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Abstract: Electroencephalography (EEG) records the electrical activity of the brain, which is an
important tool for the automatic detection of epileptic seizures. It is certainly a very heavy burden
to only recognize EEG epilepsy manually, so the method of computer-assisted treatment is of great
importance. This paper presents a seizure detection algorithm based on variational modal decom-
position (VMD) and a deep forest (DF) model. Variational modal decomposition is performed on
EEG recordings, and the first three variational modal functions (VMFs) are selected to construct
the time–frequency distribution of the EEG signals. Then, the log−Euclidean covariance matrix
(LECM) is computed to represent the EEG properties and form EEG features. The deep forest model
is applied to complete the EEG signal classification, which is a non-neural network deep model with
a cascade structure that performs feature learning through the forest. In addition, to improve the
classification accuracy, postprocessing techniques are performed to generate the discriminant results
by moving average filtering and adaptive collar expansion. The algorithm was evaluated on the Bonn
EEG dataset and the Freiburg long−term EEG dataset, and the former achieved a sensitivity and
specificity of 99.32% and 99.31%, respectively. The mean sensitivity and specificity of this method for
the 21 patients in the Freiburg dataset were 95.2% and 98.56%, respectively, with a false detection
rate of 0.36/h. These results demonstrate the superior performance advantage of our algorithm and
indicate its great research potential in epilepsy detection.

Keywords: electroencephalography; seizure detection; variational modal decomposition; log−Euclidean
covariance matrix; deep forest

1. Introduction

Epilepsy is a chronic disease of the brain, which is mainly caused by the distur-
bance of neurons in the brain [1]. Over the past few decades, more than 50 million pa-
tients worldwide have been severely disrupted by epilepsy [2]. In 2017, the International
League Against Epilepsy (ILAE) classified seizure types into focal epilepsy, generalized
epilepsy, and epilepsy of unknown symptoms [3]. With the development of medicine,
various antiepileptic drugs are of great help for the treatment of epilepsy, but there are
still 25–50% of epilepsy patients with persistent seizures [4]. EEG can accurately describe
the fluctuation of information in the brain, which records a large amount of pathological
information about epileptic seizures and is very helpful in the diagnosis and treatment of
epilepsy [5,6]. However, the number of EEGs is very large, and relying solely on visual
inspection by an experienced medical expert will bring a huge burden. Therefore, automatic
epilepsy detection technology has a profound impact on reducing the pressure on medical
personnel and promoting the progress of epilepsy treatment.

The traditional automatic seizure detection technology mainly consists of feature ex-
traction and a classifier [7–9]. Usually, feature extraction is an indispensable and important
step in seizure detection. Sharma et al. [10] accomplished the job of seizure classification
based on the iterative filtering (IF) of EEG signals and extracted the amplitude envelope
(AE) function as EEG features. You et al. [11] combined a flexible analysis wavelet transform
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(FAWT) with logarithmic energy entropy (LEE) and fuzzy distribution entropy (fDistEn)
to realize the classification of EEG signals. Follis et al. [12] used an autoregressive mov-
ing average−generalized autoregressive conditional heteroscedasticity (ARMA−GARCH)
model to collect the volatility half-lives of different EEG channels for a better understanding
of seizure processes.

It is well-known that time–frequency analysis is the cornerstone of seizure detection
systems [13,14]. It can capture the transient information of nonstationary signals in the
time and frequency domains, paving the way for subsequent feature extraction. Phadikar
et al. [15] combined wavelet packet decomposition (WPD) and improved nonlocal mean
(NLM) algorithm to denoise EEG signals. Ahmed et al. [16] used short−time Fourier
transform (STFT) to obtain the frequency spectrum of EEG signals and extracted the differ-
ential entropy as an EEG feature. Variational mode decomposition (VMD) is an adaptive
time–frequency analysis method that could solve the nonstationary characteristics of EEG
signals [17]. This method has the advantage that the number of modal decompositions
can be adaptively determined according to the existing form of the signal. During the
variational solution process, the method adaptively surrounds the center frequency of
the mode to achieve an effective separation of the variational modal functions (VMFs).
Rout et al. decomposed the EEG signal into a series of VMFs through VMD, extracted five
instantaneous features with the help of the Hilbert transform (HF), and put the features
into the error-minimizing random vector functional link network (EMRVFLN) to complete
the EEG classification of the signals [18].

The covariance matrix can characterize the correlation between features and is cur-
rently used in many fields to study time series [19]. Abdulla et al. designed a covariance
matrix decision model that combines Kolmogorov–Smirnov and Mann–Whitney U tests
to rank EEG features and used the AdaBoost backpropagation neural network to achieve
the classification of EEG signals [20]. Lei et al. applied symmetric positive definite (SPD)
matrices in the form of covariance descriptors to present EEG signals and proposed the
discriminative Stein kernel−based sparse representation for seizure detection [21].

