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Abstract: (1) Background: Cerebral autoregulation is altered during acute mild traumatic brain injury,
or concussion. However, it is unknown how a history of concussion can impact cerebral haemo-
dynamic activity during a task that elicits an autoregulatory response. (2) Methods: We assessed
cerebral haemodynamic activity in those with a history of three or more concussions. The study
included 44 retired athletes with concussion history and 25 control participants. We recorded partic-
ipants’ relative changes in right and left pre-frontal cortex oxygenation collected by near-infrared
spectroscopy and continuous beat-to-beat blood pressure measured by finger photoplethysmogra-
phy. Participants completed a 5-min seated rest followed by a 5-min repeated squat (10-s) stand
(10-s) maneuver (0.05 Hz) to elicit a cerebral autoregulatory response. Wavelet transformation was
applied to the collected signals, allowing separation into cardiac interval I (0.6 to 2 Hz), respiratory
interval II (0.145 to 0.6 Hz), and smooth muscle cell interval III (0.052 to 0.145 Hz). (3) Results:
Significant increases at cardiac interval I were found for the wavelet amplitude of oxy-haemoglobin
and haemoglobin difference at the right pre-frontal cortex. No significant difference was found at the
left pre-frontal cortex or the blood pressure wavelet amplitudes. (4) Conclusions: Contributions from
cardiac activity to the pre-frontal cortex oxygenation are elevated when eliciting dynamic cerebral
autoregulation in those with a history of three or more concussions.

Keywords: concussion; cerebral autoregulation; pre-frontal cortex oxygenation; blood pressure;
wavelet transformation

1. Introduction

The majority of research in the concussion literature that has examined the effects
of sport-related concussion (SRC) on cerebral physiology has focused on the acute injury
phase. This research has documented significant negative effects on brain and cardiac
physiology [1–13]. The acute physiological effects include altered cerebrovascular reac-
tivity [10,14,15], cerebral oxygenation [16], baroreflex sensitivity [5,17], blood pressure
variability [5,18], heart rate variability [3,19–21], dynamic cerebral autoregulation [22–24],
and cardiac mechanics [25]. Furthermore, some research has shown that changes in func-
tional connectivity are found in athletes with post-concussion syndrome [16,26–28], but
not all research supports this contention [29]. It is possible that different analytical method-
ologies, protocols, ages, post-injury assessment time, and concussion history account for
these discrepancies. Indeed, cardiorespiratory regulation and cerebral hemodynamics are
influenced by many factors, including breathing pattern and being under anaesthesia [30].

Limited information is available on the long-term effects of sport-related concussion
in retired contact sport athletes [23,31], and physiological studies of former athletes with
a history of multiple concussions are particularly lacking. Some research has shown
that contact sport athletes with a history of concussion can experience the same altered
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physiological mechanisms as those observed during the acute stage of concussion. For
example, when assessing cerebral oxygenation using near infrared spectroscopy (NIRS),
differences were documented between those with a history of sport-related concussion
and active non-contact sport control participants [16,23,31]. Furthermore, NIRS has also
been used successfully to assess cerebral autoregulation in adults [23,32–35]. Here, we
applied NIRS to gain a better understanding of the potential mechanisms related to the
recently reported long-term effects of multiple concussions on brain oxygenation and
haemodynamics.

Given that biological signal oscillations vary in time, we elected to use wavelet trans-
formation for our analyses [36]. Wavelet transformation is a time-frequency analysis
methodology that provides optimal resolution for low and high frequencies and provides
critical information about changes that occur in time without making prior assumptions
of the data [37]. This makes wavelet analysis an ideal method to investigate biological
systems in their natural resting state [38,39].

Based on the mounting research showing that the autonomic nervous system is affected
in acute SRC, and that limited information is available on the long-term effects, the primary
objective of this study was to examine changes in the cerebral autoregulatory response in
retired contact sport athletes who had three or more concussions in their playing careers
and compare them to retired non-contact sport athletes without a history of concussion.
We used wavelet transformation analysis of the biological signals as this is a precise
methodology to investigate biological oscillations over time [38,39]. We hypothesised
that wavelet transformation of NIRS-based data could be used to discern physiological
differences in the autoregulatory response in retired contact sport athletes with concussion
when compared to control participants without concussion.

