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Abstract: Studies using transcranial magnetic stimulation (TMS) have demonstrated the importance
of direction and intensity of the applied current when the primary motor cortex (M1) is targeted. By
varying these, it is possible to stimulate different subsets of neural elements, as demonstrated by
modulation of motor evoked potentials (MEPs) and motor behaviour. The latter involves premotor
areas as well, and among them, the presupplementary motor area (pre–SMA) has recently received
significant attention in the study of motor inhibition. It is possible that, similar to M1, different neuronal
populations can be activated by varying the direction and intensity of TMS; however, the absence of
a direct electrophysiological outcome has limited this investigation. The problem can be solved by
quantifying direct cortical responses by means of combined TMS and electroencephalography (TMS–
EEG). We investigated the effect of variable coil orientations (0◦, 90◦, 180◦ and 270◦) and stimulation
intensities (100%, 120% and 140% of resting motor threshold) on local mean field potential (LMFP),
transcranial evoked potential (TEP) peaks and TMS–related spectral perturbation (TRSP) from pre–SMA
stimulation. As a result, early and late LMFP and peaks were larger, with the coil handle pointing
posteriorly (0◦) and laterally (90◦). This was true also for TRSP in the β–γ range, but, surprisingly, θ–α
TRSP was larger with the coil pointing at 180◦. A 90◦ orientation activated the right M1, as shown by
MEPs elicitation, thus limiting the spatial specificity of the stimulation. These results suggest that coil
orientation and stimulation intensity are critical when stimulating the pre–SMA.

Keywords: transcranial magnetic stimulation; electroencephalography; motor evoked potentials;
TMS–EEG; presupplementary motor area; coil direction

1. Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique
that has been extensively used in the past decades to study the basic physiology of the
cerebral cortex, as well as human behaviour in health and disease. Most studies so far
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have been performed on the primary motor area (M1); a single TMS pulse applied here
activates excitatory inputs to corticospinal neurons. This ultimately leads to the generation
of descending volleys, which give rise to a compound muscle action potential called motor
evoked potential (MEP) [1]. The current direction induced in the brain by the TMS pulse
has a critical role in this process. It is well known that the latency of the MEP is longer if
the current applied has an anterior to posterior (AP) direction compared with posterior
to anterior (PA). Possibly, this is due to the AP and PA currents activating different sets
of inputs to corticospinal neurons [2–7]. Besides coil orientation (CO), this differential
activation also depends on the stimulation intensity (SI) used, i.e., a low SI is more selective
in activating subsets of inputs to corticospinal neurons [5]. Even more importantly, this
specific activation seems to be behaviourally relevant: it has been suggested that the
suppression of a set of motor cortical neurons, obtained by a specific current direction of
TMS, may have an impact on movement preparation [8,9].

Motor planning is a complex phenomenon also involving higher–order motor areas,
including the presupplementary motor area (pre–SMA). In humans, it is located in the
dorsomedial frontal cortex, anterior to the leg representation of the primary motor cortex
(M1) [10,11]. Several lines of evidence have pointed towards a role of the pre–SMA in
complex motor behaviour, including self–initiated activity, generation of action sequences
and motor learning [12]. This has been confirmed in human studies using TMS; in particu-
lar, the human pre–SMA has received attention in the context of switching and stopping
behaviour [13–17]. However, in most studies, parameters such as CO and SI have been
selected without a clear rationale. It is possible that, as for M1, different neuronal popula-
tions can be activated in the pre–SMA by varying CO and SI; however, investigating this
outside M1 is difficult due to the absence of a direct readout such as MEP. This problem can
be solved with the use of combined TMS and electroencephalography (TMS–EEG), which
allows to record postsynaptic potentials generated by the magnetic pulse in the form of
transcranial evoked potentials (TEPs) [7,18–20] or oscillations [21,22], and, thus, to have a
readout from cortical areas outside M1.