The development of deep learning has led to advances in areas such as image recog-
nition, EEG analysis, and seizure detection [22–24]. Truong et al. put the time–frequency
information obtained by the short-time Fourier transform (STFT) into CNN to classify the
nonseizure and seizure periods [25]. Singh et al. used a modified grasshopper optimization
algorithm (GOA) and an artificial neural network (ANN) to identify EEG signals [26].
Deep learning can automatically learn the intrinsic characteristics of EEG signals from an
end−to−end perspective to complete the classification of EEG signals. Deep forest (DF)
is a new deep ensemble method proposed by Zhou et al., which combines deep neural
networks and decision trees [27]. The DF model includes two parts, namely multigran-
ularity scanning and cascade forest. Cascading forests could realize the layer-by-layer
analysis of features, and multigranularity scanning is beneficial to enhance the connection
between data features. Compared with the deep neural network, the parameter adjustment
of tree-based DF is easier, and it also has good performance in different fields under the
same parameters [28,29]. Recently, Cao et al. classified hyperspectral images (HSI) with
the help of rotation-based deep forest (RBDF) [30]. It can be seen from the experimental
results of three HSIs that RBDF can enhance the recognition ability of spectral features and
improve classification accuracy. Fang et al. used a combination of power spectral density
(PSD) and differential entropy (DE) as the input of a deep forest to identify emotions in
EEG signals [31].
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The purpose of this work is to study an innovative automatic seizure detection algo-
rithm. EEG time−frequency information using variational modal decomposition is helpful
for epilepsy detection. Through LECM, the Riemannian manifold of the covariance matrix
could be mapped to linear space, and the difference between nonseizure and seizure signals
could be distinguished. The deep forest classifier is used for more effective recognition.
Finally, we evaluate the performance of this algorithm on two EEG datasets. The rest of
the paper is structured as follows: The two EEG databases are introduced in Section 2, and
Section 3 describes the specific implementation of this algorithm, including preprocessing,
deep forest, and postprocessing. The evaluation criteria and experimental results are pre-
sented in Section 4. A discussion of the results is provided in Section 5, followed by the
conclusions in Section 6.

2. EEG Datasets
2.1. Bonn Dataset

The Bonn dataset contains five sets: Z, O, N, F, and S, and each set consists of 100 time
series that were sampled at 173.6 Hz and are 23.6 s in duration [32]. The S, F, and N sets
were collected using electrodes placed intracranially, where F and N were the nonseizure
signals placed in the epileptic area and contralateral hippocampus, and S was the seizure
signal for five epilepsy patients. The Z and O sets were collected using scalp electrodes,
which contained the EEG signals of five healthy volunteers with their eyes open and closed,
respectively. In this paper, the two sets S and F were applied to the binary classification
problem of intracranial EEG signals.

2.2. Freiburg Dataset

The Freiburg EEG dataset came from the Epilepsy Center at the University Hospital
Freiburg, Germany, and contains intracranial EEG recordings from 21 patients with strong
resistant focal epilepsy. The sampling frequency of this dataset is 256 Hz, and it was
collected by a Neurofile NT digital video monitor. In this dataset, experienced experts
marked the beginning and end of seizures in each patient, and the EEG information of each
patient was collected from six channels. Three channels were placed in the focal area, and
three channels are placed in the extrafocal area. In this work, we only studied the three
channels located in the focal region.

Due to differences in the types of seizures and the factors that cause seizures, the
duration of the seizure activity is different for patients. Long seizure activity can last up to
15 min, while short seizure activity lasts only 12 s. Experts use the clinical presentation of
epilepsy patients to mark when each seizure event begins and ends. In total, this dataset
contains 87 seizure events, and the mean seizure duration is 114.3 s. More detailed data
about the Freiburg dataset can be found in reference [33]. In our experiments, one or more
seizure events and same amount of nonseizure EEG data were randomly selected for each
patient for training, and the rest of the EEG data were used to test the trained model. A
total of 83.35 min of seizure data (including 33 seizure events) and 3.6 h of nonseizure data
were used for 21 patients as a training dataset. In the testing set, there were 116.7 min of
epileptic seizure data (including 54 seizure events) and 648.57 h of nonseizure data.