2. Materials and Methods

This study was conducted as part of a larger study to examine the long-term effects
of sport-related concussion (SRC) on brain health in retired athletes [23]. Male contact
sport participants (n = 84; 40–75 years) were recruited in Regina, SK, and Victoria, BC,
Canada, with testing conducted at the Universities of Regina and Victoria. Ethics approval
was acquired prior to conducting this study (REB#2017-032; REB#17-128). Prior to each
participant signing the informed consent, the testing protocol and objectives were explained
in detail.

Briefly, study participation involved one session in which participants completed
a 5-min seated rest and 5-min repeated squat–stand protocol while continuous blood
pressure and NIRS data were collected. From the total 84 participants who volunteered,
69 had clean blood pressure (BP) and cerebral haemodynamic oscillation waveforms from
which the results are based. This sample included 44 participants with a history of sport-
related concussion (SRC; at least 3 concussions in their playing careers; range = 3–20,
median = 3 concussions) and 25 control participants (no concussions).

The SRC group included American football, soccer, rugby, and ice hockey players.
CTR participants competed in water sports, running, tennis, soccer, cycling, and golf. To
control for differences in fitness and athlete characteristics between groups, the inclusion
criteria required that participants had played sports in their youth, and at the time of study
participation, all participants still maintained an active lifestyle by engaging in physical
activities a minimum of three times a week. Medical and concussion history, height (cm),
and body mass (kg) were collected, including information on diet, caffeine, and alcohol
consumption, exercise, sleep, and medications for the 24 h prior to testing. Both physician
diagnosed and self-reported concussions were recorded for each participant. To ensure
that participants were not experiencing concussion symptoms at the time of testing, the
Sport Concussion Assessment Tool 5th edition (SCAT5) symptom scale [40] was completed.
Participants did not consume any caffeine within 4 h, perform exercise within 6 h, or
consume alcohol within 12 h of the study session, as these factors and time frames have all
been shown to influence cerebrovascular metrics [41]. Volunteer participants experiencing
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any current symptoms or confirmed diagnosed concussion at the time of testing were
excluded from this study.

The study session testing protocol has been described in detail elsewhere [23]. Briefly,
the NIRS probes were placed 1 cm above each eyebrow, over the right and left pre-frontal
cortex, on the lateral side of the supraorbital ridge to avoid the frontal sinus [4]. The
probes were held in place by a dark coloured headband which also helped to avoid external
infrared light from interfering with the optical (oxygenation) signals. The devices were
connected via Bluetooth to the Oxysoft 3.0.97.1 software on laptop computers for data
collection. For the majority of participants, two PortaLite devices (Artinis Medical Systems,
Einsteinweg, The Netherlands) were used to monitor both the left and right pre-frontal
cortices. Approximately 25% of the participants had their left pre-frontal cortex monitored
using an OxyMon (Artinis Medical Systems, Einsteinweg, Netherlands) NIRS device which
has identical functionality as the PortaLite device. These devices use continuous-wave
near infrared light to assess relative changes in cerebral oxygenation parameters (micro-
molar, µM) as well as the same data collection and analysis software. The NIRS probes
use one receiver and 3 pairs of light emitting diodes (LED). The first pair of LEDs (760
and 843 nm) is located 30 mm from the receiver, the second pair (761 and 845 nm) is
located 35 mm from the receiver, and the third pair (762 and 848 nm) is located 40 mm
from the receiver. The cerebral oxygenation parameters included oxy-haemoglobin (HbO2),
deoxy-Hb (HHb), total haemoglobin (tHb = HbO2 + HHb), and haemoglobin difference
(HbDiff = HbO2 − HHb).

