
brain
sciences

Article

Disrupted Functional Rich-Club Organization of the Brain
Networks in Children with Attention-Deficit/Hyperactivity
Disorder, a Resting-State EEG Study

Maliheh Ahmadi 1, Kamran Kazemi 1,*, Katarzyna Kuc 2, Anita Cybulska-Klosowicz 3,
Mohammad Sadegh Helfroush 1 and Ardalan Aarabi 4,5,*

����������
�������

Citation: Ahmadi, M.; Kazemi, K.;

Kuc, K.; Cybulska-Klosowicz, A.;

Helfroush, M.S.; Aarabi, A. Disrupted

Functional Rich-Club Organization of

the Brain Networks in Children with

Attention-Deficit/Hyperactivity

Disorder, a Resting-State EEG Study.

Brain Sci. 2021, 11, 938. https://

doi.org/10.3390/brainsci11070938

Academic Editor: Mera S Barr

Received: 7 June 2021

Accepted: 14 July 2021

Published: 16 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronics Engineering, Shiraz University of Technology,
Shiraz 7155713876, Iran; ma.ahmadi@sutech.ac.ir (M.A.); ms_helfroush@sutech.ac.ir (M.S.H.)

2 Institute of Psychology, SWPS University of Social Sciences and Humanities, 03-815 Warsaw, Poland;
kkuc@swps.edu.pl

3 Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences,
02-093 Warsaw, Poland; a.cybulska@nencki.edu.pl

4 Laboratory of Functional Neuroscience and Pathologies (LNFP, EA 4559), University Research Center (CURS),
University Hospital, 80054 Amiens, France

5 Faculty of Medicine, University of Picardy Jules Verne, 80036 Amiens, France
* Correspondence: kazemi@sutech.ac.ir (K.K.); ardalan.aarabi@u-picardie.fr (A.A.)

Abstract: Growing evidence indicates that disruptions in the brain’s functional connectivity play
an important role in the pathophysiology of ADHD. The present study investigates alterations
in resting-state EEG source connectivity and rich-club organization in children with inattentive
(ADHDI) and combined (ADHDC) ADHD compared with typically developing children (TD) under
the eyes-closed condition. EEG source analysis was performed by eLORETA in different frequency
bands. The lagged phase synchronization (LPS) and graph theoretical metrics were then used to
examine group differences in the topological properties and rich-club organization of functional
networks. Compared with the TD children, the ADHDI children were characterized by a widespread
significant decrease in delta and beta LPS, as well as increased theta and alpha LPS in the left
frontal and right occipital regions. The ADHDC children displayed significant increases in LPS in
the central, temporal and posterior areas. Both ADHD groups showed small-worldness properties
with significant increases and decreases in the network degree in the θ and β bands, respectively.
Both subtypes also displayed reduced levels of network segregation. Group differences in rich-club
distribution were found in the central and posterior areas. Our findings suggest that resting-state
EEG source connectivity analysis can better characterize alterations in the rich-club organization of
functional brain networks in ADHD patients.

Keywords: EEG; cortical source imaging; eLORETA; rich-club organization; graph analysis; connec-
tivity analysis; children; combined and inattentive ADHD

1. Introduction

Attention deficit hyperactivity disorder (ADHD), as one of the most common neurode-
velopmental disorders, affects 2.2–17.8% of all school-aged children and adolescents [1,2].
ADHD is categorized into three subtypes: a rarely identified hyperactive-impulsive sub-
type, an inattentive subtype (ADHDI) and the most common combined subtype (ADHDC),
characterized by both inattention and hyperactivity (according to the Diagnostic and Statis-
tical Manual of Mental Disorders, 4th Edition (DSM-IV)) [3]. Since children with ADHD
are unable to sustain attention on tasks, they may have greater difficulties with learning
and academic success, their social lives and professional achievement [4]. In general,
the ADHDI and ADHDC subtypes are clinically distinguishable in terms of cognitive
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deficits, inattention symptoms and behavioral problems. However, the neural mechanism
underlying the pathophysiology of ADHDC and ADHDI is still not well understood.

Having a high temporal resolution (milliseconds), EEG can provide important infor-
mation about the neural dynamics underlying functional network dysfunction in ADHD.
Resting-state EEG studies have reported characteristic alterations in the spectral power
of low- and high-frequency oscillations in ADHD children [5,6]. EEG source analysis has
also shown age- and subtype-related modifications in cortical activity in ADHD children
compared with typically developing individuals in different frequency bands [5].