In the present study, we assessed TMS–evoked EEG responses from the pre–SMA in a
cohort of young, healthy individuals, with the aim of investigating signal changes due to
different COs and SIs. To assess cortical excitability, we analysed TEPs in terms of discrete
peaks and local mean field potential (LMFP), a reference–free measure commonly used to
measure local excitability of a specific area, from a cluster of nearby electrodes [6,23,24].
To assess cortical oscillations, we computed TMS–related spectral perturbation (TRSP), a
measure reflecting the power of TMS–evoked response in the frequency domain [21,22,24].
These variables were computed locally to the SMA since we were interested in the response
of this area obtained with three different SIs (100%, 120% and 140%) of resting motor
threshold (RMT) and four different COs (0◦, 90◦, 180◦ and 270◦, starting with the coil
handle pointing posteriorly on the transverse plane and proceeding counterclockwise).
Overall, we found that both CO and SI are critical in determining TMS–EEG responses,
and this likely suggests that, by varying these parameters, it is possible to preferentially
stimulate different neural elements within the pre–SMA.

2. Materials and Methods
2.1. Subjects and Experimental Sessions

Sixteen healthy subjects (7 female, age 29.5 ± 4.6), all right–handed [25], were enrolled
in the study. They had no history of neurological or psychiatric diseases and were not taking
drugs active at the central nervous system level at the time of the experiment. Subjects
gave their written consent to participate prior to the experimental sessions. All procedures
were performed in accordance with the Declaration of Helsinki. Approval to conduct
the experiments was obtained from the human subjects review board of the University
College London. The experiment consisted of two sessions; participants underwent a total
of 12 blocks of TMS–EEG recording, in which four different COs (0◦, 90◦, 180◦ and 270◦,
starting with the coil handle pointing posteriorly on the transverse plane and proceeding
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counterclockwise) and, for each of them, three different SIs (100%, 120% and 140% RMT)
were tested (Figure 1, panel A). Each recording block consisted of 100 TMS pulses, and the
order of the blocks was randomised across the two sessions and within the same session.
Single–pulse TMS was applied over the right pre–SMA during EEG recording with an
interpulse interval of 4 ± 10% s (3.6–4.4 s); EMG was recorded bilaterally from the first
dorsal interosseous (FDI) muscle to check whether stimulation was able to induce MEPs.
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Figure 1. Panel (A): Experimental protocol. Single–pulse TMS was applied on the right pre–SMA using
four different coil orientations (0◦, 90◦, 180◦, 270◦), starting with the coil handle pointing posteriorly
on the transverse plane and proceeding counterclockwise). For each coil orientation, three stimulation
intensities were used (100%, 120% and 140% of the RMT). Panel (B): Example of TEP obtained by
averaging signals from all subjects in the 0◦ CO and 140% SI condition. Each line represents a signal
from one electrode; all 62 recording electrodes are plotted. Panel (C): Example of LMFP obtained by
averaging signals from all subjects in the 0◦ CO and 140% SI condition. Panel (D): Example of TRSP
obtained by averaging signals from all subjects in the 0◦ CO and 140% SI condition.

2.2. Electric Field Modelling

To ensure that the chosen stimulation intensities could generate an electric field
(E–field) in the cortex sufficient for a reliable TEP, i.e., at least 40 V/m [22,26], we computed
the induced E–field over the TMS target with SimNIBS v3.2, an open–source simulation
package that integrates segmentation of MRI scans, mesh generation and FEM E–field
estimate [27]. The E–field was computed for the twelve stimulation conditions result-
ing from the combination of four COs (0◦, 90◦, 180◦, 360◦) and three SIs (100%, 120%,
140% RMT). The E–fields were estimated based on the MNI standard brain (ERNIE) pro-
vided in SimNIBS software as an anatomical reference [28].