A Finapres NOVA (Finapres Medical Systems, Arnhem, The Netherlands) was used to
measure continuous blood pressure (BP). Finger photoplethysmography BP was calibrated
against brachial arterial pressure. The BP data was collected on a beat-by-beat basis. Of the
44 SRC participants, 42 participants had usable left and right pre-frontal cortex oxygenation
oscillations measured using NIRS, and blood pressure waveform oscillations using finger
photoplethysmography. A total of 25 CTR participants were included in the blood pressure
assessment, and 18 had usable left and right NIRS oscillations.

In this study session, to assess differences in pre-frontal cortex oxygenation between
the SRC and CTR groups, we used a squat–stand maneuver to elicit a dynamic cerebral
autoregulatory (dCA) response [2,23,24,42]. Participants sat quietly for 5-min to establish
resting baseline physiology. Prior to the squat–stand maneuver, the participants stood
up for 1-min to allow the body to adjust to the standing position so that a new baseline
flow-pressure equilibrium ‘set point’ could be established [43]. Thereafter, each participant
completed the squat–stand maneuver at a squat rate of 0.05 Hz (cyclical 10-s squat followed
by 10-s of standing), repeated 15 times for a total of 5 min [23,42]. During each squat–
stand, participants were instructed to keep their head in a level plane by “looking straight
forward” to avoid erroneous measurements related to a head tilt. A goniometer was used
to ensure that the participant squatted to 90◦ at the knees. The participant was corrected if
a squat was performed incorrectly and encouraged to follow the established protocol on
subsequent squats.

The data were collected and amplified through PowerLab 16/32 and streamed into
LabChart 7 Pro (AD Instruments, Colorado Springs, CO, USA). All signals before anal-
ysis were down sampled to 10 Hz, detrended using a moving average with a window
size of 220 s and normalised by subtraction of their mean and divided by their standard
deviation [23].

A wavelet transformation was used for our analyses as a major strength of using
wavelet transformation is that it allows for the analysis of biological signals as they change
with time due to physiological perturbations [44]. Specifically, the wavelet transforma-
tion can quantify and delineate the investigated interactions in both frequency and time
domains [38,44]. As such, the wavelet transformation can convert the NIRS signals from
time domain to a time-frequency domain [45,46], thus providing information on the main
components of the time series in frequency domain by detecting spontaneous fluctuations,
with the amplitude describing the activity intensity of the cortex at the brain regions [47].
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Furthermore, when assessing NIRS signals, the use of wavelet can provide insights into
cerebral autoregulation. Indeed, when undergoing a dynamic cerebral autoregulation
eliciting task, such as repeated squat stands used in this study, it has been suggested that
the quantified findings from wavelet transformation of NIRS provide valuable information
about cerebral autoregulation that is not possible using other methods [48]. Thus, the
separation into known physiological frequency intervals allows for an understanding of the
mechanism associated with altered cerebral hemodynamic activity, given that the charac-
teristic frequencies indicate possible regulatory mechanisms. Finally, when assessing NIRS
and BP by wavelet, the original signal features are retained, which is attractive for data
with time-varying features, as compared to other filtering methods [49]. We examined the
cardiac interval (I: 0.6–2 Hz), respiratory interval (II: 0.145–0.6 Hz interval), and the smooth
muscle cell interval (III: 0.052–0.145 Hz). Furthermore, the mother Morlet wavelet was used
for its strong localisation of events in time and frequency due to its Gaussian shape [44].
The methodology for the wavelet transformation analyses used for this study has been
described extensively, including what each frequency interval represents [38,39,44].

Briefly, the wavelet transformation is defined as follows:

W(s, t) =
1√

s

∫ +∞

−∞
ϕ

(
u− t

s

)
g(u)du,

where W (s, t) is the wavelet coefficient, g(u) is the time series and ϕ is the Morlet mother
wavelet, scaled by factors and translated in time by t. The Morlet mother wavelet is defined
by the equation:

ϕ(u) =
1

4
√

π
exp(−i2πu) exp

(
−0.5u2

)
where i =

√
−1. This was followed by calculation of wavelet coefficients,

X(ωk, tn) = Xk,n = ak,n + ibk,n

which represent instantaneous relative phase and absolute amplitude, defined as∣∣Xk,n
∣∣ = √ak,n + bk,n

where Xk,n of the wavelet transformation is a complex number (a and b are elements of this
complex number); k = 1, 2, . . . , K and n = 1, 2, . . . , N, where K and N are natural numbers
for the different number steps for frequency and time.

