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Abstract: Compared to other primates, humans are late bloomers, with exceptionally long childhood
and adolescence. The extensive developmental period of humans is thought to facilitate the learning
processes required for the growth and maturation of the complex human brain. During the first two
and a half decades of life, the human brain is a construction site, and learning processes direct its
shaping through experience-dependent neuroplasticity. Formal and informal learning, which generates
long-term and accessible knowledge, is mediated by neuroplasticity to create adaptive structural
and functional changes in brain networks. Since experience-dependent neuroplasticity is at full
force during school years, it holds a tremendous educational opportunity. In order to fulfill this
developmental and learning potential, educational practices should be human-brain-friendly and “ride”
the neuroplasticity wave. Neuroscience can inform educators about the natural learning mechanisms
of the brain to support student learning. This review takes a neuroscientific lens to explore central
concepts in education (e.g., mindset, motivation, meaning-making, and attention) and suggests two
methods of using neuroscience as an educational tool: teaching students about their brain (content level)
and considering the neuro-mechanisms of learning in educational design (design level).
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1. Educational Neuroscience (Teaching for the Brain and Teaching about the Brain)

Educational neuroscience is an interdisciplinary field exploring the effects of education
on the human brain and promotes the translation of research findings to brain-based
pedagogies and policies [1]. The brain is the target organ of education. Education is
thought to influence brain development [2,3] and health, even as the brain ages [4,5].
Studying the dynamics between the brain and education can be instrumental in finding
ways to better support learners across the lifespan.

Educational neuroscience research explores every possible relationship between the
physiological, mental, and behavioral aspects of learning. Some studies have tried to
identify the optimal physical conditions for neuroplasticity and learning. This stream of
educational neuroscience research includes studies exploring the effects of sleep (or sleep
deprivation), physical exercise, and environmental pollution on the brain and its cognitive
performance [1]. While these studies focus on the effect of brain health on learning, other
studies examine the effect of learning on brain health, assessing the long-term effects of
learning/education on the human brain and exploring in what ways formal/informal
education is associated with better aging of the human brain [2–4].

Some educational neuroscience studies take a developmental approach to study the
relationship between cognitive and learning capacities across the lifespan. For example,
multilevel measurements collected from adolescents (e.g., neuronal, hormonal, psycho-
logical, and behavioral) have advanced our understanding of how the massive neuronal
changes that take place during adolescence promote cognitive development but also in-
troduce immense neuronal and mental vulnerability (and the onset of most psychiatric
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disorders) [1,5–7]. Other studies in this line of research explore the factors supporting
neuroplasticity in the mature brain—to support lifelong learning [8].

Educational neuroscience also explores the nature–nurture aspects of learning, for
example, examining how learning environments interact with genetic conditions and what
DNA variations predict differential learning abilities [9]. Environmental influences on
learning include studies about the impacts of socio-economic status (SES) on the brain
and cognitive developmental trajectory [10]. Furthermore, educational neuroscience seeks
to understand the mechanisms that facilitate general learning abilities (such as executive
control and social and emotional skills), discipline-specific learning abilities (such as literacy,
numeracy, and science), the connections between these mechanisms, and the extent to which
these learning skills are trainable [11].

As a developing, interdisciplinary research field, educational neuroscience faces chal-
lenges, limitations, and criticism, especially concerning the ability to generalize research
findings in lab conditions to classroom learning, and its validity and transferability to larger
scales, such as mass education systems. Other challenges stem from the fact that learning is
one of the most basic yet complex brain functions that incorporates the entire brain and
has a continuous effect. Furthermore, empirical studies in educational neuroscience are
challenging and cumbersome due to the interdisciplinary nature of the field (education, psy-
chology, and neuroscience); the need for repeated measures over time; and the young target
population (school students), which imposes ethical restrictions on experimental designs.
Finally, while still evolving as a research field, educational neuroscience is intriguing for
many educational leaders who are enthusiastic about applying neuroscience in education
practices. Unfortunately, the current gap between the high demand and limited supply
may lead to misuse of neuroscience in pedagogy (e.g., neuromyths or the justification of
educational methods based on limited to no evidence) [1].

While educational neuroscience is preliminary in forming evidence-based pedagogy,
it can already offer valuable information and a much-needed bridge between educators
and scientists in translating the research of learning into effective educational practices.