3. Methods

The framework of our proposed epilepsy seizure detection algorithm is shown in
Figure 1, which mainly consists of three parts: preprocessing, deep forest classification, and
postprocessing. We describe each procedure in detail in the following subsections.
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Figure 1. Block diagram of this automatic seizure detection algorithm. (a) The complete flow of
the whole system, including preprocessing, classification, and postprocessing. (b) The process of
preprocessing in detail, including VMD and the calculation of LECM, where represents the logarithmic
half-vectorization operation.

3.1. Preprocessing

Since the EEG signal is dynamic and nonstationary, the EEG signal of each channel
is divided into 4 s epochs with a moving window without overlap [34].This window
could capture epilepsy activity well and differentiate EEG signals while maintaining the
stationarity of the signals. In our work, preprocessing mainly includes two processes. The
first step is to apply variational modal decomposition (VMD) to find the predominant
low-frequency region of seizures. Then, the log−Euclidean covariance matrix (LECM) is
designed and applied to reduce the dimension of the EEG signal and further highlight the
characteristics of the EEG signal.

3.1.1. Variational Modal Decomposition

Due to the good robustness and adaptability, variational modal decomposition (VMD)
can better analyze and handle nonlinear and nonstationary signals such as EEG, which adap-
tively decompose the original signal, f (t), into non-recursive modes uk, k = 1, 2, . . . , K. Each
mode is called a variational mode function (VMF) and can be expressed as Equation (1) [35]:

uk = Ak cos(φk) (1)

Here, the envelope of the VMFs is Ak, and φk is the phase. The derivative of the
envelope of the VMFs is the central frequency ωk, ωk = φ’k, and each VMF is centered on
the central frequency.

When VMD deals with variational problems, it first analyzes each mode, uk, through
the Hilbert transform to obtain the unilateral spectrum (δ(t) + j/πt) ∗ uk(t) and then
adds e−jωkt for each mode, uk, to adjust the center frequency, ωk. Finally, through the
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action of Gaussian smoothing, we obtain a constrained variational problem, as shown in
Equation (2) [36]:

min{uk},{ωk}{∑
k
‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2

2}

s.t.
K

∑
k=1

uk = f (t)
(2)

where ∂t denotes the partial derivative, is the unit impulse function, and f (t) is the original
signal, which is the summation over all modes. Combined with the data fidelity constraint
factor, α, and the Lagrangian multiplier, λ(t), to form an augmented Lagrangia, (L),
the constrained variational problem is transformed into an unconstrained variational
problem [37].

L({uk}, {ωk}, λ) = α∑
k
‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2

2+∣∣∣∣∣∣∣∣ f (t)−∑
k

uk(t)
∣∣∣∣∣∣∣∣2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (3)

The sequence is updated using the alternative direction method of multipliers (AD-
MMs) algorithm to solve the variational problem in the decomposition process [38], where
the mode, uk, and the center frequency, ωk, are updated as [39]:

ûn+1
k (ω) =

f̂ (ω)−∑ i 6=kûi (ω) + λ̂(ω)/2

1 + 2α(ω−ωk)
2 (4)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(5)

In this way, the original signal, f (t), is decomposed into a series of modal functions,
uk, containing the time–frequency information of the EEG signal. Reference [40] provides a
complete variational modal optimization scheme.

Compared with other time–frequency analysis methods, VMD has good robust-
ness and adaptability, which can perfectly analyze nonlinear and nonstationary EEG
signals. VMD always decomposes low−frequency information first and then decomposes
high−frequency information, which is helpful for seizure detection since the characteristics
of epileptic seizures are more prominent in the low-frequency part of the EEG signal [41].
The VMFs decomposed by VMD are closely related to the center frequency, so the center
frequency of the VMFs would gradually increase. Tables 1 and 2 show the distribution of
center frequencies with different modal numbers for the Bonn and Freiburg datasets, respec-
tively. It can be seen that when K = 6 the center frequency does not continuously increase
but first increases and then decreases, indicating that there is excessive decomposition.
Therefore, we chose the modal number K = 5 for these two datasets.

Table 1. The central frequencies corresponding to different modal function numbers in the
Bonn dataset.

Number of Modes Center Frequency (Hz)

2 0.47 10.40 − − − −
3 0.32 6.60 22.82 − − −
4 0.30 5.97 17.88 68.89 − −
5 0.26 5.45 14.46 29.22 72.51 −
6 0.26 5.32 13.63 40.17 74.60 24.86
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Table 2. The central frequencies corresponding to different modal function numbers in the
Freiburg dataset.