Statistical Analysis

We used a conservative approach to our data analysis because normality tests such
as the Shapiro–Wilk tend to reduce the statistical power when analysing smaller sample
sizes. Thus, we used the Wilcoxon rank sum nonparametric test for all data [50] to avoid
the assumption of normality.

3. Results
3.1. Pre-Frontal Cortex Oxygenation (NIRS Parameters)

Table 1 represents the frequency response of the time-averaged wavelet transformation
for the NIRS cerebral oxygenation and BP response. Significant between group differences
in the relative changes in cerebral haemodynamics were found only at the right pre-
frontal cortex. A significantly different increase (p = 0.04) in HbO2 was seen at interval
0.6 to 2 Hz (cardiac) in SRC group (median = 0.018, IQR = 0.009) compared to CTR group
(median = 0.015, IQR = 0.008). Similarly, a significantly different increase (p = 0.03) in HbDiff
was seen at interval 0.6 to 2 Hz (cardiac) in the SRC group (median = 0.015, IQR = 0.006)
compared to CTR (median = 0.012, IQR = 0.006) (See Central Figure 1). No other significance
between group differences were found at any intervals.
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Table 1. Time-averaged wavelet transformations for the right and left pre-frontal cortex cerebral
haemodynamics and blood pressure responses.

Right-Side Pre-Frontal Cortex Left-Side Pre-Frontal Cortex

Interval HbO2 (1/s) tHb (1/s) HbDiff (1/s) HbO2 (1/s) tHb (1/s) HbDiff (1/s) BP (1/s)

Injured

0.052–0.145 0.0976 (0.0308) 0.1016 (0.0294) 0.0959 (0.0385) 0.0939 (0.0290) 0.1002 (0.0372) 0.0975 (0.0265) 0.0613 (0.0150)

0.145–0.6 0.0255 (0.0096) 0.0297 (0.0110) 0.0203 (0.0091) 0.0257 (0.0111) 0.0309 (0.0110) 0.0189 (0.0089) 0.0429 (0.0128)

0.6–2.0 0.0180 (0.009) * 0.0200 (0.0098) 0.0150 (0.006) ** 0.0159 (0.0081) 0.0178 (0.0117) 0.0140 (0.0063) 0.1050 (0.0320)

Control

0.052–0.145 0.0889 (0.0343) 0.0999 (0.0363) 0.0936 (0.0267) 0.0874 (0.0259) 0.0892 (0.0357) 0.0853 (0.0167) 0.0571 (0.0137)

0.145–0.6 0.0291 (0.0170) 0.0363 (0.0206) 0.0198 (0.0146) 0.0229 (0.0207) 0.0295 (0.0253) 0.0170 (0.0150) 0.0423 (0.0174)

0.6–2.0 0.0150 (0.008) * 0.0179 (0.0105) 0.0120 (0.006) ** 0.0150 (0.0087) 0.0181 (0.0089) 0.0140 (0.0113) 0.1014 (0.0574)

Data are presented as median (interquartile range). HbO2: oxy-haemoglobin, tHb: total haemoglobin, HbDiff:
haemoglobin difference, BP: Blood pressure. Frequency intervals are I: 0.6–2 Hz (cardiac interval), II: 0.145–0.6 Hz
(respiratory interval), and III: 0.052–0.145 Hz (smooth muscle cell interval). * Significant (p < 0.05) between-group
difference at interval 0.6–2 Hz for HbO2 right-side; ** Significant between-group difference at interval 0.6–2 Hz for
HbDiff right-side.