Neuroscience-informed educational design (teaching the way the brain learns) can
promote learning motivation, high-level information processing, and knowledge retention.
Moreover, neuroscience educational content (teaching about the brain) can inform students
about their developing brains to promote scientific education and self-exploration.

1.1. Learning and Neuroplasticity

Human development is based on nature (genetics), nurture (physical and social en-
vironments), and their interactions (epigenetics) [12,13]. These factors play an essential
role in learning processes and the reorganization of neuronal networks to create neuronal
representations of new knowledge. Learning and training new knowledge or skills evoke
specific and repeated activity patterns, and in the process of Hebbian neuroplasticity, neural
pathways are reinforced by the strengthening of specific synapses, while less functional
ones are eliminated [14–16].

Almost half a century ago, Vygotsky introduced the zone of proximal development (ZPD) [17]
in education. According to the ZPD, learning and development depend on an optimal
balance between support and challenge (see Figure 1: the zone of proximal development
and neuroplasticity), which should be tuned and tailored for each learner based on their
specific developmental stage. The ZPD model was revolutionary, as it emphasized the im-
portance of the educational environment (nurture) in unlocking the internal potential (nature)
of students, and it placed the learning process (as opposed to the learning product) as the
central educational goal [17]. Some decades later, the biology of learning revealed a beauti-
ful alignment with Vygotsky’s theory—with evidence showing that brain neuroplasticity is
highly affected by environmental conditions and the balance between demands (challenge)
and available resources (support) [18]. The impact of stressors on learning can be construc-
tive or destructive depending on the intensity, duration, and accumulation of the stressors
and the coping mechanisms and support that one has.
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Figure 1. The zone of proximal development and neuroplasticity. An integrative approach between
Vygotsky’s educational model and the neuroscience of learning. When learning and performance
demands exceed the available support and resources, students are likely to be overwhelmed and
resort to survival mode (stress zone). When learning and performance demands are significantly
lower than the available support and resources, students are likely to be under stimulated and resort
to static mode (comfort zone). When learning and performance demands match the available support
and resources, students are likely to be appropriately challenged and work within their zone of
proximal development, which promotes neuroplasticity and growth (stretch zone).

Neuroscience research suggests that experience-dependent neuroplasticity [19], which
facilitates learning processes, benefits from several principles. The central one is that learn-
ing a skill or new knowledge requires the activation of relevant neuronal pathways. The
research also points to the saliency, intensity, and repetition of the learned skill/knowledge
as valuable strategies for enhancing neuroplastic changes [16,20,21]. Learners cannot be
passive recipients of content but must be active participants in the learning process.

An enriched environment for enhanced neuroplasticity offers physiological integrity,
cognitive challenge, and emotional safety. More specifically, an enriched environment
includes adequate sleep and nutrition, sensory–motor and cognitive challenges, opportu-
nities for exploration and novelty, and secured relationships that act like a safety net and
enable learners to take on challenges [22,23]. Conversely, a lack of these conditions may
slow down or decrease the level of neuroplasticity in the developing brain.

The social and cognitive safety net that enables learners to aim high while taking risks
and to turn failure into resilience is rooted in safe relationships (with adults and peers) and
in holding a growth mindset. A growth mindset is the belief that intelligence and learning
potential are not fixed and can be developed [24]. Holding a growth mindset has been
associated with academic success, emotional wellbeing, and motivation while reducing
racial, gender, and social class achievement gaps [25–30]. While the impact of mindset
interventions on academic performance is debatable regarding the general population [31],
the literature is clear about the potential of growth mindset intervention in supporting the
academic development of high-risk and economically disadvantaged students [26,27,31,32].

The notion of human potential as something dynamic resonates with the concept
of the plastic brain. Moreover, teaching students about neuroplasticity and the dynamic
potential of their brains has been shown to effectively reinforce a growth mindset [32].

1.1.1. Using Neuroplasticity as Educational Content

Teaching students about experience-based neuroplasticity and the dynamic changes in
neuronal networks during learning provides strong evidence of their natural and powerful
learning capacity. Furthermore, teaching students about neuroplasticity with explicit
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connections to the growth mindset and development creates a motivating premise for
learners—according to which their learning potential is dynamic and depends significantly
on their attitudes and learning practices.