2.3. TMS, Electromyographic Recording and Analysis

EMG activity was recorded through a pair of Ag/AgCl electrodes placed over the right
and left FDI muscle in a belly–tendon montage. EMG signal was amplified and filtered
(gain 1000x; bandwidth 5 Hz–2 kHz) with a Digitimer D360 (Digitimer Ltd., Welwyn
Garden City, UK), then digitally converted with a CED 1401 analogue–to–digital laboratory
interface (Cambridge Electronic Design Ltd., Milton, Cambridge, UK). Single–pulse TMS
was performed using a Magstim 200 stimulator with a 70 mm figure of eight coil (Magstim
Co Ltd., Whitland, UK), which produces stimuli with a monophasic waveform and a pulse
width of ~80 µs.

The RMT was measured on the FDI hotspot of the right M1, which was defined as the
site where TMS evoked the largest MEP in the left FDI muscle. The RMT was calculated
as the lowest magnetic stimulator intensity able to evoke an MEP of at least 50 µV in
5 out of 10 consecutive trials in the relaxed FDI [29,30]. Peak–to–peak amplitudes of MEP
were calculated by summing the absolute minimum and maximum EMG values in a region
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between 10 and 60 ms after the TMS artefact. The right pre–SMA cortical site where TMS
was applied was identified based on MNI coordinates from previous studies (x = 20; y = 6;
z = 62) [31]. These coordinates were used to initially locate the area and to maintain the coil
in the correct position throughout the stimulation blocks by using a Brainsight navigation
system (Brainbox Ltd., Cardiff, UK) coupled with a Polaris Spectra optical measurement
system (Northern Digital Inc, Waterloo, Canada). The chosen location is more lateral and
posterior compared with the pre–SMA identified elsewhere [32], and it has been specifically
linked to correct stopping behaviour during a stop signal task [31]. Note that this area is
far from craniofacial muscles, whose activation by TMS could potentially affect the EEG
signal [23,33]. An estimated individualised MRI scan in the MNI space was used for all the
participants. Previous studies demonstrated that the mean accuracy of the estimated MRI
scans is comparable with the spatial resolution of TMS [34]. To increase the reproducibility
of our data between the two sessions, in the first experiment, the position of the recording
electrodes was digitised in the MNI space, and the coordinates were used to ensure their
accurate placement in the second experiment.

2.4. Electroencephalographic Recording and Analysis

EEG was recorded using a TMS–compatible amplifier (TruScan EEG, Deymed Diag-
nostic s.r.o, Hronov, Czech Republic). The system minimises the TMS–induced artefact
by removing the AC coupling from 0.5 ms before to 1 ms after the TMS pulse. Signals
were recorded from 62 TMS–compatible Ag/AgCl passive electrodes mounted on a cap
produced by the same manufacturer, according to the 10–20 international EEG system,
including: Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2, FC5,
FC1, FC2, FC6, AF7, CP5, CP1, CP2, CP6, AF8, Oz, FPz, AF3, FC3, AF4, C6, Iz, FC4, FT8, F5,
C2, F1, AFz, C5, F2, TP7, F6, C1, FCz, FT7, CP3, CPz, CP4, TP8, P5, P1, P2, P6, PO7, PO3,
POz, PO4 and PO8.

Recordings were referenced online to linked mastoids, and the ground electrode
was placed above the nasion. Skin impedances were kept below 5 kΩ, and the sampling
frequency during recording was 3000 Hz. In order to mask the TMS–induced noise and
avoid possible auditory evoked potentials, participants wore earplugs continuously playing
a white noise mixed with specific time–varying frequencies of the TMS [35,36]. Additionally,
a 0.5 cm foam layer was placed underneath the coil to minimise bone conduction of the
TMS click and scalp sensation caused by coil vibration.

Offline EEG preprocessing was performed with EEGLAB 14.1.1 [37] with the addition
of some functions included in the TMS−EEG signal analyser (TESA) toolbox [38] and
in Fieldtrip open−source MATLAB toolbox [39], all running in MATLAB environment
(Version 2016b, MathWorks Inc., Natick, MA, USA).

