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Abstract: Sound-induced flash illusion (SiFI) is typical auditory dominance phenomenon in multi-
sensory illusion. Although a number of studies have explored the SiFI in terms of age-related effects,
the reasons for the enhanced SiFI in older adults are still controversial. In the present study, older
and younger adults with equal visual discrimination were selected to explore age differences in SiFI
effects, and to explore the neural indicators by resting-state functional magnetic resonance imaging
(rs-fMRI) signals. A correlation analysis was calculated to examine the relationship between regional
homogeneity (ReHo) and the SiFI. The results showed that both younger and older adults experienced
significant fission and fusion illusions, and fission illusions of older adults were greater than that
of younger adults. In addition, our results showed ReHo values of the left middle frontal gyrus
(MFG), the right inferior frontal gyrus (IFG) and right superior frontal gyrus (SFG) were significantly
positively correlated with the SiFI in older adults. More importantly, the comparison between older
and younger adults showed that ReHo values of the right superior temporal gyrus (STG) decreased
in older adults, and this was independent of the SiFI. The results indicated that when there was no
difference in unisensory ability, the enhancement of multisensory illusion in older adults may not
always be explained by compensation mechanisms.

Keywords: sound-induced flash illusion (SiFI); resting-state functional magnetic resonance imaging
(rs-fMRI); regional homogeneity (ReHo); fission and fusion illusions

1. Introduction

Many studies have demonstrated that sensory processing is mainly carried out in the
form of multisensory integration [1–3], which is vital for understanding sensory process-
ing. Multisensory integration is defined as a basic sensory process in which information
from different senses is integrated into a single sensation [4]. The reliability of the signals
associated with a given feature helps us when we integrate multisensory information to
perceive our surroundings in our daily lives [4]. The information reliability hypothesis
proposes that the dominant modality provides the most reliable information for multisen-
sory integration [5]. Sound-induced flash illusion (SiFI) is a multisensory illusion caused
by multisensory integration in which auditory information is dominant and preferentially
processed over other sensory information [4,6,7].

Two forms of the SiFI exist, namely, fission and fusion illusions. When participants are
presented with a visual stimulus and two auditory beeps, one visual stimulus is mistakenly
reported as two, which is a condition known as the fission illusion [7,8]. Accordingly,
when two visual flashes and one auditory stimulus, two visual stimuli are perceived
as one, and such a condition is known as the fusion illusion [9,10]. Many studies have
explored factors that influence the SiFI to further understand the underlying mechanism.
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Specifically, the characteristics of visual [9] and auditory stimuli [9], cognitive factors [9,11],
experience [12,13] and individual differences [14,15] affect the generation of the SiFI. Among
these factors, the individual variability related to the participants’ susceptibility to the SiFI
cannot be ignored. For example, although studies based on large samples demonstrated
that the average incidence of the SiFI was 50% [15], the probability of perceiving the illusion
varied [4], ranging from 3% to 86% among individuals [16]. Studies have also revealed
that older adults are more likely than younger adults to produce the SiFI, compared with
younger adults, the fission illusion and the fusion illusion are both greater among older
adults [17–19]. Numerous previous studies have shown that superior temporal gyrus (STG)
is recognized as a key brain region for audio-visual tasks and multisensory integration [20],
and the stronger the activation of the STG, the stronger the susceptibility to the SiFI [21–23].
Moreover, such an increase in age-related susceptibility to the SiFI has been supported by
large population-based studies [24,25], this suggests that older adults may have greater
multisensory illusion [26] and stronger neural activity in the STG.