The neuroplasticity rules of “use it or lose it” and “use it to improve it” mean that,
while teachers should support and guide them, learning occurs by and within the students.
This physiology-based realization can help build students’ responsibility and ownership
over their learning.

Harnessing neuroplasticity and a growth mindset to motivate students can be especially
important with neurodivergent learners, whose cognitive development and learning styles
deviate from the typical range. Twenty percent of the population is neurodivergent, including
students on the autistic spectrum (ASD), students with learning disabilities (e.g., dyslexia),
attention disorders (e.g., ADHD), neurological disorders (e.g., epilepsy), and mental
illness (e.g., PTSD). While neurodiversity and variations in neuronal and cognitive expres-
sions hold many advantages [33], neurodivergent students face extra challenges navigating
neurotypical-oriented school systems. Learning about neuroplasticity can be a potent
form of validation for neurodivergent students, as neurodiversity is a natural result of
experience-dependent neuroplasticity [19]. In addition, by fostering a growth mindset
and neuroplasticity awareness, neurodivergent students can be motivated to participate
in evidence-based interventions. For example, teaching students with dyslexia about
the specific structural and functional brain changes associated with the reading interven-
tions that they apply [34–36] can motivate them to endure the hard work before noticing
visible results.

1.1.2. Using Neuroplasticity to Guide Learning Design

Organizing learning systems around conditions that promote neuroplasticity can
enhance learners’ academic development and wellbeing. When a student accomplishes
today what was not in their reach yesterday, it is the product of neuroplasticity through a
growth mindset.

Educational environments that promote neuroplasticity include encouraging and
modeling a healthy lifestyle (physical exercise, a balanced diet, sufficient sleep, and regu-
lated stress), —for example, educating students about the counter-productiveness of sleep
deprivation (e.g., “all-nighter” study marathons) on learning. In addition, learning systems
should invest in intellectual stimulation (novelty and challenge) and the system’s social and
emotional climate (human connections). Neuroplasticity and development are optimal in
the stretch zone, where learners experience a motivating level of challenge and stimulation
while feeling emotionally supported and socially safe. This ratio between support and
challenge should be individualized (between learners and within learners over time).

Educating teachers about neuroplasticity can be powerful in understanding and
supporting students that were affected by trauma. Childhood adversity hampers neuro-
plasticity duration and magnitude [37]; a surviving brain is not a learning brain. While
neuroplasticity is compromised by early trauma, neuroplasticity is also the key to healing
from trauma. Schools have a pivotal role in battling the damage of early trauma by creating
enriched and safe learning environments that reinforce alternative neuronal pathways to
reverse the effects of early adverse environments on child brain development [22,38–40].

1.2. Learning Motivation and Reward

Learning and adaptation are essential for surviving and thriving in dynamic environ-
ments. The brain evolved to make sense of information from our external and internal
environments and to produce adaptive behaviors that promote survival. The brain is,
therefore, a learning machine by nature, and learning does not require external initiation.
However, learning is highly experience-dependent and can be directed and enhanced
through education.

The brain reward system evolved to reinforce effortful behaviors that are essential for
survival (e.g., foraging, reproduction, and caregiving). Such behaviors activate the dopamin-
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ergic system associated with reward and motivation [41]. The hormone/neurotransmitter
dopamine is a central player in reward-motivated behavior and learning through the mod-
ulation of striatal and prefrontal functions [42]. The human brain reward system balances
between (limbic) impulsive desire and (cortical) goal-directed wanting to guide flexible
decision-making and adaptive motivational behaviors.

Psychologically, intrinsic motivation is driven by the need to experience a sense of
competence, self-determination, and relatedness [43–47].

Competence refers to a perception of self-efficacy and confidence in one’s abilities to
achieve a valuable outcome. Self-determination refers to the sense of autonomy and agency
in the learning process. Relatedness refers to the drive to pursue goals that hold social
value, which can be achieved by working collaboratively as part of a team or by creating
something that resonates with others. Relatedness is a strong motivational driver, as it
touches on a primary and primordial need to be part of a group and a higher spiritual and
intellectual need for self-transcendence and impact.