EEG signal recorded in all blocks was epoched (−1.3 to 1.3 s) and demeaned using
a baseline from −1000 to −10 ms. Epochs were visually inspected, and those with ex-
cessively noisy EEG were excluded. The TMS artefact was removed from −5 to 10 ms
around the trigger and interpolated by means of a cubic function. A first round of in-
dependent component decomposition analysis (ICA) was run using a fastICA algorithm.
Only the 15 components explaining the largest variance were plotted in a time window
ranging from −200 to 500 ms, and those reflecting residual scalp muscle or voltage decay
artefacts were eliminated after visual inspection based on time, frequency, scalp distribu-
tion and amplitude criteria [40,41]. After this, a band–pass (1–100 Hz) and a band–stop
(48–52 Hz) fourth−order Butterworth filter were applied. The signal was further epoched
(−1 to 1 s) to reduce possible edge artefacts, and a second round of fastICA was performed
to remove residual artefacts (e.g., eyeblinks, continuous muscle activity, etc.). Lastly, a
common average reference was applied.

Since the aim of the study was to investigate the local effects related to the variation in
CO and SI, we calculated several TMS–EEG measures in a cluster of electrodes surrounding
the stimulation site (Fz, F2, FCz, FC2). To assess the local cortical activation induced by TMS
in the time domain, we computed the LMFP as the square root of squared TEPs averaged
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across the four channels of interest, as performed in previous studies [23,24,42,43]. The
time–domain signal was further analysed, considering discrete TEP peaks. After computing
the grand average signal across all subjects and conditions, we identified five main waves
by visual inspection, peaking at 26 (PI), 44 (PII), 62 (PIII), 118 (PIV) and 198 (PV) ms.
Maximum (for positive) and minimum (for negative) amplitude values were extracted
for each subject, condition and peak within the following time windows: 22–30 ms (PI),
39–49 ms (PII), 58–66 ms (PIII), 108–128 ms (PIV) and 178–228 ms (PV) (Figure 2).
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Figure 2. Grande average TEP across subjects and conditions. Each red line depicts the TEP from one
electrode. The thick black line indicates the TEP averaged across the four electrodes from which the
LMFP was calculated (Fz, F2, FCz, FC2). The yellow panels indicate the time windows from which
maximum/minimum values of TEP peak amplitudes were extracted (see text for details).

For the time–frequency analysis of TEP, spectral estimations of the EEG epochs were
obtained for frequencies between 1 and 60 Hz (1 Hz resolution) and times in the interval
from −500 to 500 ms. A sliding window (5 ms steps), linearly increasing its length across
frequencies (1 cycle length for 1 Hz up to 7 cycles for 60 Hz), was used to extract ampli-
tude and power values of all time–frequency bins. These values were estimated using
the multitapers method as implemented in fieldtrip’s ft_freqanalysis function. For these
estimations, Hanning tapers were used, and the amount of spectral smoothing factor was
set to 0.1 times the frequency analysed in each bin. Then, TRSP was computed as follows:

TRSP( f , t) =
1
n

n

∑
k=1
|Fk( f , t)|2

where, for n trials, the spectral power estimate F was computed at trial k, at frequency
f and time t [37]. Both the LMFP and the TRSP were measured in two time windows
(early: 10–70 ms; late: 70–250 ms); these should reflect more local vs. more distributed
brain activation, respectively [36]. Another rationale for the indicated time windows was
to compare the LMFP and TRSP, the latter showing separate response clusters in the two
intervals (Figure 1, panels C and D). TSRP values were averaged from 10 to 70 ms for
γ (31–48 Hz) and β (14–30 Hz) frequency bands and from 70 to 250 ms for α (8–13 Hz) and
θ (5–8 Hz) frequency bands.
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2.5. Statistical Analysis