The reason that older adults are more susceptible at multisensory illusion remains
unknown. Many studies suggested that the enhanced multisensory illusion of the older
adults may be a sensory compensation mechanism [27–29]. According to the Inverse Effec-
tiveness [30], the reduced effectiveness of a single sensory signal can promote multisensory
integration, this has been shown in younger adults to induce integration when low intensity
audiovisual stimuli are used, but not when high intensity audiovisual stimuli are used [31].
For older adults, when single sensory functions decline, the human brain can enhance its
ability to integrate information from multisensory modalities to compensate for the lack of
single sensory information processing [27]. ERP study has also found that the amplitude
of P1 induced by audiovisual stimuli was smaller than the sum of single visual and audi-
tory stimuli, and the amplitude of P1 induced by audiovisual stimulation was smaller in
older adults. The latency of N1 induced by audiovisual stimuli was significantly earlier
than the sum of single visual and auditory stimuli, and the latency of N1 was earlier in
older adults [29], this also supported the compensation mechanism for visual and auditory
processing in older adults.

However, not all studies supported the idea that increased multisensory illusion was
due to old adults’ compensation for unisensory ability. Previous studies have shown
that older adults have enhanced prestimulus β-band activity in SiFI tasks, which may be
related to perceptual priors [32]. Hirst et al., (2007) found that when older and younger
adults had no difference in behavioral responses to a unisensory stimulus, the older
adults’ audiovisual integration was still greater than younger adults, indicating that the
compensation mechanism mentioned above could not fully explain the phenomenon [25].
Not only that, Using The Irish Longitudinal Study of Ageing data, Hirst et al., (2020) found
that the visual gain of older adults with eye diseases did not differ from that of controls,
and that the angular gyrus, rather than the primary sensory cortex, which is associated with
higher cognitive functions, played an important role in age-related SiFI [33,34]. Therefore,
we thought enhanced multisensory illusion did not always result from compensation for
unisensory ability. And the purpose of this study was to find evidence to support this idea
at the behavioral and neurobiological levels.

Resting-state functional magnetic resonance imaging (rs-fMRI) was often used to
investigate the intrinsic resting neural activity of psychological mechanisms. Among rs-
fMRI, regional homogeneity (ReHo) values assumed that the voxels in a functional brain
region were more time-homogeneous in a characteristic state, and the voxel-level ReHo
values were obtained by calculating the time series of a particular voxel and its neighboring
voxels using Kendall consistency coefficient calculation [35,36]. ReHo values have been
widely used to investigate individual variance in multisensory working memory and other
cognitive tasks [37,38]. Previous studies have suggested that ReHo values could reflect
individual differences in behaviors and cognition [38,39]. Therefore, we used ReHo values
to reflect the differences between younger and older at the neurobiological level.
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According to the perspective of compensation mechanism, the enhancement of multi-
sensory illusion in older adults was to compensate for the decreased sensitivity of unisen-
sory ability. Therefore, when there was no discrepancy between the unisensory ability
of younger and older adults, if older adults can still show the enhancement of the mul-
tisensory illusion, it may not be explained by the compensation mechanism. Using the
classical SiFI paradigm, the current study explored whether multisensory illusion was
enhanced in older adults when there was no discrepancy between the unisensory ability
of younger and older adults. Therefore, participants were asked to perform a unisensory
flash discrimination task before the formal experiment to determine whether the flashes
occurred once or twice, only higher performing participants were able to proceed to the
formal experiment. Additionally, ReHo values were used to explore whether the differ-
ences in neural activity between the two groups were related to differences in the SiFI. We
hypothesized that even though older and younger adults had similar basic ability to detect
flashes, they still behaved differently in the illusion conditions, with greater SiFI illusions
in older than in younger adults, moreover, the differences in neural activity between the
two groups was independent of the SiFI.

2. Materials & Methods
2.1. Participants

In order to ensure that the participants had good ability to distinguish the flashes,
we did a pre-experiment, which one or two visual flash stimuli were randomly presented.
Participants were told to perform a task to judge visual flash stimuli appeared once or twice
in each trial, and each condition included 80 trials. Based on previous research, participants
with a hit rate of more than 80% were allowed to take the formal experiment [11,16,40].
Previous study has shown that female predict the higher susceptibility to the SiFI than
male [24], so we recruited only female participants to make it easier to observe the SiFI.
Finally, 27 younger females (age: M = 20.67, SD = 2.15) and 30 older females (age: M = 61.37,
SD = 3.88) were recruited. G*Power 3.1.9.2 was used to estimate the statistical power by
performing a sensitivity test of the between factors identified by the F test [41,42]. The
analysis parameters were as follows: 0.05 was
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was total sample size, numbers of groups and measurements were 2. The final output was
η2 = 0.27. This sample size was appropriate to test sufficient effect sizes.