Overall, these components are based on the human inclination to be valued and
validated by the self and others. Biologically, they reflect basic survival needs that combine
self-reliance (competence and ownership) and social reliance. Psychologically, these are
all subjective perceptions that serve the need to maintain positive self-perception and self-
integration. Finally, educationally, they reflect the natural human curiosity and tendency to
learn and develop continuously.

The human brain reward system in the 21st century is an evolutionary mismatch.
There is a discrepancy between the conditions that the reward system evolved to serve
and those that it often faces in the 21st century. The reward system evolved over millions
of years to motivate humans to work hard (invest time and energy) in maintaining their
survival needs (e.g., nutrition, protection, reproduction, and the learning of new skills).
However, this system is not designed for the abundance and immediacy of stimulation in
the digital and instant reward era, which promotes the persistent release of dopamine that
leads to an increased craving for reward (seeking behavior; wanting) and a decreased sense
of pleasure and satisfaction (liking) [42,48].

Some of the most significant challenges of modern education systems relate to the
massive changes in how people consume information and communicate in the digital era.
Digital platforms have become dominant in information consumption and communication,
which provide access to unlimited information and reinforce immediate rewards.

1.2.1. Using Neuroscience (of Reward and Motivation) as Educational Content

The science of human motivation, including its evolutionary mismatch, can be utilized
to shed some light on students’ struggles with learning motivation. It can further provide
a framework for students to explore their motivational (approach or avoid) tendencies
regarding learning and academic challenges. Moreover, learning the neuroscience under-
lying motivation and reward can raise students’ awareness and proactivity in managing
and protecting their reward system. Since adolescence is the peak time for the initiation of
substance use, and early onset imposes a higher risk of mental health and substance abuse
disorders persisting into adulthood [49–51], neuroscience knowledge about the reward
system and its vulnerability (especially during brain development) is essential educational
knowledge that can help in the prevention and mitigation of teen addiction.

1.2.2. Using Neuroscience to Guide Learning Design and Intrinsic Motivation

While students of the digital era are the most stimulation-flooded and attention-
challenged in human history, learning is a process that takes time, selective attention, and
perseverance. Therefore, learning designs that harness students’ intrinsic motivation for
training and the development of stamina and grit (skills that might be hampered in the
digital era) are precious for students’ health and success.
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Motivational drivers include an adequate level of challenge that fits the student’s sense of
competence and that creates optimal arousal levels, opportunities to expand social relatedness
and impact, and balance between support and autonomy (see the ZPD, Figure 1).

Importantly, in classroom learning, educators are required to manage the attention,
motivation, and reward system of not one but many students, which is a complex task.
The typical classroom presents a broad spectrum of learners with diverse learning needs
and stretch zones (Figure 1). While the facilitation of autonomy and the sense of compe-
tence varies between learners and requires personalized support, the social norms that
promote learning are more ubiquitous and apply to most learners. While educators do
not always have the resources to support students’ motivation individually, harnessing
the social aspects of classroom learning is a manageable, effective strategy to elevate
students’ motivation. Learning environments that demonstrate empathy, inclusiveness,
and psychological safety have shown positive results in students’ behavior, self-esteem,
motivation, and academic success [52–56]. Social motivation has been shown to enhance
the encoding of new information (even if the content is not social) [57]. Learning-for-
teaching and peer tutoring (one student teaching another student) effectively encode
information into memory. Beyond memory improvement, peer tutoring has many further
benefits to both the tutor and the learner in academic achievements [58,59], motivation, and
ownership over the learning process and results in a deep conceptual understanding of
the material [60].

The teacher’s demeanor is another controllable factor with a high potential to
affect students’ motivation. For example, the literature points to teachers’ immediacy
(creating physical and psychological closeness with students) as an effective way to en-
hance students’ engagement, learning motivation, and performance (including memory
retention) [61–65]. Immediacy can be demonstrated through verbal and non-verbal ges-
tures that communicate interest and personal connection (relating to personal stories, using
animated voice and body language, creating eye contact, and using humor).

The research also indicates that, when students perceive the content as being personally
relevant, they are more motivated to study [66]. Therefore, educators can actively make
the learning content more relevant by using stories and real-life examples, making explicit
connections and demonstrations of how the content may be relevant/applicable to the
students, and giving students opportunities to reflect and share their connections to the
learning material.