To measure differences in LMFP induced by TMS delivered with different CO and SI,
we performed two separate two–way repeated measures ANOVAs on early and late LMFP,
respectively. Factors of analysis were “CO” (0◦, 90◦, 180◦ and 270◦) and “SI” (100%, 120%
and 140% RMT). Five ANOVAs with the same structure were used to assess the effects of
CO and SI on TEP peaks. Possible differences in TRSP were assessed again by means of
repeated measures ANOVAs with the same factors and levels as before. This time, values were
averaged both across frequencies and time windows (10–70 ms for β–γ range and 70–250 ms
for θ–α range). To check whether TMS over the pre−SMA effectively stimulated M1, we also
performed a three–way ANOVA on MEP amplitude, using “side” (left, right) “SI” (100%, 120%
and 140% RMT) and “CO” (0◦, 90◦, 180◦ and 270◦) as factors of analysis. Before undergoing
ANOVAs, normal distribution of data was assessed by means of Shapiro–Wilk’s test. All
p-values < 0.05 were considered significant. Greenhouse–Geisser correction was used when
necessary to correct for non–sphericity (i.e., Mauchly’s test < 0.05). To correct for multiple
comparisons, Bonferroni’s correction was used for main effects, interactions and post hoc
analyses following the ANOVAs. Statistical analyses were performed with IBM SPSS v24
(Armonk, NY, USA: IBM Corp).

3. Results

The test sessions were well tolerated, and no participants reported any side effects.
Results are expressed as average± standard deviation (SD) if not otherwise specified. Average
RMT was 55.1± 9.4 of the maximum stimulator output (MSO). TMS pulses induced a pattern
of negative and positive deflections consistent with previous literature [44,45] (Figure 1,
panel B; Figure 2). The TRSP showed a prominent and early increase in power peaking in the
γ frequency range, compatible with activation of medial motor areas [26], and a later increase
in the θ–α frequency bands (Figure 1, panel D).

3.1. Electric Field Modelling

Table 1 and Figure 3 report the E–fields computed for the 12 conditions explored.
Our results showed that, even with the lowest intensity of stimulation (100% RMT), the
estimated E–fields were well above the threshold of 40 V/m to evoke a reliable TMS–evoked
EEG response [22,26]. To note that the E–fields obtained at 0◦ and 90◦ CO were higher than
those at 180◦ and 270◦; this might, to an extent, have contributed to our results (see below).
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Table 1. E–field values for the 12 conditions explored (measured in V/m).

RMT 0◦ 90◦ 180◦ 270◦

100% RMT 110 108.8 90.5 90.6
120% RMT 132.2 130.9 108.8 108.9
140% RMT 154.4 152.9 127.1 127.2

3.2. Local Mean Field Potential and TEP Peaks

Globally, LMFP induced by the 0◦ and 90◦ CO was larger than 180◦ and 270◦. The
ANOVA on early LMFP showed a significant main effect of “CO” (F3,39 = 5.736, p = 0.02),
“SI” (F2,26 = 9.731, p < 0.001) and a significant “CO × SI” interaction (F6,78 = 3.12, p = 0.04).
Post hoc comparisons showed a consistently larger LMFP at 0◦ and 90◦ CO compared with
180◦ and 270◦. Although this was true for all the tested SIs, the effect reached statistical
significance only at 140% RMT (all p values < 0.01). A similar pattern was found in the
ANOVA on late LMFP, where a significant main effect of “CO” (F3,39 = 3.506, p = 0.024), “SI”
(F2,26 = 11.804, p < 0.001) and a significant “CO × SI” interaction (F6,78 = 4.633, p < 0.001)
were found. This time, only LMFP evoked by 0◦ was larger than 180◦ and 270◦, and this
again occurred only when an SI of 140% RMT was used (Figure 4).
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Figure 4. Summary of results on LMFP and TRSP. Panel (A): Early LMFP (10–70 ms) was larger at
0◦ and 90◦ compared with 180◦ and 270◦. Although this was true for all the tested SIs, the effect
reached statistical significance only at 140% RMT. Panel (B): Late LMFP (70–250 ms) evoked by 0◦