All the participants had normal or corrected vision, and all participants self-reported
that they had never taken part in a similar experiment, and signed an informed consent
form according to the criteria of the Helsinki Declaration. The Ethics Committee of the
Department of Psychology at Soochow University approved the conduct of this study. The
resting-state scan was performed before the task. During the scan, participants remained
relaxed, closed their eyes and did not do any intentional thinking. After a brief scan, they
performed the SiFI task outside the scanner.

2.2. Apparatus and Procedure

All the experimental stimuli were presented in a View Sonic P220f VS10284 model
which had a 1024 × 768 pixels screen resolution and a 60 Hz refresh rate. The visual flashes
were programmed to appear on a black background by display Presentation software
(version 20.0, Neurobehavioral Systems Inc., Albany, CA, USA). The visual flash was a
white disk with a radius of 2◦, rendered at a visual angle 5◦ below the “+” in the center
of the screen for 17 ms. This is because when auditory beep stimulation is accompanied
by visual flash stimulation, the illusion effect is greatest when visual flash stimulation is
located in the peripheral vision [43]. The auditory beep stimulus was presented with a was
75 dB, a rendering time of 7 ms using a head-mounted iron triangle headset (ATH-WS99)
and a frequency of 3.5 kHz. Participants were asked to tap on a mouse to make their
judgments while sitting on a stationary chair 59 cm from the screen.

For the sake of description, trial types were indicated by abbreviations. F for flash,
B for beep, experimental conditions can be expressed as F1, F1B1, F1B2, F2, F2B1 and
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F2B2. “F1B1” represents the trial in which an auditory beep stimulus and a visual flash
stimulus occur simultaneously, and “F1B2” represents the trial in which a visual flash
stimulus and two auditory beep stimuli occur. In F1B1, F1B2, F2B1, and F2B2, the first
auditory beep stimulus and the first visual flash stimulus occurred at the same time. The
intervals between the two visual flashes and the two auditory beeps were 66 ms and 76 ms,
respectively. There were 80 trials under each experimental condition, i.e., 480 trials in total.
The stimuli under 6 experimental conditions were randomly presented in the experiment,
with intertrial intervals (ITI) ranging from 400 ms to 700 ms at a step size of 100 ms. The
entire experiment consisted of 4 blocks, each blocks was presented pseudorandom, each
of which included 120 trials, after which the participants could rest. Participants were
required to judge the number of visual flashes, ignore auditory beeps and complete the
task by clicking the mouse. To ensure a balanced response, half of the participants were
randomly selected to report one flash by clicking the left mouse button and two flashes by
clicking the right mouse button, while the other half did the opposite (a representation of
the stimulus is shown in Figure 1).

Figure 1. A schematic representation of experimental stimuli. There are six conditions, F1, F1B1,
F1B2, F2, F2B1 and F2B2. F1 indicates the condition of presenting a flash, F1B1 indicates the condition
in which a flash and a beep, F1B2 indicates the condition in which a flash and two beeps, F2 indicates
that two flashes are present, F2B2 indicates that two flashes and two beeps at the same time, and
F2B1 indicates the condition in which two flashes and a beep. The flash rendering time was 17 ms,
and there was an interval of 66 ms between the two flashes. The beep rendering time was 7 ms, and
there was an interval of 76 ms between the two beeps. At the beginning of each trial, the black screen
showed a white “+” for 500 ms in the center, and the response screen showed 1500 ms, followed by
400–700 ms intertrial intervals (ITI). The red line indicates a flash, and the blue line indicates a beep.