An increasing body of evidence suggests that neural abnormalities are highly asso-
ciated with atypical functional connectivity between different brain structures in ADHD
patients [7–15]. Previous resting-state EEG studies have reported heterogeneous findings
concerning alterations in brain connectivity in low- and high-frequency oscillations in
different cortical regions in ADHD patients in the sensor space [9,16–20]. Liu et al. [21]
reported significantly higher synchronization in high-frequency (alpha and beta) bands
in ADHD children compared with their healthy controls. In contrast, Barry et al. [22]
found elevated intrahemispheric coherence between the short-distance electrodes in the
theta band, with reduced lateral differences in both the theta and alpha bands. Murias
et al. [17] also reported significant differences in coherence between ADHD children and
their controls in different frequency bands.

In the past decade, graph theory-based functional connectivity analysis has been used
to characterize brain connectivity organization underpinning developmental disorders,
including ADHD [9,16,23]. Few studies have reported atypical functional connectivity
through graph analysis in ADHD patients [9,21,23–25]. Using the nonlinear fuzzy syn-
chronization likelihood, Ahmadlou et al. [24] found characteristic alterations in the graph
metrics in the left hemisphere of the brain in ADHD patients in the delta band. A reduction
in global efficiency was observed in several studies [9,21,25], also reporting characteristic
differences in other graph metrics between children with inattentive and combined ADHD
and healthy individuals.

In recent years, there has been growing interest in identifying the densely connected
cortical hubs forming rich clubs, which play a central role in global neural integration and
brain communication through short pathways [26–28]. Since the presence of rich clubs in
structural and functional brain networks ensures the functional efficiency of the brain net-
works, any damage to them might lead to brain diseases such as schizophrenia, migraines,
dementia and ADHD [29–33]. To date, all of the EEG connectivity studies in ADHD have
been performed in the sensor space, mostly using connectivity measures producing inflated
connectivity estimates caused by volume conduction artifacts [34,35]. Moreover, to the best
of our knowledge, no network study has been performed to investigate alterations in the
rich-club organization of the brain using resting-state EEG in ADHD children. There has
been only one study that explored the structural and functional rich-club organization of
the brain using resting-state fMRI and diffusion tensor imaging in children with ADHD
and autism spectrum disorders [33].

In this study, we aimed to investigate alterations in the rich-club organization of the
brain networks in the source space in children with the most common subtypes of ADHD
(ADHDI and ADHDC) in comparison with typically developing individuals (TD). We
examined two hypotheses: (1) patient groups would show frequency-specific alterations in
functional connectivity, network topologies and rich-club organization in comparison with
TD individuals, and (2) alterations in the resting-state regional source activity reported in
ADHD children [5] would be associated with atypical functional connectivity. To test these
hypotheses, the EEG source analysis was first performed on resting-state, high-density
EEG data by the exact Low Resolution Electric Tomography software (eLORETA) in differ-
ent frequency bands. The lagged phase synchronization (LPS), a nonlinear connectivity
measure, was then used to construct brain networks. The graph theoretical analysis was
then performed to investigate group differences in the topological properties and rich-club
organization of functional networks between the ADHD and TD groups.
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2. Materials and Methods
2.1. Participants

A total of 74 healthy controls (13 ± 2.3 years; 62 males and 12 females) and 67 ADHD
children (12.9 ± 2.4 years; 55 males and 12 females) aged between 8 and 16 years were
included in this study. The ethical approval was obtained from the local ethics committee
at the SWPS University of Social Sciences and Humanities (approval No. 9/2016) and
the Medical University of Warsaw (approval No. KB/157/2010). Informed consent was
obtained from each child’s parent or caregiver according to the Declaration of Helsinki. The
ADHD children were diagnosed based on the diagnostic criteria of the DSM-IV TR [3] and
classified into inattentive (n = 20) and combined (n = 47) subtypes at the Public Pediatric
Teaching Hospital in Warsaw, Poland [36]. The intensity of the ADHD symptoms was rated
using the ADHD Rating Scale (ADHD-RS) [37] in terms of the total score (36.8 ± 10.9),
inattention (20.3 ± 3.8), hyperactivity (9 ± 4.9) and impulsivity (8.5 ± 4.1) subscales. The
participants had no previous head injuries causing loss of consciousness. The patients
were asked not to take any medications at least 24 h before EEG recording. For the healthy
controls, the parents were asked to fill out questionnaires regarding children’s health
conditions to select participants with no attentional problems, neurological disorders or
close family members with ADHD or ADD diagnoses.