Figure 1. Central figure displays the wavelet transformation analysis. Panel (A) shows the frequency
distribution (Hz) and amplitude changes in relation to time (seconds, s) for the right prefrontal cortex
oxygenation for the concussed (SRC) and control (CTR) groups. Panel (B) shows the box−plots for
the calculated values found in Table 1. The box−plots shown here represent the cardiac interval
(0.6−2 Hz) amplitude which was significantly different between groups for both the oxy-haemoglobin
and haemoglobin difference.

3.2. Blood Pressure (BP)

No significant differences were found in the wavelet transform BP amplitudes in any
of the measured frequency intervals (cardiac, respiratory, smooth muscle cell).

4. Discussion

We hypothesised that the long-term effects of concussion in retired contact sport ath-
letes could be detected from physiological measures. Our results support this contention;
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we found that dynamic cerebral autoregulation (dCA) reflected by pre-frontal cortex oxy-
genation was statistically different between adults with a history of multiple sport-related
concussions and a healthy control group when assessed using wavelet transformation.
Specifically, we provide new evidence that dCA is influenced by the cardiac contribution to
maintaining cerebral autoregulation in those retired athletes with a history of concussion.

Using a repeated squat–stand maneuver that is documented to be an appropriate
method to assess cerebral autoregulation [23,24,42], the current research results add to
the emerging evidence of potential long-term consequences of multiple concussions in
contact sport athletes. Previous research has also shown that neurovascular coupling [31],
functional connectivity [16], and dCA [1,23] are altered long-term in those who experience
multiple concussions throughout their sporting career. Together this research suggests
that retired contact sport athletes who have experienced concussions must be cognisant of
those head injuries and consider taking steps to mitigate the potential for additional head
trauma.

Our results also add to the body of literature regarding the interaction between the
heart and the brain (heart–brain Axis). There is a growing body of knowledge confirming
that sport-related concussion has significant adverse effects on cardiac function in both
acute and chronic post-concussion [25,51]. Thus, our observation that the cardiac interval I
(0.6 to 2 Hz) was the frequency interval that significantly contributed to the relative changes
in right pre-frontal cortex oxygenation in HbO2 and HbDiff in those with a history of
concussion are notable (see Central Figure 1). The increased relative changes in pre-frontal
cortex HbO2 and HbDiff of our concussion group in comparison to the controls reflects
differences in the metabolic status and the brain’s response to the autoregulatory (squat-
stand) challenge. Simply stated, the heart–brain axis is tightly coupled and our findings
suggest that there is a long-term compensatory response from the heartbeat to cerebral
haemodynamic activity after concussion. This hypothesis is supported by previous [51]
and on-going research [25]. Furthermore, we speculate that our results shine light on the
possible implications for cardiac health with ageing, and how concussions early in an
athlete’s playing career may contribute to cardiac dysfunction later in life, i.e., ventricular
ectopy [51].

Collectively, these results provide significant implications for the management of
concussions early in life and later during playing careers in contact sports. For example, in
the past there was less emphasis on the recovery period and when athletes could return-
to-play safely post-concussion. The old adage was “suck-it up and get back out there”.
The findings of this current study now highlight the importance of conducting baseline
physiological testing at the beginning of a sporting season for any contact sport athletes.
Recent research supports the use of baseline physiological testing for standardising pre-
participation guidelines so that the medical staff responsible for getting players back-to-play
safely, post-concussion, can provide an objective assessment of the players’ physiological
status [5,41] to avoid early return-to-play and potential adverse complications.

5. Conclusions

Our data confirm the heart’s contributions to cerebral autoregulatory function, and
suggests a physiological mechanism for the differences between retired sport contact ath-
letes with a history of multiple concussions and those retired athletes without a history of
concussion, i.e., the heart helps to maintain cerebral oxygenation when the body is stressed
autonomically in those with a history of concussion. Future research integrating other
physiological signals such cerebral blood flow velocity, blood pressure, cerebral oxygena-
tion, ECG, pial artery, and subarachnoid space oscillations during dynamic autoregulatory
and cerebrovascular reactivity-induced perturbations will add significantly to this line of
research.
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