2.3. rs-fMRI
2.3.1. Image Acquisition and Analysis

The MRI images were obtained by using a Philips 3.0T MRI scanner, and gradient
echo plane imaging (EPI) was used to obtain resting state images of all participants. The
scanning parameters were provided: 2000 ms was TR, 30 ms was TE, 220 mm × 220 mm
was field of vision, 90◦ was turning angle, 64 × 64 was matrix, 36 was number of lay-
ers, 4 mm was thickness, 400 s was scanning time. Magnetization-prepared gradient
echo (MPRAGE) was used to obtain 3D-T1 images. TR/TE: 8.5/3.4 ms, field of view:
240 mm × 240 mm × 150 mm, scanning matrix size: 256 × 256 × 256, flip angle: 12◦ [44].



Brain Sci. 2022, 12, 1418 5 of 14

2.3.2. Data Preprocessing

Data Processing & Analysis for Resting-State Brain Imaging (DPABI), a technique
developed by Yan et al. (http://rfmri.org/dpabi (accessed on 12 August 2022), was applied
to analyze and process images on the MATLAB2013b platform [45]. After all participants’
DICOM images were converted to NIFTI images, the preprocessing of data was performed.
First, delete the first 10 time points, and slice timing (the reference layer refers to the
layer that situated at the intermediate time point during whole brain scan), then realign
(participants who had frequency movement exceeding 2 mm or rotation exceeding 2◦ were
excluded), and removed covariates (consisting of six head parameters, white matter signals
and CSF signals). Then DARTEL space was utilized for standardization, and the functional
image parameters which were attained by segmentation were standardized, which used the
Montreal standard brain as the template. The voxel size was 3 mm × 3 mm × 3 mm. Then,
the linear trend was removed, and the image was time-band pass filtered (0.01~0.08 Hz) to
diminish low-frequency drift and high-frequency noise [46,47].

2.3.3. ReHo Analysis

ReHo analysis were conducted by using the software DPABI, And the Kendall consis-
tency coefficient of the time series of adjacent voxel groups of brain regions was calculated
to obtain ReHo value. The greater ReHo values of a specific voxel are, the higher the
local consistency of the rs-fMRI signal between neighboring voxels. A cubic cluster of
27 voxels was generally utilized, and centrosomes would obtain ReHo value from the
assignment of each cube cluster. Then the ReHo image was smoothed to a 4 × 4 × 4 mm3

half-width method.

2.4. Statistical Analysis
2.4.1. Behavioral Data Analysis

The mean hit rate was the ratio of the number of correct response times to the total
number of response times under one condition. In the fission illusion and fusion illusion
conditions, to explore whether there was a difference between younger adults and older
adults, for the fission illusion, we conducted a 2 (age group: younger adults vs. older
adults) × 2 (condition: F1B1 vs. F1B2) repeated-measures ANOVA, and for the fusion
illusion, we conducted a 2 (age group: younger adults vs. older adults) × 2 (condition:
F2B1 vs. F2B2) repeated-measures ANOVA. Post hoc t tests based on Bonferroni correction
were also performed. We used ηp

2 for ANOVA and Cohen’s d for the t test to report the
effect size. In addition, in order to supplement the results of the hit rate, we analyzed the
behavior of the participants by signal detection theory. According to the calculation method
mentioned by Keil (2020) [4], when no beep appears, two flashes are judged as hits in the
F2 condition, and two flashes are judged as false alarms in the F1 condition. When the beep
appears only once, one flash is judged as false alarms in the F2B1 condition, and one flash is
judged as hits in the F1B1 condition. When the beep appears twice, two flashes are judged
as hits in F2B2 condition, and two flashes are judged as false alarms in F1B2 condition.
From these values, the sensitivity and response criterion can be calculated by the formula

d’ = z(Hit rate) − z(FA), ln(β) = z(FA)2−z(Hit rate)2

2 , where z stands for the standard score.