In summary, physiological and psychological approaches point to primary motiva-
tional drivers that direct engagement and investment in the learning process. Not surpris-
ingly, these drivers that are anchored around social and intellectual needs align with the
conditions supporting neuroplasticity discussed in the first part of this review.

1.3. Intrinsic and Extrinsic Processing in Learning and Meaning-Making

As the environment provides more information than the brain can handle, survival
depends on saliency detection and attention management to direct perception and behavior.
The brain constantly selects and attends to relevant input while suppressing irrelevant
or distracting information [67]. Information that is valuable or urgent for survival and
prosperity receives attention. Attention capacities (e.g., alerting, orienting, and control-
ling attention) are managed by several brain systems that interact and coordinate [68–70].
Top–down, cognitive-driven attention that fosters a goal-directed thinking process is as-
sociated with the dorsal attention network (consisting of the intraparietal sulcus and the
frontal eye fields) [71]. This mechanism enables students to read a paragraph, listen to a
lecture, think about the teacher’s question, or write an essay. A second attention system is
bottom–up and stimulus-driven, and it orients attention to unexpected and behaviorally
relevant stimuli. This ventral attention network consists of the right temporoparietal junc-
tion and the ventral frontal cortex [71]. This attention-grabbing mechanism enables the
individual to respond quickly to urgent environmental demands, for example, moving
away to prevent a struck-by-object accident. Flexible attention control depends on dynamic



Brain Sci. 2022, 12, 1622 7 of 12

interactions and switching between the two systems and involves the central executive
network (CEN) [68,70].

The insula and anterior cingulate cortex comprise the core structures of the saliency
network [72], another major player in attention altering to emotionally salient stimuli
through the interaction of the sensory and cognitive influences that control attention [72–74].

In addition to outward-focused attention, the human brain is also invested in inward-
focused processing. Functional brain imaging studies of the human brain show a robust
functional anticorrelation between two large-scale systems, one highly extrinsic and the
other deeply intrinsic [75–77]. The central executive network (CEN) is an externally driven
system and is paramount for attention control, working memory, flexible thinking, and
goal-directed behavior. The core components of the CEN are the dorsolateral PFC and
the lateral posterior parietal cortex (hence, the frontoparietal network) [72,78]. When the
human brain is not occupied with external tasks, the default mode network (DMN) is acti-
vated. This internally driven cognitive network includes the posterior cingulate cortex (PCC)
and the medial prefrontal cortex (MPFC) as core components. The DMN is thought to
facilitate reminiscing, contemplating, autobiographical memory, self-reflecting, and social
cognition [79]. Conversely, the DMN is immediately suppressed when the brain is engaged
in externally driven tasks and stimulation.

Resting-state brain imaging studies revealed that the activity in the DMN during
resting awake states indicates the quality of subsequent neural and behavioral responses to
environmental stimuli [72,80]. Moreover, a high connectivity between “intrinsic” (DMN) and
“extrinsic” (CEN) brain networks, and specifically emotional saliency, attention (extrinsic),
and reflection (intrinsic) networks is associated with better cognitive performance, meaning-
making, and broad perspective thinking [75,76,81]. These networks function antagonisti-
cally but are highly connected and balance each other. Furthermore, the anticorrelation
between their function is associated with better task performance and positive mental
health [79,82]. Recent studies also suggest that a causal hierarchical architecture orches-
trates this anticorrelation between externally and internally driven brain activities. More
specifically, that regions of the saliency network and the dorsal attention network impose in-
hibition on the DMN. Conversely, the DMN exhibits an excitatory influence on the saliency
and attention system [79].

1.3.1. The Neuroscience of Extrinsic and Intrinsic Processing as Educational Content

Teaching students about the dynamics of the default mode and executive control
network can help them understand how their brain processes information, the importance
of each process (e.g., extrinsic and intrinsic), and their integration for meaningful learning.
This knowledge can be applied as students explore and experiment with ways to enhance
their learning and memory by intentionally engaging both intrinsic and extrinsic processing
and integrating the two.