Number of Modes Center Frequency (Hz)

2 1.08 16.51 − − − −
3 0.54 11.44 34.53 − − −
4 0.74 10.36 25.60 49.66 − −
5 0.74 10.11 23.99 32.77 87.01 −
6 0.64 13.34 27.96 46.44 90.96 8.88

An increase in the number of VMD decomposition layers leads to the appearance of
false VMFs. In addition, the low-frequency portion of the EEG signal often contains more
useful information for seizure detection [42]. To reduce the interference of spurious VMFs
components, we analyzed and calculated the correlation coefficient between each VMF
and the original signal, as shown in Table 3. In both datasets, the correlation coefficients
of VMF4 and VMF5 were not greater than 0.3, indicating that they contained less original
information. To improve the classification accuracy, we only kept VMF1, VMF2, and VMF3
for subsequent EEG signal classification. Figure 2 is the comparison between the original
signal and VMF1, VMF2, and VMF3 when K = 5 in the Bonn dataset.

Table 3. The correlation coefficients between each VMF and the original signal.

EEG Dataset VMF1 VMF2 VMF3 VMF4 VMF5

Freiburg 0.8598 0.5298 0.3105 0.1813 0.0773
Bonn 0.7906 0.7142 0.3614 0.1792 0.0626
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3.1.2. Log-Euclidean Covariance Matrix

The covariance matrix is an important descriptor for EEG signals, which could re-
flect the second-order statistical properties of elements and describe multiple types of
information and correlations of features. The covariance matrix is usually a symmetric
positive definite (SPD) matrix, while the space of the SPD matrix is not a linear Euclidean
space but a nonlinear Riemannian manifold. Therefore, an SPD matrix cannot perform
Euclidean operations directly and can be operated in two ways, the affine-invariant Rieman-
nian framework and the log-Euclidean Riemannian framework [43–45]. Both frameworks
have good theoretical foundations, but the computational cost of the former is higher
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than that of the latter. The following mainly describes the calculation of LECM using the
log−Euclidean framework.

The space of a symmetric positive definite has the characteristics of the Riemannian
manifold, which can be mapped to Euclidean space through logarithmic operations. Li et al.
showed that logarithmic SPD matrices can be processed by simple Euclidean operations [46].
This greatly facilitates the statistical analysis of the SPD matrix. Each SPD matrix satisfies
the decomposition of Equation (6) [47].

C = UΛUT (6)

Based on the log−Euclidean framework, for any SPD matrix, C, there is a unique
corresponding logarithmic operation, log C [46]:

log C = U · Diag(log(λ1), . . . , log(λn)) ·UT (7)

Here, U is an orthogonal matrix and Λ = Diag(λ1, . . . , λn) is a diagonal matrix
including the eigenvalues λi, i = 1, . . . , n for C. After calculating Equation (7), we can
obtain this log−Euclidean covariance matrix (LECM).

According to the symmetric characteristics of LECM, we perform a semivector opera-
tion on logC, where we only keep its diagonal elements and the elements above it, with the
elements below the diagonal deleted. Thus, a vector, v log Cxy, is formed by the column as
extracted EEG features, which can be expressed as:

v log Cxy = [log C11, log C12, log C22, . . . , log Cnn] (8)

In this work, the variational modal functions (VMFs) of the VMD decomposition were
used to construct the EEG time–frequency distribution matrix and calculate its covariance
matrix, C. Then, we extracted a vectorized LECM to characterize the EEG signals. As
illustrated in Figure 3, the boxplots of the diagonal elements of the LECM were analyzed to
compare the distributions of seizure and nonseizure EEG data in the Bonn dataset, which
shows that the two types of EEG data are significantly different.
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3.2. Deep Forest

Deep forest is an extension and deep model of random forest, which combines the idea
of deep learning based on random forest. Deep forests learn how deep neural networks
handle feature relationships, but unlike deep neural networks, deep forests do not have
many hyperparameters, and deep forests also perform well on small sample datasets [48].
Figure 4 depicts the overall framework of deep forest. The sliding window of multigranu-
larity scanning is used to extract the original features and enhance the correlation between
the features. The sequences obtained by scanning processing are used as the input of Forest
A1 and Forest A2, and the corresponding class probability of each input is obtained by the
forest. The results of the forest output are concatenated as the input of the cascade forest.
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Figure 4. The complete frame process of the deep forest structure. Each layer of the cascade forest
consists of two random forests (red) and two full random forests (blue).

Cascade forests are an ensemble of decision trees. To enhance the generalization ability
of cascade forest, each layer consists of two different forests, full random forest and random
forest. The level in the cascade forest is adaptive and does not need to be manually set in
advance. This is because it performs performance evaluation at the end of one level and
then trains at the next level; when the training is over, the entire cascade is evaluated again.
If there is no significant improvement in performance, the training process terminates. The
adaptability of the cascade forest can determine the complexity of its model, which makes
the deep forest have outstanding performance in the face of small datasets, such as EEG
data, compared to DNN.