2.4.2. Correlation Analysis of ReHo Values and Likelihood of the SiFI
Older Adults Group

A voxel-wise correlation analysis was conducted to explore the correlation between
ReHo values and the likelihood of the SiFI in older adults. The likelihood of the illusion
was defined by the hit rate, likelihood of fission illusion = 1 − F1B2(hit rate), likelihood of
fusion illusion = 1 − F2B1(hit rate). DPABI software was used [45,47]. To control the type I
error in Monte Carlo simulations, the following parameters were used: The initial threshold
on voxel level was set as p < 0.05, the cluster level was p < 0.05, 1000 two-tailed simulations,

http://rfmri.org/dpabi
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4-mm FWHM filtration, 5-mm cluster connection radius (edge connected). AlphaSim
correction was performed, and p < 0.05 was considered to indicate statistical significance.

Between-Group Comparisons

Using DPABI software [45], we performed two-sample t test on ReHo values of older
and younger adults. To control the type I error in Monte Carlo simulations, AlphaSim
correction was performed, the following parameters were used: The initial threshold on
voxel level was set as p < 0.05, the cluster level was p < 0.05, 1000 two-tailed simulations,
4-mm FWHM filtration, 5-mm cluster connection radius (edge connected). We extracted the
brain regions with differences between the two groups as the template mask, according to
this template, the ReHo values of older participants were extracted, and Pearson correlation
analysis was conducted between the ReHo values and the likelihood of illusion of older
adults, p less than 0.05 indicated statistically significant.

3. Results
3.1. Behavioral Performance

Hit rate In the condition of visual flashes, younger adults had a hit rate of 0.95
(SD = 0.05) in the F1 condition and 0.94 (SD = 0.05) in the F2 condition, and older adults
had a hit rate of 0.93 (SD = 0.05) in the F1 condition and 0.92 (SD = 0.05) in the F2 condition.
To make sure there were no discrepancy between younger and older adults in their ability
to detect flashes, we conducted a 2 (age group: older vs. younger adults) × 2 (condition: F1
vs. F2) repeated measures ANOVA. The results showed that the main effect of the condition
was not significant, F(1, 55) = 2.46, p = 0.12, ηP

2 = 0.04. The main effect of the age group
was not significant, F(1, 55) = 3.13, p = 0.08, ηP

2 = 0.05. The interaction between age group
and condition was not significant, F < 1. The results suggested that both the younger and
older adults had the ability to correctly distinguish the number of flashes, and there was no
difference in basic visual discrimination between the two groups.

For the fission illusion, we performed a 2 (age group: younger adults vs. older adults)
× 2 (condition: F1B1 vs. F1B2) repeated measures ANOVA. The results showed that the
main effect of the condition was significant, F(1, 55) = 159.87, p < 0.001, ηP

2 = 0.74, and
the hit rate of F1B1 (0.96) was significantly higher than that of F1B2 (0.51). The main
effect of the age group was significant, F(1, 55) = 4.93, p = 0.031, ηP

2 = 0.08, and the hit
rate of younger adults (0.78) was significantly higher than that of older adults (0.69). The
interaction between age group and condition was significant, F(1, 55) = 4.50, p = 0.038,
ηP

2 = 0.08. To further examine the results of the interaction, we conducted a simple effect
analysis with Bonferroni correction. The independent sample t test showed that, in the
F1B1 condition, there was no significance in the hit rate between the two age groups, t < 1.
The hit rate of older adults (0.43) was significantly lower than that of younger adults (0.59)
in the F1B2 condition, t(55) = 3.07, p = 0.016, Cohen’s d = 0.58. The above results indicated
that no matter younger and older adults suffered from the fission illusion in the F1B2
condition, but older adults had significantly greater likelihood of the fission illusion than
younger adults.