CO was larger than 180◦ and 270◦, and again, this occurred only when an SI of 140% RMT was used.
Panel (C): For TRSP in the β–γ frequency range, 0◦ CO induced a higher TRSP than 180◦ and 270◦

at 100% SI. At higher intensities, both 0◦ and 90◦ COs induced a higher TRSP compared with 180◦

and 270◦. Panel (D): TRSP in the θ–α frequency range showed higher values for 180◦ compared
with the other CO, both at 120% and 140% RMT SIs. Panel (E): MEP recorded from the left FDI
were larger with 90◦ CO when using 120% and 140% RMT SIs compared with all other conditions.
Panel (F): MEP recorded from the right FDI showed no difference across different CO and SI.
Note: TRSP is expressed as the relative change compared with baseline. Error bars indicate the
standard error of the mean. Asterisks indicate statistical significance (* p < 0.05).
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The results of the ANOVAs on TEP peaks are summarised in Table 2 and Figure 5.
Overall, these analyses confirmed the trend observed for the LMFP, i.e., larger amplitude
values for 0◦ and 90◦ CO compared with 180◦ and 270◦. Again, this was clearer with in-
creasing stimulation intensities, except for PI and PIV, in which some statistically significant
differences were observed for 100% RMT as well (Figure 5).

Table 2. Summary statistics of the ANOVAs on TEP peaks.

CO SI CO × SI

F3,45 p F2,30 p F6,90 p

PI 6.763 0.001 1.031 0.369 0.289 0.941
PII 1.709 0.179 2.646 0.087 3.520 0.004
PIII 7.697 <0.001 0.475 0.626 2.355 0.037
PIV 4.131 0.011 8.899 0.001 0.283 0.944
PV 7.316 <0.001 4.504 0.019 0.743 0.617
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PIV; panel (E), PV. Error bars indicate standard error of the mean. Asterisks indicate statistical
significance (* p < 0.05).
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3.3. TMS–Related Spectral Perturbation

TRSP showed a trend similar to LMFP and TEP peaks in the early time window, in which
power in the β–γ bands was considered. The ANOVA on TRSP at β–γ frequencies showed a
significant main effect of “CO” (F3,39 = 8.144, p < 0.001), “SI” (F3,39 = 53.502, p < 0.001) and a
significant “CO × SI” interaction (F3,39 = 3.816, p = 0.02). Post hoc comparisons showed that
0◦ induced a higher TRSP than 180◦ and 270◦ at 100% SI (p = 0.023 and 0.015, respectively).
At higher intensities (120% and 140% RMT), both 0◦ and 90◦ COs induced a higher TRSP
compared with 180◦ and 270◦ (all p values < 0.01). Interestingly, results were very different
in the TRSP measured in the θ–α bands. In this case, the ANOVA showed a significant
main effect of “CO” (F3,39 = 7.467, p = 0.01), “SI” (F3,39 = 27.433, p < 0.001) and a significant
“CO × SI” interaction (F3,39 = 5.318, p < 0.001). This time, a higher TRSP was induced by
stimulation at 180◦ compared with the other three COs, and this was true for 120% and 140%
RMT SIs (all p values < 0.01) (Figure 4).

3.4. Motor Evoked Potentials

No stimulation condition elicited MEPs in the right FDI, whereas clear MEPs were
recorded in the left FDI with a 90◦ CO, both at 120% and 140% SIs. The related ANOVA
showed a significant main effect of “side” (F1,15 = 10.309, p = 0.006), “CO” (F3,45 = 11.947,
p < 0.001), “SI” (F2,30 = 10.414, p < 0.001), as well as significant interactions of “side × CO”
(F3,45 = 11.579, p < 0.001), “side × SI” (F2,30 = 7.979, p = 0.002), “CO × SI” (F2,30 = 10.474,
p < 0.001) and “side × CO × SI” (F2,30 = 9.129, p < 0.001). Post hoc comparisons demon-
strated that, when using 90◦ CO, both at 120% and 140% SIs, MEP size was larger compared
with all other conditions (all p values < 0.05) (Figure 4).