In the procedure of multigranularity scanning, the choice of window size needs to
consider the dimension of the input features. The window should not be too small, as the
amount of data after scanning would be too large and cause computational burden, and
the window should not be too large, as effective feature correlation information cannot
be captured. After the LECM, the original EEG feature vector of the Bonn dataset was
6−dimensional and the original feature vector of the Freiburg dataset was 45−dimensional.
Considering that the window length cannot exceed the original feature dimension, the
length of one larger window was set to 5 and the other smaller window was set to 3 for
both datasets.

The deep forest is a model based on RF and combined with the layer structure of deep
learning. We all know that decision trees are the core of RF, and the number of trees is an
important parameter in RF, which affects the performance of classification. Too many trees
can increase the computational burden. To clarify the appropriate number of decision trees
in the deep forest model, we analyzed the results of the EEG classification by performing
10−fold cross−validation experiments with different numbers of trees in the Bonn and
Freiburg datasets. Figure 5 provides the relationship between the number of decision
trees and the classification accuracy for the two datasets. Among them, the Freiburg EEG
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database is a long-term EEG dataset, and the seizure duration of each patient is very short,
much smaller than the nonseizure EEG data. Therefore, 10−fold cross−validation is not
well-suited for the entire EEG dataset. Therefore, we randomly chose 10 patients from
the 21 patients and performed a cross-validation experiment combining all seizure data of
these patients with randomly selected nonseizure data of the same length. As can be seen
in the Figure 5, at first the classification accuracy was effectively improved as the number
of trees increased. When the number of trees was below the range of 100, the accuracy
improved very rapidly, but when the number of trees increased to 120, the classification
accuracy stabilized and did not change significantly. Hence, we set the number of trees to
120 to save computational costs while ensuring good classification performance.
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model for two datasets.

3.3. Postprocessing

To improve the classification accuracy, we utilize postprocessing techniques to process
the output of the deep forest, which mainly include a probabilistic output subtraction
operation, smoothing, threshold judgment, and adaptive collar technology. The judgments
of the deep forest model on the nonseizure period and the seizure period of the EEG signal
are two probabilistic outputs. To effectively distinguish two different types of EEG signals,
the final probabilistic result is the difference obtained by subtracting the two output values.

The linear moving average filter (MAF) is used to remove sudden glitches in the
probabilistic output of the deep forest [49]. Although this filter is simple, it has good
performance, which not only effectively removes noise, but also retains the sharpest part to
a certain extent. It is helpful for our seizure detection to reduce some short-lived wrong
decisions, which can be defined as:

yk =
1

2M + 1

M

∑
i=−M

ŷk+i (9)

where ŷ is the probabilistic result, y is the filtered signal, and 2M + 1 represents the
smoothing length. Then, comparing the threshold with the smoothed output yields a
binary decision: 0—nonseizure or 1—seizure. Since the average seizure duration of each
patient is different, the smooth length is also different and is determined by obtaining
the best classification result of the training data. In the training stage, we set different
smoothing lengths successively with a limitation to a maximum of 35 to find the optimal
parameters, and the length was fixed in the testing stage for this patient. In addition,
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the threshold for each patient was also determined during the training phase using a
similar method.

In addition, the evolution of epileptic seizure is a continuous dynamic process. The
characteristics of the beginning and end phases of seizures are not much different, and the
two phases are made less clear by the smoothing operation. In response to this problem,
adaptive collar technology can reduce the missed part of the seizure [50]. Figure 6 presents
an example of an epileptic event successfully detected in patient 20 with a complete
postprocessing technique.
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the threshold. (d) The final binary classification results after the adaptive collar technology, where the
period between the two red vertical lines is the epileptic seizure period marked by the expert.

4. Results

In this part, we mainly introduce our experimental evaluation criteria and results.
This experiment was implemented in MATLAB 2018 and the Python 3.7 environment.
First, in the preprocessing stage, we used VMD to perform a time–frequency analysis of
EEG signals, determined the number of modes used by calculating the cross-correlation
coefficient between each modal component and the original signal, and constructed the
time–frequency distribution matrix of EEG signals. Then, the LECM was calculated, the
corresponding EEG features were extracted, and we put them into the proposed deep forest
model to obtain the probability output. Finally, the postprocessing techniques, such as
smoothing and the adaptive collar techniques, were performed on the probabilistic outputs
to improve the classification accuracy.