For the fusion illusion, we performed a 2 (age group: younger adults vs. older adults)
× 2 (condition: F2B1 vs. F2B2) repeated measures ANOVA. The results showed that the
main effect of the condition was significant, F(1, 55) = 91.61, p < 0.001, ηP

2 = 0.63, and the hit
rate of F2B2 (0.96) was significantly higher than that of F2B1 (0.61). The main effect of the
age group was not significant, F(1, 55) = 2.23, p = 0.141, ηP

2 = 0.04. The interaction between
age group and condition was not significant, F(1, 55) = 1.56, p = 0.217, ηP

2 = 0.03. The above
results indicated that in the F2B1 condition, both younger and older adults demonstrated
the fusion illusion, but two groups had no significant difference in the likelihood of the
fusion illusion (see Figure 2).
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Figure 2. Mean hit rate of each participant in four conditions. F1B1 indicates the condition in which
a flash is accompanied by a beep, F1B2 indicates the condition in which a flash is accompanied by
two beeps, and the mean hit rate of F1B2 is significantly lower than that of F1B1, which produces the
fission illusion. F2B2 indicates that two flashes are accompanied by two beeps at the same time; and
F2B1 indicates the condition in which two flashes are accompanied by a beep. The mean hit rate of
F2B1 is significantly lower than that of F2F2, which produces the fusion illusion. Short cross lines
represent the mean hit rate, and error bars represent standard errors, * indicates p < 0.05.

Signal Detection Theory Analysis

Sensitivity (d’) To supplement the mean hit rate results, we compared the d’ of older
and younger adults and found that when only flash stimuli were presented, there was no
difference between the d’ of younger and older adults, t (55) = 1.91, p = 0.062. In the F1B2
condition, the d’ of older adults was significantly lower than younger adults, t (55) = 2.96,
p = 0.005, Cohen’s d = 0.79. In the F2B1 condition, there was no difference between the d’ of
younger and older adults, t (55) = 1.66, p = 0.10. The above results indicated that there was
no difference in basic visual discrimination between younger and older adults. Compared
with younger adults, older adults were more sensitive to the fission illusion, but there was
no difference in the fusion illusion between the two groups (see Figure 3).

Figure 3. Mean d’ of F1B2 and F2B1 conditions in younger and older adults. Short cross lines
represent the mean hit rate, and error bars represent standard errors, ** indicates p < 0.01.

Criterion ln(β) We compared Criterion ln(β) of younger and older adults. And we
found that none of the conditions were significant. When only flash stimuli were presented,
t < 1, in the F1B2 condition, t (55) = 1.23, p = 0.22, or in the F2B1 condition, t < 1. These
results suggested that the Criterion ln(β) of younger and older adults were similar.
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3.2. Older Adults Group
Correlation of ReHo Value and Likelihood of Illusion

For the fission illusion, ReHo values were analyzed by Alphasim correction (p < 0.05,
cluster size > 130 voxels), the likelihood of the fission illusion was positively correlated with
ReHo values in the left middle frontal gyrus (MFG). And for the fusion illusion (cluster size
> 129 voxels), the likelihood of the fusion illusion had positively correlations with ReHo
values in the right inferior frontal gyrus (IFG) and right superior frontal gyrus (SFG), as
shown in Table 1 and Figure 4.

Table 1. Correlation between ReHo values and the likelihood of illusions.

MNI Likelihood of
Fission Illusion

Likelihood of
Fusion Illusion

Brain Area BA Cluster Size X Y Z r p r p

Older adults group
MFG 47 136 −33 51 −12 0.547 0.002 **
IFG 48 268 45 15 30 0.601 <0.001 ***
SFG 6 397 18 3 54 0.657 <0.001 ***

Between-group
comparisons STG 36 1091 27 9 −36 −0.020 0.916 −0.132 0.488

Note: ** p < 0.01, *** p < 0.001.