4. Discussion

In this study, we demonstrated that TMS coil direction, already known to influence
responses from M1, also plays a major role when the pre–SMA is stimulated. Specifically,
early time–domain, late time–domain, and early time/frequency–domain EEG responses
to TMS were generally larger when the coil handle was pointing posteriorly and 90◦

laterally. Albeit this result might be partly explained by a larger E–field induced in these
two conditions (Figure 3), it is likely that local neuronal dynamics contributed as well, since
late TRSP was greater when the coil was pointing at 180◦. Additionally, the present results
suggest that stimulating the pre–SMA with a 90◦ orientation activates the right M1, thus
limiting the spatial specificity of the stimulation.

Despite a large number of studies, TMS CO has not been sufficiently addressed when
targeting the pre–SMA, both with single–pulse and repetitive TMS. So far, different TMS
studies have used lateral [16,17] or posterior [15,46–48] CO. In some cases, CO was not
specified [13,14], and in others, a cone coil was used [49–51]. Several studies specifically ad-
dressed the issue of TMS–EEG responses linked to different COs when M1 was stimulated.
Results were mixed, with at least one reporting differences in TEP peaks [52]. The LMFP
has been reported to be less sensitive to coil orientation, provided that stimulation intensity
is adjusted by RMT when M1 is stimulated [6,7]. The effects of CO in other brain areas
have been less studied. Casarotto and colleagues, for example [33], targeted a cortical spot
in Brodmann’s area 6, possibly within the SMA; they found that CO affects EEG responses
induced by TMS. However, in this study, as well as others investigating medial premotor
areas [53,54], a biphasic stimulator was used, thus limiting inferences about the effects of
CO on TEP.

The first important finding of the present study was that the early LMFP and cor-
responding TEP peaks (I–III), calculated between 10 and 70 ms after the TMS pulse, are
larger with COs of 0◦ and 90◦ compared with 180◦ and 270◦. Statistical significance was
reached only at the maximal SI used (140% RMT) for the LMFP, while it also occurred for
lower stimulation intensities for some peaks. This is in apparent contrast with previous
investigations in M1, in which differences in MEP latency and modulation were obtained
with a low stimulation intensity [5,55]. In this regard, it is worth noting that neurons
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in the pre–SMA have a higher threshold for electrical stimulation than those in M1 [56].
Additionally, they vary considerably in terms of sensitivity to somatosensory inputs and
threshold to evoke movements [57]. It is thus possible that a higher TMS intensity recruits
neurons with a higher threshold. Alternatively, since the spatial spread of the TMS–induced
electric field depends on stimulation intensity, activation of cortical sites adjacent to the
stimulated one may have contributed to CO–specific effects at high stimulation intensities.
In this regard, since early TEPs mostly reflect local cortical activation [36], the spread of
electric field within the same area may result in larger TEPs via in−phase summation of
homogenous neural activity, whereas concurrent activation of different areas may have
resulted in smaller TEPs via out–of–phase cancellation.

Interestingly, the observed effect was clearer on the β–γ TRSP compared with the
LMFP. TRSP measured with a 0◦ CO was higher than 180◦ and 270◦ at all SIs. Similarly,
TRSP at 90◦ was higher than 180◦ and 270◦ when a SI of 120% and 140% RMT were used.
A possible explanation is that the response of the stimulated neurons is only partly phase–
locked; thus, a measure such as the TRSP, which also takes into account nonphase–locked
activity, is likely to be more sensitive to variations in the effectiveness of TMS. Such a notion
has already been suggested to explain a higher sensitivity of TRSP compared with LMFP in
detecting cortical excitability changes induced by continuous theta–burst stimulation [24].
The exact nature of the neural elements stimulated in the present study is difficult to
ascertain. Previous data suggested that early components of TEP, which have frequency
content in the beta range, could be a reflection of either excitatory postsynaptic potentials
mediated by NMDA receptors [58] or inhibitory postsynaptic potentials due to GABAa
receptors activation [59], the two hypotheses being not mutually exclusive.