4.1. Evaluation Criteria

This paper mainly adopts two evaluation criteria, which are epoch-based criteria
and event-based criteria [51]. The epoch-based evaluation criteria include four indicators:
sensitivity, specificity, accuracy, and G-mean, which are represented as follows:

Sensitivity =
TP

TP + FN
(10)
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Speci f icity =
TN

TN + FP
(11)

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

G−mean =
√

Sensitivity ∗ Speci f icity (13)

Among them, TP represents the number of seizures correctly detected by the algorithm,
FN is the number of seizures incorrectly determined by the algorithm to be nonseizures,
TN indicates the number of nonseizures correctly detected by the algorithm, and FP is
the number of nonseizures incorrectly determined by the algorithm to be seizures. Thus,
sensitivity is applied to evaluate the ability of our algorithm to classify seizure EEG data,
while specificity can evaluate the ability to classify nonseizure EEG data. For the imbalance
in seizure and nonseizure data in the Freiburg dataset, G−mean can be a good evaluation
of the algorithm’s classification effect on two different types of data.

The event-based sensitivity and false detection rate constitute the event-based evalua-
tion criteria. Event-based sensitivity is obtained by calculating the number of true seizure
events detected and then dividing by the total number of expert−labeled seizure events.
The system judges one or more consecutive EEG signals in the nonseizure period as the
signal of the nonseizure period, which is called a false positive, and the false detection rate
is the average number of false positives per hour.

4.2. Experiment Result

In the Bonn dataset, the 10-fold cross-validation experiments were applied to evaluate
the algorithm performance, which could avoid overfitting to a certain extent. The two
classes of intracranial EEG signals were divided into 10 nonoverlapping subsets of the same
size. Then, 9 subsets were used as the training dataset, 1 subset was used as the testing
dataset, and 10 experiments were carried out in turn. Finally, the average of 10 results was
calculated. Figure 7 shows the performance obtained by the 10−fold cross−validation on
the Bonn dataset. The average of sensitivity, accuracy, and specificity were 99.2%, 99.31%,
and 99.26%, respectively, indicating that our algorithm has good classification performance
between the seizure and nonseizure periods.
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Tables 4 and 5 show the epoch-based and event-based performance on the Freiburg
dataset, respectively. Table 4 represents the average values of epoch-based sensitivity,
specificity, accuracy, and G-mean of 95.2%, 98.56%, 98.52%, and 96.64%, respectively. Most
of these patients (patients 1, 2, 3, 5, 6, 7, 11, 12, 13, 15, 16, 17, and 20) had a maximum
sensitivity of 100%. Only patients 18 and 19 had sensitivity values lower than 80%, which
were not satisfactory results. The specificity of 10 patients was above 99%, and the specificity
of all 20 patients, except patient 10, was higher than 96%. There were 11 patients (patients
1, 5, 6, 7, 11, 12, 13, 15, 16, 17, and 20) whose G-mean index exceeded 99%. Only patients
4, 10, 18, and 19, with less than 96%, did not achieve our expected results. Event-based
evaluation criteria tend to be more in line with clinical practice. We used 54 seizure events
as our test set to evaluate the ability of the epilepsy detection system. There were 51 events
detected, three of which were missed, with an event−based average sensitivity of 94.44%.
Figure 8 shows the four EEG time series with different judgment results of the seizure
detection system to which our proposed method was applied.

Table 4. Epoch-based evaluation results for 21 patients in the Freiburg dataset.

Patients Sensitivity Specificity Accuracy G-Mean

1 100 99.49 99.49 99.74
2 100 96.98 96.98 98.47
3 100 97.50 97.50 98.74
4 92.35 99.03 99.01 95.63
5 100 99.89 99.89 99.94
6 100 99.08 99.08 99.53
7 100 99.83 99.83 99.91
8 100 97.01 97.01 98.49
9 98.67 96.20 96.20 97.42
10 91.52 95.95 95.49 93.70
11 100 99.96 99.96 99.97
12 100 99.98 99.98 99.99
13 100 99.85 99.85 99.92
14 98.01 98.31 98.26 98.15
15 100 98.47 98.47 99.23
16 100 98.91 98.91 99.45
17 100 99.55 99.55 99.74
18 52 96.78 96.74 70.94
19 71.21 99.97 99.97 84.37
20 100 98.79 98.79 99.39
21 95.40 98.24 97.98 96.80

Mean 95.20 98.56 98.52 96.64

From Table 5, we can also observe that the average false detection rate of the event-
based evaluation metric, which also performed well, was 0.36/h. Only patient 18 had a
false detection rate greater than 1/h because the seizure duration of patient 18 was too
short. It was less than 15 s, so the system could not extract accurate features. Large-scale
rhythmic epileptic activity is the main cause of most false detections, and nonseizure signals
are judged as seizure signals.
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Table 5. Event-based evaluation results for 21 patients in the Freiburg dataset.