Figure 4. (Left). The older adults’ ReHo values and the likelihood of illusions showing a positive
correlation in the left middle frontal gyrus (MFG), right inferior frontal gyrus (IFG) and right superior
frontal gyrus (SFG). The red is the area where ReHo values are positively correlated with the likelihood
of illusions. (Right). Scatter plot diagram shows the positive correlation between ReHo values of the
left MFG and the likelihood of fission illusion of older adults, ReHo values of the right IFG and SFG
and the likelihood of fusion illusion of older adults. Each point represents one participant’s data.
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3.3. Between-Group Comparisons
3.3.1. Brain Area with Changed ReHo Values in Older vs. Younger Adults

ReHo values were analyzed by Alphasim correction (p < 0.05, cluster size > 146 voxels).
Compared with younger adults, ReHo values of older adults decreased in the right superior
temporal gyrus (STG), as shown in Figure 5.

Figure 5. (Left). fMRI shows right superior temporal gyrus (STG) with changed ReHo values in
older adults compared with younger adults, the blue is the area where ReHo values are significantly
decreased. R = Right. (Right). Scatter plot diagram shows the correlation between ReHo values
of the right STG and the likelihood of illusions of older adults. Each point denotes the data of
one participant.

3.3.2. Correlation of ReHo Values and the Likelihood of Illusions

ReHo values of the STG were extracted according to the template in older adults.
Correlation analysis between ReHo values and the likelihood of illusions in the STG in
older adults showed that there was no statistical correlation between ReHo values and the
likelihood of illusions in older adults (p > 0.05), as shown in Table 1 and Figure 5.

4. Discussion

The present study was conducted in younger and older adults with the same level of
visual discrimination and explored the behavioral discrepancy between the two groups
of participants in the condition of illusion. In addition, we also used ReHo values to
compare the resting-state data of the two groups of participants, to find out the brain
area of abnormal activity of older adults compared with younger adults, and to conduct
correlation analysis with the likelihood of illusions of older adults. The behavioral results
showed that the mean hit rates and d’ of both younger and older adults in the F1 and F2
had no significant differences. However, the mean hit rates of both younger and older
adults in F1B2 were significantly lower than those in F1B1, and F2B1 were significantly
lower than those in F2B2, which manifested that all participants experienced the fission
illusion and fusion illusion. Interestingly, both the mean hit rates and the d’ showed that
the fission illusion was significantly higher in older adults than in younger adults, but
not in the fusion illusion. The results of neural activity manifested that the likelihood of
the fission illusion had a positive correlation with ReHo values in the left MFG, and the
likelihood of the fusion illusion had a positive correlation with ReHo values in the right
IFG and right SFG. The results of the comparison between groups showed ReHo values of
older adults decreased in the right STG, moreover, it was independent of the likelihood
of illusions.

At the behavioral level, we found that all participants experienced obviously stable
illusions of fission and fusion, which was consistent with previous studies [40,48,49].
What’s more, older adults had greater fission illusion, but the present study did not find
discrepancy in the fusion illusion between younger and older adults, which indicated that
the multisensory illusion of older adults was better than that of younger adults to some
extent. These findings coincided with those of previous studies, for example, older adults
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were more vulnerable to the SiFI [18,19], however, there was no difference in the fusion
illusion between the two groups [17]. Previous studies have found the fission illusion was
lower in adult groups than in child groups, but the fusion illusion was semblable in both
groups [50]. The fission illusion and fusion illusion may have different neural mechanisms,
and become more manifested with ageing and development [6,25].

Laurienti et al., (2006) found that multisensory processing was enhanced in older
adults to compensate for the decrease in unsensory ability and proposed the term of com-
pensation mechanism [27]. Previous studies have manifested that the reason for older
adults have greater multisensory illusion to rely on compensatory mechanisms [21]. In
other words, when the information processing capacity of a single modality was insufficient,
the strong SiFI could compensate for this defect by integrating the information of multi-
sensory modalities [27]. For older adults, when the information on the visual modalities
was insufficient to meet the needs of the judgment task, the information on the auditory
modalities could be used as compensation to provide more environmental information [51].
However, this theory may not explain the results of the current study. In the current study,
the level of visual discrimination was the same in older and younger adults, so older adults
did not need greater multisensory illusion to compensate for visual discrimination.

