the
classification requirements. Therefore, before building a classification model, it is necessary
to deal with the problem of classification imbalance. Clearly, the number of patients is
far smaller than healthy people. There are generally solutions to solve class imbalance
such as expanding the dataset, undersampling, and oversampling. Machine learning uses
existing data to estimate the distribution of the entire data; therefore, more data can yield
more distribution information. Undersampling is to sample the data of a large class to
reduce the number of data and to make it close to the number of other classes, and then
to learn. However, undersampling may lose some important information by randomly
discarding large classes of samples. Oversampling is to sample the data of subclasses to
increase the number of data of subclasses. However, these methods more or less affect the
classification results; the skewed distribution of classes is taken into account to modify
the existing training algorithm, which can be achieved by giving different weights to the
majority class and the minority class. During the training process, different weight affects
the classification. The overall purpose is to penalize the misclassification of the minority
class by setting higher class weights while lowering the weights for the majority class. The
class weight is shown in Equation (18). From the weight formula, the class weights of
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epilepsy and other classes can be obtained in the binary classification task, 2.5 and 0.625,
respectively. The reliability of our training model is further verified by adjusting the class
weights and ten-fold cross-validation. The experimental results are shown in Table 4. It
can be seen from Tables 2 and 4 that our model has high classification accuracy regardless
of whether the class weight is adjusted or not, and the average accuracy exceeds 99%,
which shows that our model is suitable for the EEG prediction of epilepsy and has good
diagnostic performance.

class weight =
1

classi f ication number
× total number o f samples

number o f samples
(18)

Table 4. The Performance of DSCNN-2LSTM model after adjusting classification weight on the binary
classification task.

Method K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean

DSCNN-2LSTMs 99.13% 99.13% 99.48% 99.57% 99.13% 99.39% 98.17% 99.39% 99.48% 99.30% 99.21%

3.2.3. Ablation Experiments

Ablation experiments have important implications for identifying accuracy and speed
improvements for data augmentation, which are conducted to evaluate the performance
of our algorithm on two- and five-class recognition tasks. The results of a single ablation
experiment are shown in Tables 5 and 6. It can be seen from the four evaluation indicators
that the performance of the DSCNN-2LSTMs model in the binary classification task is not
much different from that of the DSCNN model, but it is better than the LSTMs model. On
the five-class recognition task, the performance of the DSCNN-2LSTMs model is much
greater than the other two models. In order to further verify the superiority of the DSCNN-
2LSTMs model for epilepsy classification results, ten-fold cross-validation is also performed.
The experimental results are shown in Tables 7 and 8. The average accuracy of our proposed
model is still greater than that of the other two models. It shows that the combined model
of DSCNN and LSTMs performs better than the DSCNN model and LSTMs model alone.

Table 5. Ablation Experiments for Binary Classification Task Recognition.

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%)

DSCNN 97.17% 96.81% 97.21% 97.01%
LSTMs 93.30% 93.00% 93.47% 93.03%

DSCNN-2LSTMs 99.57% 98.79% 98.79% 98.79%

Table 6. Ablation Experiments for Five-Class Classification Task Recognition.

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%)

DSCNN 74.78% 74.86% 74.65% 74.76%
LSTMs 57.57% 57.47% 57.47% 56.62%

DSCNN-2LSTMs 81.30% 79.21% 79.95% 79.59%

Table 7. Ablation experiment results of binary task recognition by ten-fold cross-validation.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean

DSCNN 98.09% 97.83% 98.17% 98.26% 97.74% 98.17% 97.39% 98.26% 80.78% 98.17% 96.28%
LSTMs 95.04% 97.22% 79.48% 77.83% 81.65% 97.57% 94.61% 81.22% 97.74% 96.52% 89.88%

DSCNN-2LSTMs 99.57% 99.13% 99.57% 99.65% 99.13% 99.30% 99.48% 99.39% 99.48% 99.91% 99.46%
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Table 8. Ablation experiment results of five-class classification task recognition by ten-fold cross-validation.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean

DSCNN 60.70% 63.04% 64.35% 62.26% 62.35% 63.48% 64.17% 60.61% 63.74% 63.22% 62.79%
LSTM 58.09% 54.61% 55.91% 49.83% 60.26% 57.91% 58.00% 57.74% 57.13% 59.13% 56.86%

DSCNN-2LSTMs 75.91% 75.48% 77.39% 77.74% 80.78% 76.43% 79.65% 74.96% 76.35% 81.13% 77.58%

3.2.4. Binary Recognition Task

To further verify the classification performance of the proposed DSCNN-2LSTMs
for seizure detection, comparison is conducted among DSCNN-2LSTMs with other deep
learning models and traditional machine learning models. The same random seed is
used to ensure the trained model and the test dataset are consistent. The deep learning
models include Convolutional Neural Network(CNN), Deep neural network(DNN), and
bidirectional LSTMs and their combined models. Bidirectional LSTMs are an extension
of traditional LSTMs, which train two models on the input sequence. The first in the
input sequence is the original sample and the second is the reversed sample of the input
sequence. Traditional machine learning models include AdaBoost, K Nearest Neighbors
(KNN), Random Forest, and Support Vector Machine (SVM). The experiment can be seen
from Table 9. When testing the validation set, the DSCNN-2LSTMs performance in this
paper is the best, with an accuracy rate of 99.57%, precision of 98.79%, a recall rate of
98.79%, and an F1 score of 98.79%. The accuracy rate of Bidirectional DSCNN-LSTMs is
99.57%, second only to DSCNN-2LSTM. The DNN model has the worst performance, with
96.35% accuracy, 95.18% precision, 87.50% recall, and 91.18% F1 score evaluation. The
comprehensive performance of the four traditional machine learning models is weaker
than that of the deep learning model, which indicates that the deep learning model is more
suitable for seizure detection than the traditional machine learning model. Among them,
SVM performed the worst, with an accuracy rate of 82.26%, a precision rate of 85.55%, a
recall rate of 82.23%, and an F1 score of 75.78%.

Table 9. The Performance of DSCNN-2LSTMs and other models on binary classification tasks.

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%)

CNN 97.13% 94.24% 92.34% 93.28%
DNN 96.35% 95.18% 87.50% 91.18%

Bidirectional LSTMs 97.96% 97.80% 97.61% 98.21%
DSCNN-2LSTMs 99.57% 98.79% 98.79% 98.79%

DSCNN-Bidirectional LSTMs 98.91% 98.60% 98.60% 98.60%
CNN-LSTMs 98.39% 98.60% 98.01% 98.40%

CNN-Bidirectional LSTMs 98.87% 98.60% 98.60% 98.60%
AdaBoost 93.60% 93.61% 93.44% 93.43%

KNN 92.21% 92.77% 92.30% 91.05%
Random Forest 97.13% 97.21% 97.42% 97.01%

SVM 82.26% 85.55% 82.23% 75.78%
CNN, Convolutional Neural Network; DNN, Deep neural network; KNN, K Nearest Neighbors; SVM, Support
Vector Machine.

To compare the time complexity of the proposed DSCNN-2LSTMs for epilepsy detec-
tion with other models, the time complexity refers to the amount of computation required to
execute the algorithm. All models are tested individually in the same environment and the
iterative training average time for each model and the training average time per iteration
step over ten iterations are calculated. The experimental result is shown in Figure 5. The
time complexity required by DNN is the lowest, because there are only neural units in the
DNN model, which reduces a lot of computation compared to other models. The time com-
plexity of the CNN model is slightly smaller than that of the DNN. Compared with LSTMs,
the computational cost of bidirectional LSTMs is greatly increased because bidirectional
LSTMs need to obtain both forward and backward information. However, our proposed
DSCNN-LSTMs model uses less time complexity under the premise of ensuring accuracy.
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Figure 5. The training time of DSCNN-2LSTM and other models on the binary classification task for
each iteration step size. CNN, Convolutional Neural Network; DNN, Deep neural network.