Patients Number of Seizures
Marked by Experts

Number of Seizures
Detected by Our

System

Event-Based
Sensitivity

False Detection
Rate/h

1 2 2 100 0.35
2 1 1 100 0.70
3 3 3 100 0.89
4 4 3 75 0.15
5 3 3 100 0.03
6 2 2 100 0.20
7 2 2 100 0.07
8 1 1 100 0.29
9 3 3 100 0.80
10 3 2 67 0.87
11 2 2 100 0.06
12 3 3 100 0.09
13 1 1 100 0.07
14 3 3 100 0.43
15 2 2 100 0.12
16 3 3 100 0.26
17 4 4 100 0.10
18 3 2 67 1.41
19 2 2 100 0.03
20 3 3 100 0.16
21 4 4 100 0.43

Total 54 51 94.44 0.36
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Figure 8. Four EEG time series with different judgment results of this seizure detection system.
(a) Truly detected seizures; (b) falsely detected seizures; (c) truly detected nonseizures; (d) falsely
detected nonseizures. The seizures identified by the experts are represented between the vertical red
lines, and the purple horizontal line represents the binary decision result of our algorithm.

5. Discussion

An effective seizure detection system must have both high sensitivity and high speci-
ficity as well as a low false detection rate. The covariance matrix (CM) is an important tool
for EEG signal analysis, which can effectively distinguish different types of EEG signals. In
this paper, this ability of the covariance matrix is greatly enhanced by computing the LECM,
which indirectly maps the covariance matrix to the Euclidean space. We compared the
direct use of the covariance matrix of the EEG features with the proposed LECM features on
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the Bonn dataset. Figure 9 shows the classification results of these two feature vectors under
deep forest using the same parameters. It can be seen that, compared with directly using
the covariance matrix as the EEG features, the LECM has better ability in seizure detection.
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Deep forest is a tree-based deep neural network model. To verify its performance,
we used support vector machine (SVM), random forest (RF), Bayesian linear discriminant
analysis (BLDA), and K−nearest neighbor (KNN) to compare with the deep forest model
under the same input. Among them, BLDA adopts a regularization method to avoid
overfitting in high-dimensional data and noisy data and does not need manual parameter
tuning. We only set the average value of the BLDA output as the final classification
threshold. RF builds multiple decision trees and uses them to vote for classification results.
The number of decision trees in the RF is the same as the number selected in the deep
forest model. The core idea of SVM is to find the best hyperplane between samples with
different attributes to classify the data. Here, we used the Gaussian function and applied
the transformation technique to determine the hyperparameters. During the testing process
of KNN, the method determines the class of the sample based on the class of one or several
recent samples. In this experiment, the number, K, of adjacent classes was taken to be 5.

As shown in Figure 10, the sensitivity, specificity, and accuracy obtained by the deep
forest classification were all higher than the other four classifiers, which shows that deep
forest has more ability in the classification of EEG signals than the other classifiers and is
more sensitive for the recognition of EEG signals. Certainly, the ability of deep forest to
achieve such excellent performance is the result of the joint action of the LECM and this
deep forest model. Therefore, we will further explore more features of deep forest to verify
the performance of the model in future work.

The Freiburg dataset used in this paper has been used to validate the effectiveness of
epilepsy detection algorithms by many researchers. Table 6 presents a comparison of the
results of our work with other studies using the Freiburg EEG dataset. Yan et al. introduced
an epileptic seizure detection method based on the Stockwell transform combined with
power spectral density and using a gradient boosting algorithm as a classifier [52]. The
epoch-based sensitivity, specificity, and accuracy of their system reached 94.26%, 96.34%,
and 98.30%, respectively, and the event-based false detection rate was 0.66/h, all lower
than our algorithm. In addition, they only studied 20 of these patients, and did not analyze
patient 10.
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Table 6. Comparison of the results of our algorithm and other related works according to the Freiburg
dataset.