Our results tended to support another explanation that for the enhancement of the
SiFI in older adults was the decline of selective attention in older adults [52,53]. That’s a
completely different explanation than the compensation mechanism, older adults were
more likely to be distracted by distractions and thus make the wrong response [17]. Al-
though Mishra and Gazzaley (2013) [54] found no age-related attention deficits in older
adults, this may be related to their specific tasks, in their study, they used semantically
congruent audiovisual stimuli rather than simple audiovisual stimuli, which could lead to
more complex processing, in addition, the paradigm of multisensory redundancy effect
was adopted, and there was no competition between visual and auditory modalities for
attention resources. Poliakoff et al., (2006) [53] used a cross-modal conflict task to explore
selective attention and ageing, and found that older adults were slower and made more
mistakes on the tactile task with visual interference than younger adults. This suggests that
older adults may be more easily distracted than younger adults, this suggested crossmodal
attention deficit in older adults. According to perceptual load theory [55,56], in the case of
low perceptual load, participants only need to consume part of their attention resources.
Previous studies have found that selective attention ability of older adults decreased, so
they could not ignore the interference of irrelevant stimuli, which led to part of the attention
resources being occupied by irrelevant stimuli [53], this might explain the enhancement of
the SiFI in older adults in the present study.

In older adults, we found that the spontaneous activity of several frontal regions
(MFG, IFG and SFG) was significantly positively correlated with the SiFI. Previous studies
have shown that fission illusion can show increased activity in the right frontal parietal
attention network and STG [57,58] and left MFG [4,59], while the top-down influence of
the frontal lobe region reflects the individual tendency to fusion illusion [10,15]. And
compared with the no illusion trials, the illusion trials produced greater activation of
angular gyrus [6,10,60], these results suggested that the frontal regions was an important
activation region for the SiFI. In addition, the positive correlation between the likelihood of
the SiFI and the activity of the frontal regions of older adults may be a result of cognitive
aging. Previous studies have found that the left and right frontal lobes are engaged in
executive function attentional control and inhibit automatic responses [61–64], and there
was executive function aging in older adults [65]. The scaffolding theory of aging cognition
posits that older adults add new neural pathways to compensate for impaired function and
inefficient brain structures [66]. In our study, when the participants were in the F1B2 and
F2B1 conditions, the auditory and visual signals were inconsistent, and older adults may
have had to use more cognitive resources to pay attention to audiovisual stimuli, which
may have led to an enhancement in frontal regions, but due to selective attention ability of
older adults decreased, resulting in an enhancement in the SiFI.
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The results of the comparison between older and younger adults manifested that
ReHo values of the STG in older adults were decreased to varying degrees. The STG was
considered to be a typical multisensory region [4,6,67]. Mishra et al., (2007) [16] used ERP
technology to find that individuals who experienced a fission illusion exhibited greater
negative components in the superior temporal gyrus at 110 and 130 ms. Previous studies
have also found that fission illusion is linked to visual processing regions in the occipital
gyrus [6,43,57,68]. However, the present study found that activity in the STG decreased
in older adults, while the SiFI was enhanced. This was likely to suggest that the SiFI
enhancement in older adults was not solely related to multisensory processing areas, this
may be related to complex mechanisms resulting from factors such as executive function
and selective attention. The present study demonstrated that when there was no difference
in unisensory ability, the enhancement of multisensory illusion in older adults may not
always be explained by compensation mechanisms.

5. Conclusions

In conclusion, our study manifested that when younger and older adults had sem-
blable unisensory ability, the SiFI was stronger in older adults than in younger adults, and
this did not seem to be explained by the compensation mechanism, ReHo values of rs-fMRI
signals showed that the left MFG, right IFG and right SFG were significantly positively
correlated with the SiFI in older adults. More importantly, the comparison between two
groups showed that the weaken activity of the right STG of older adults was independent
of the SiFI. Our findings demonstrated that when there was no discrepancy in unisen-
sory ability, the enhancement of multisensory illusion in older adults may not always be
explained by compensation mechanisms.
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