When looking at longer latency responses, LMFP and TEP peaks showed a pattern
similar to the earlier potentials. In this case, only 0◦ CO gave rise to significantly larger
LMFP than 180◦ and 270◦, and only at 140% RMT SI; by contrast, TEP PIV was modulated
by CO even with lower stimulation intensities. Surprisingly, the pattern of θ–α TRSP was
very different, i.e., it was larger with a CO of 180◦ compared with all the other COs, and
the effect was significant at 120% and 140% RMT. It is thus possible that a CO of 180◦

stimulates neural elements which give rise to a more desynchronised global response; this
might explain the discrepancy between time–domain signals and TRSP. Again, we can only
speculate about the cellular mechanisms involved in these late responses to TEP. Some
lines of evidence suggest that they might be mostly generated by local or interhemispheric
inhibitory circuits involving GABAb receptors [60].

A further comment is needed with regards to the comparison between 0◦ and 90◦ COs.
Albeit with slight differences in terms of post hoc comparisons with other COs, both gave
rise to similar LMFP, TEP peaks and TRSP. However, a CO of 90◦ also evoked clear MEPs
in the contralateral but not the ipsilateral FDI when SIs of 120% and 140% RMT were used.
The most likely explanation is that when the coil handle points laterally, the magnetic field
generated stimulates M1, which is slightly lateral to the pre–SMA. If this is the case, part of
the signals observed when using a CO of 90◦ might be due to activation of M1, and thus
it might be overestimated. Even if the measured cortical signal was not contaminated by
activity generated in M1, the latter is nonetheless activated as indicated by MEP generation;
thus, a CO of 90◦ might not be selective enough for stimulation of the pre–SMA. Lastly,
part of the TMS–EEG signals observed in this case may be due to reafferent activity due
to muscle twitch caused by MEP [43,61]. M1 activation might be partly dependent on the
pre–SMA coordinates used here. We chose a site based on the peak of fMRI activation
found by Sharp and colleagues in the context of motor response inhibition [31]. Compared
to pre–SMA coordinates used in other studies [14], this site is more posterior and lateral,
close to the border of the superior frontal gyrus and, thus, closer to M1; this might have
facilitated M1 activation during our experiments.

It has recently been proposed that part of the TEP might be due to non–neural sources,
including auditory and somatosensory evoked potentials, the latter being generated by
activation of craniofacial muscles and cutaneous nerve fibres under the area of TMS stim-
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ulation [62–64]. However, as noted in the experimental procedure section, we took great
care in minimising the contribution of non–neural sources by masking the TMS click with
an appropriate noise and by placing a thin foam layer underneath the coil. It is also
worth noticing that, due to the stimulated area being medial, scalp muscle activation was
minimised [23,33] and that the remaining sources of the EEG signal not caused by direct
cortical activation (e.g., afferent volleys generated by activation of somatosensory fibres in
the skin) would not differ across experimental blocks. Additionally, since we compared
conditions that were homogeneous in terms of stimulation intensity and scalp position,
we are confident that our conclusion applies even if part of the responses were due to
sensory input.

5. Conclusions

To sum up, the present findings suggest that, by varying CO and SI, it might be possible
to target different neural populations in the pre–SMA, with different properties in terms
of stimulation threshold and response synchronisation to the TMS pulse. It is known that
neurons within the pre–SMA subserve different functions. These include modality–specific
changes of activity in the context of reaching movements [65] and encoding information for
the numerical order of components in sequences of movements [57,66]. Additionally, some
neurons in the pre–SMA might be involved in non–motor tasks, such as comprehension of
accelerated speech [67], and they may show variable sensitivity to somatosensory stimuli
and threshold to evoke movements [57]. This evidence considered, further research is
warranted to understand whether the different TMS–EEG responses observed in the present
work can be used to characterise the subset of neurons in the pre–SMA involved in diverse
behaviour. This will have importance in the context of physiological studies, especially
involving motor planning, and in clinical studies in which the pre–SMA has received
attention as a potential therapeutic target with repetitive TMS [68].
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