Authors EEG Data
Duration/h

Number of
Patients

Epoch-Based
Sensitivity (%)

Epoch-Based
Specificity (%) Accuracy (%) False Detection

Rate/h

Yan el al. [52] 582.4 20 94.26 96.34 98.30 0.66
Mahmoodian et al. [53] 560 20 95.83 96.70 96.84 0.24

Tzimourta et al. [54] 28.6 21 99.74 − − 0.21
Mu et al. [55] 590 21 93.2 98.16 98.16 0.5

Hussain et al. [56] − 21 94.71 93.99 90.53 −
Abugabah et al. [57] 150 10 99.1 99 98.9 −

Malekzadeh et al. [58] − − 98.96 98.96 99.13 −
Our work 648.57 21 95.20 98.56 98.52 0.36

Recently, Mahmoodian et al. combined cross-bispectral features and support vector
machines to achieve automatic epilepsy detection [53]. Although their false detection rate of
0.24/h was lower than our algorithm, they only trained on 20 patients and ignored patient
13. The epoch−based sensitivity and specificity were 95.83% and 98.56%, respectively.
Tzimourta et al. realized the recognition of epileptic seizures based on wavelet transform
and support vector machine [54]. While their classification works well, they only tested
21 patients for a total of 28.6 h, which is lower than our algorithm’s performance of 650.52 h
on 21 patients. Mu et al. used wavelet transform to obtain the time–frequency distribution
matrix of EEG signals and combined graph-regularized non-negative matrix factorization
to distinguish the seizure and nonseizure signals [55]. Although our algorithm is lower in
specificity than theirs, we have high sensitivity and a lower false positive rate than their
algorithm. Based on the end-to-end idea of deep learning, Hussain et al. proposed a deep
learning hybrid structure that is a combination of CNN and LSTM [56]. In their work, they
did not perform feature extraction but directly put the temporal information of the original
EEG signal into a hybrid model of CNN and LSTM to classify the EEG signal. The results
they obtained had averages of 94.71%, 93.99%, and 90.53% for sensitivity, specificity, and
accuracy, respectively.

In the study of Abugabah et al., the first 10 patients in the Freiburg dataset were ana-
lyzed, 15 statistical features were screened with the help of the krill swarm algorithm, and
the distinction between seizures and non-onsets was completed under the artificial algae
optimization neural network, which finally obtained 98.9% accuracy [57]. Malekzadeh et al.
proposed a seizure detection algorithm that combines handcrafted and deep learning
features [58]. In their work, tunable−Q wavelet transform (TQWT) is used to obtain sub-
band EEG information, and various linear and nonlinear features are calculated. Then, a
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deep learning method of CNN−RNN was proposed to complete seizure detection, which
achieved very good results, with an accuracy rate of 99.13%. Although its accuracy exceeds
that of our method, the use of training and testing data in their study were not illustrated.
Moreover, our algorithm is much simpler than their work and achieves remarkable results
on a very small training set. As can be seen in Table 6, we propose a more prominent
epilepsy detection method for distinguishing seizure and nonseizure periods, and our
method was used in the Bonn and Freiburg datasets, indicating that our algorithm has
better generalization ability.

Furthermore, with the development of long-term EEG monitoring technology, more
and more EEG recordings need to be analyzed, and the imbalance between seizure and
nonseizure data needs to be further considered in this proposed deep forest model. In
addition, some factors such as the location of the electrodes, the age of the patient, and
the type of epilepsy can affect the detection results. Although this experiment did not
distinguish these, indicating that our algorithm has good adaptability, the influence of
these factors still needs to be explored. Moreover, our experimental results still need to
take into account the limitations of the EEG datasets used, such as scalp EEG recordings.
Although our proposed method is very effective, there are definitely some differences and
limitations for clinical practice, so we need to further improve and validate our algorithm
on larger EEG datasets to make it suitable for clinical use.

6. Conclusions

This paper introduces an automatic seizure detection algorithm based on variational
modal decomposition and deep forest models. The adaptability of VMD can not only obtain
time–frequency information that is useful for epilepsy detection, but it also effectively dis-
tinguishes two different EEG signals during the seizure and nonseizure phases. Compared
with directly using the covariance matrix as the eigenvector, the LECM not only preserves
the spatial structure of the covariance matrix but also avoids the high computational burden
of the Riemannian manifold through indirect mapping. The detection capability of the
LECM has a more obvious advantage. The experimental results show that the classification
based on the deep forest model is very effective, with a low misjudgment rate. Therefore,
our method is very effective in the detection of intracranial EEG and has great develop-
ment prospects in other biological information fields. Considering the adaptability of this
algorithm and the limitations of the EEG data, in future work we will further focus on
improving the deep forest model and integrating more available features to improve the
performance of the seizure detector for clinical application.
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Abbreviations

EEG Electroencephalography
VMD Variational modal decomposition
DF Deep forest
LECM Log-Euclidean covariance matrix
VMFs Variational modal functions
SPD Symmetric positive definite
MAF Moving average filter
RF Random forest
KNN K-nearest neighbors
SVM Support vector machine
BLDA Bayesian linear discriminant analysis
CM Covariance matrix
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