1.3.2. Using the Neuroscience of Extrinsic and Intrinsic Processing to Guide Learning Design

Traditionally, instructional education is based on learning objectives that are externally
dictated and is focused on outward attention (stimulus-driven lectures and assignments).
Mind-wandering has become the enemy of classroom teachers, as it indicates students’ lack
of attention and poor learning.

Nevertheless, neuroscience research indicates that meaning-making and cognitive
performance benefit from the interplay between extrinsic and intrinsic oriented attention
and processing [56,75].

Learning instructions should consider the different attention mechanisms, evoking
adequate arousal levels and leading to goal-directed thinking. Furthermore, students will
benefit from an educational design that stimulates the natural interplay between “intrin-
sic” (DMN) and “extrinsic” (CEN) brain networks by incorporating external stimulation
(e.g., presenting content), allocating time and space for intrinsic reflection (e.g., guided
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reflection and journaling), and integrating the two (e.g., guided class discussion and
insights sharing) [83,84].

2. Discussion
2.1. Teaching Students about Their Developing Brains

As far as we know, humankind is the only species with access to the underlying
mechanisms of its perception, learning, and inner workings. In addition, the human
brain is endowed with a lengthy developmental period of approximately 25 years [85,86].
Therefore, schooling years are the prime time for neuroplasticity, and students can learn
about their brains while they are highly malleable and can utilize this to amplify their
learning and growth.

While students were traditionally required to choose whether to focus on the humani-
ties or science fields, an integrative view is becoming increasingly common in academic
institutes. Multidisciplinary studies have been shown to promote students’ positive learn-
ing and professional outcomes [87]. Teaching neuroscience from a dual perspective, both
scientific/objective and humanistic/subjective, is a novel but natural bridge between the
humanities and science fields.

Studying neuroscience with explicit connections to the lived experience of brain devel-
opment and its behavioral manifestation can be academically and personally transformative
for students.

Shedding a scientific light on students’ experiences as they unfold can support sig-
nificant developmental processes during those years, such as improvements in executive
functions, emotional regulation skills, meta-cognition, and social cognition [88].

Among the topics and burning issues of teens and young adults that neuroscience
can offer insights into are selective and leaky attention [89], the reward system and addic-
tion [90], the PFC–limbic developmental mismatch during adolescence [91], neurodiversity
and inclusion, emotion regulation, and mental health [92].

Moreover, adding a personal layer to neuroscience studies fits the notion that personal
relatedness and relevance are essential for learning motivation. Teaching neuroscience from
a dual (scientific and personal) perspective and connecting neuroscience knowledge to a
deeper understanding of the self and others can elevate engagement and nurture students’
passion for science and their ability to integrate and transfer scientific knowledge across
contexts. In addition, similar to the effect of physical education, educational neuroscience
can promote the awareness of brain health and encourage students to be intentional about
their education and developmental trajectory.

2.2. Teaching the Way(s) the Human Brain Learns Best

Teaching students in brain-friendly ways means implementing principles that align
with how the human brain encodes, consolidates, and retrieves information. Educational
neuroscience points to the importance of a holistic and integrated view of cognitive, emo-
tional, and social aspects to support learning and development [52,75,93,94]. Maintaining
physical health, cognitive challenge, and emotional safety are essential factors in creating
an enriched environment that supports neuroplasticity and learning.

Assessing the learning progress rather than the end product can encourage students
to move away from rote memorization to more meaningful learning that carries on beyond
the final exam.

Meaningful learning can be promoted by learning designs that encourage students
to take experimental and explorative approaches, take risks, and make mistakes without
detrimental consequences to their grades.

Furthermore, assessments throughout the learning process and not only at the end
of it, using multiple sample points and low-risk tasks, can provide information on the
student’s learning curve and allow for personalized and timely feedback that students can
apply to improve their learning on the go.
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These methods not only promote psychological safety but also align with the evidence-
based practices of building long-term and accessible knowledge by spreading out the
learning concept across time (spacing), practicing information retrieval from memory
(recall), and integrating and transferring knowledge (the application of knowledge in
different contexts) [95].

3. Conclusions

Brain knowledge is brainpower; teaching students about their developing brain can
support their academic and personal development by deepening their understanding
of science and humanities, their mental capacity, and their self-identity. Educational
neuroscience is a promising field in teaching students about their brains and teaching them
in brain-friendly ways to support them in becoming lifelong learners.
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