3.2.5. Five-Class Recognition Task

Similarly, the training and testing process of applying the above model are analyzed on
the quintuple classification task. The test performance of the model is shown in Table 10. It
can be found from the data that the 1D DSCNN-2LSTMs model proposed in this paper has
achieved the best recognition performance under different recognition tasks. The accuracy
of DSCNN-2LSTMs is 81.30%, the precision is 79.21%, the recall rate is 79.95%, and the F1
score is 79.59%. The CNN-bidirectional LSTM performed worse than DSCNN-2LSTM, and
SVM performed the worst in the quintubation task, with accuracy of 26.39%, precision of
33.31%, recall rate of 26.40%, and F1 score of 26.79%. We also calculate the time complexity
of the deep learning model in quintuple classification tasks, as shown in Figure 6. The CNN-
Bidirectional LSTMs require the highest time complexity, far higher than other models. The
time complexity required by DSCNN-2LSTMs ranks in the middle among these models,
but the time complexity of the combined model is the lowest. From the comprehensive
evaluation indicators and time complexity, DSCNN-2LSTMs is superior to other models.

3.2.6. Compare with Other Cross-Validation Models

The DSCNN-2LSTMs model proposed in this study achieves good results on binary
and quintuple classification tasks. In order to further verify the accuracy advantage and
stability of the model for binary classification and the quintic classification of epileptic
seizures, we compared the performance of each model through the cross-validation of ten
folds. The experimental results are shown in Tables 11 and 12. In the binary recognition
task, our model has an average accuracy rate of 99.46%, which is the highest among
all models. The average accuracy of the DSCNN-Bidirectional LSTMs model is 98.73%,
second only to DSCNN-2LSTMs. SVM performs the worst in binary recognition tasks,
with an average accuracy of 81.88%. The CNN-Bidirectional LSTMs model has the highest
average accuracy of 77.94% in five-class recognition tasks, 0.36% higher than our proposed
model. The reason may be that CNN increases the convolution calculation compared with
DSCNN. Bidirectional LSTMs capture both forward and reverse information. Compared
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with our model, more features are extracted, resulting in higher accuracy. However, the
time complexity is much greater than our model when the accuracy is similar. SVM still
performs the worst in the quintuple recognition task, with an average accuracy of 26.69%,
far lower than other models. The experimental results show that our model is very effective
for binary and quintuple classification tasks for epilepsy.

Table 10. The Performance of DSCNN-2LSTM and other models on the five-class classification task.

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%)

CNN 67.30% 67.73% 66.76% 67.05%
DNN 68.78% 67.63% 67.67% 66.91%

DSCNN 74.78% 74.86% 74.65% 74.76%
Bidirectional LSTMs 74.52% 74.75% 74.36% 74.36%

DSCNN-2LSTMs 81.30% 79.21% 79.95% 79.59%
DSCNN-Bidirectional LSTM 77.04% 77.04% 77.12% 77.08%

CNN-LSTM 78.00% 78.06% 78.06% 77.95%
CNN-Bidirectional LSTM 79.13% 79.16% 79.13% 79.36%

AdaBoost 41.73% 41.57% 42.83% 37.59%
KNN 50.65% 58. 99% 50.65% 48.34%

Random Forest 67.69% 67.52% 67.66% 67.19%
SVM 26.39% 33.31% 26.40% 26.79%
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Figure 6. Iterative training time of DSCNN-2LSTM and other models on the five-class classifica-
tion task.

Table 11. The Performance of 11 models using 10-fold cross-validation on the binary classifica-
tion task.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean

CNN 98.35% 97.91% 98.26% 97.74% 97.48% 98.78% 97.48% 98.35% 98.70% 98.26% 98.13%
DNN 97.22% 98.00% 97.22% 97.57% 96.70% 97.65% 96.09% 98.00% 98.26% 97.48% 97.41%

Bidirectional LSTM 98.00% 97.57% 98.26% 98.00% 97.57% 98.17% 97.57% 98.52% 99.04% 98.09% 98.07%
DSCNN-2LSTM 99.57% 99.13% 99.57% 99.65% 99.13% 99.30% 99.48% 99.39% 99.48% 99.91% 99.46%
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Table 11. Cont.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean

DSCNN-Bidirectional LSTM 98.96% 98.52% 98.70% 98.78% 98.00% 99.30% 98.43% 99.13% 99.04% 98.52% 98.73%
CNN-LSTM 98.70% 98.35% 99.3% 98.96% 97.83% 98.43% 98.35% 98.87% 99.13% 98.43% 98.63%

CNN-Bidirectional LSTM 98.52% 98.43% 98.35% 99.04% 97.22% 98.61% 98.17% 98.09% 98.70% 98.52% 98.36%
AdaBoost 93.56% 94.17% 93.65% 94.78% 94.43% 94.78% 94.00% 93.91% 95.91% 94.43% 94.36%

KNN 91.91% 93.47% 92.95% 91.91% 92.17% 93.21% 92.34% 90.69% 94.78% 92.00% 92.54%
Random Forest 97.65% 97.13% 97.04% 97.65% 96.95% 97.91% 96.60% 98.26% 98.08% 97.82% 97.50%

SVM 80.60% 83.04% 81.39% 79.56% 83.21% 81.65% 81.13% 83.21% 82.69% 82.34% 81.88%

Table 12. The Performance of 11 models using 10-fold cross-validation on the five-class classifica-
tion task.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean

CNN 72.87% 72.43% 76.09% 75.30% 74.52% 75.30% 77.22% 75.91% 74.26% 77.57% 75.14%
DNN 66.87% 66.70% 70.00% 65.83% 67.22% 69.65% 68.52% 66.78% 68.35% 66.26% 67.61%

Bidirectional LSTM 75.30% 74.09% 75.04% 74.00% 75.04% 75.48% 74.70% 73.39% 75.22% 75.13% 74.73%
DSCNN-2LSTM 75.91% 75.48% 77.39% 77.74% 80.78% 76.43% 79.65% 74.96% 76.35% 81.13% 77.58%

DSCNN-Bidirectional LSTM 77.22% 76.43% 76.52% 77.65% 71.48% 74.43% 74.61% 76.17% 74.52% 80.35% 75.93%
CNN-LSTM 73.39% 75.91% 79.22% 77.04% 78.26% 78.35% 79.13% 77.04% 78.17% 80.26% 77.67%

CNN-Bidirectional LSTM 79.04% 77.48% 81.13% 75.48% 79.65% 80.61% 78.96% 73.22% 74.70% 79.13% 77.94%
AdaBoost 43.56% 41.47% 44.17% 43.73% 42.00% 45.21% 42.78% 41.65% 44.17% 41.82% 43.05%

KNN 45.91% 50.60% 49.13% 46.43% 47.73% 48.86% 46.69% 49.04% 45.47% 46.00% 47.58%
Random Forest 70.60% 69.91% 72.95% 70.26% 70.78% 71.47% 69.04% 68.78% 68.34% 70.34% 70.24%

SVM 28.17% 26.52% 26.26% 24.34% 25.91% 26.86% 25.21% 27.73% 27.30% 28.60% 26.69%

4. Conclusions

This paper presents a one-dimensional, deeply separable convolutional neural network
for the detection and diagnosis of epilepsy based on EEG signals. The experimental results
show that the proposed method consumes fewer computing resources, realizes the high-
precision classification of seizures, and can use the original EEG data to realize real-time
detection, which is helpful to the development of wearable and implantable EEG detection
devices. However, the model could not predict seizures in advance. Future studies could
establish multi-channel electrode DNN [30] or multi-bipolar channel input CNN [31] and
a multi-classifier ensemble learning model to classify tasks under non-fixed-scale input.
Pre-seizure EEG data could also be collected to train a model that could predict seizures in
advance, which is crucial for epilepsy patients. Deep learning would also be applied to
predict clinical drug response [32] and predict the prognosis of epilepsy surgery [33], so as
to further improve the prognosis of patients and improve their living conditions.
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