2.2. Data Acquisition and Preprocessing

As part of a larger study, five-minute resting-state EEG data were recorded from each
participant using an EGI recoding system (Eugen, OR, USA) with 64 channels, a sampling
frequency of 250 Hz and a referential montage referenced to the Cz electrode. The subjects
were asked to remain still during data collection. The EEG recordings included three
one-minute eyes-closed EEG epochs interleaved with periods of one-minute eyes-open
intervals to prevent participants from falling asleep. The EEG data were first re-referenced
using an average montage and preprocessed using the processing pipeline shown in
Figure 1 [5]. In brief, the data preprocessing included artifact rejection, bad or noisy
channel interpolation, band-pass filtering within 0.5–30 Hz and segmentation into five-
second epochs with 25% overlap to reduce the data loss due to windowing [5], all of
which was performed using custom-written routines in MATLAB (MathWorks, Natick,
MA, USA), EEGlab (v2019.0, [38]) and Fieldtrip toolbox (v2019) [39]. Artifactual EEG
segments, including eye movement and blinking, muscular activation and movement
artifacts, were visually identified by an EEG expert and excluded from further analysis.
The noisy or bad channels were replaced by interpolating their neighboring electrode data
using the Fieldtrip toolbox. The average number of interpolated electrodes was 3 (±2.6)
per subject [5].
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Figure 1. Processing pipeline, including preprocessing, source analysis, connectivity and graph analyses using high-density
EEG in the source space.

2.3. EEG Source Analysis

Due to the insufficient length of the artifact-free eyes-open EEG data, we only per-
formed EEG source analysis on the eyes-closed EEG epochs. To increase the statisti-
cal power, we only included participants who had a minimum of twenty artifact-free
EEG segments for the connectivity analysis. Based on this criterion, 41 healthy controls
(13 ± 2.3 years; 31 males and 10 females; see Figure S1 for age distribution) and 40 (10 inat-
tentive and 30 combined) ADHD children (12.9 ± 2.4 years; 32 males and 8 females) were
selected for connectivity analysis. From each subject, twenty artifact-free epochs were ran-
domly selected to perform EEG source and connectivity analyses using the LORETA-KEY
software package (www.uzh.ch/keyinst/LORETA.html (accessed on 18 July 2019)). To
compute the cortical source density of the resting-state EEG data in the frequency domain,
we used eLORETA [40], a discrete, linear 3D-weighted minimum norm inverse solution
method shown to be robust in the presence of measurements and structured biological
noise [5]. The cross-spectral matrices of the artifact-free EEG epochs were first computed
to estimate the current source densities (CSDs) (intensity of the current or area, measured
in A/m2) for each voxel in four frequency bands—delta (0.5–4 Hz), theta (4.25–8 Hz),
alpha (8.25–13 Hz) and beta (13.25–30 Hz)—using the electrode positions provided by
EGI [41]. The Montreal Neurologic Institute average MRI head model (MNI152) was used
to restrict the source space within the gray matter, including 6239 voxels with a 5-mm
spatial resolution [42]. We performed subject-wise normalization in different frequency
bands by dividing the current source density value of every single voxel by the total
activity of all voxels [5,43,44]. We further computed the average eLORETA solutions for

www.uzh.ch/keyinst/LORETA.html
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80 regions of interest (ROIs) defined according to the AAL atlas at the source level. The
names, abbreviations and MNI coordinates of the ROIs can be found in Table S1.

2.4. Functional Connectivity Analysis

The lagged phase synchronization was calculated between all pairs of ROIs for each
subject in different frequency bands. In comparison with functional connectivity methods
relying on zero-lag connectivity like phase-locking value, LPS was shown to be resistant to
non-physiological and volume conduction artifacts [35,45–47].

In each frequency band, a group-averaged connectivity matrix was computed for
each group. The binarized matrices were then computed at the single-subject and group
levels using optimal proportional thresholds (PTs) determined within a range of PTs from
5% to 35% with steps of 2.25%, based on the maximum global cost efficiency of the brain
networks [48]. The optimal threshold (herein PT = 20%) was used to reduce the number of
false-positive edges and minimize the noise [49].

The topological properties of the functional networks were quantified from the
group binary connectivity matrices by computing the graph metrics, including the small-
worldness, degree (k), global and local efficiency (GE and LE) and clustering coefficients
(CC), as implemented in the Brain Connectivity Toolbox [50].

2.5. Rich-Club Organization

To investigate the rich-club organization of the group networks, for each degree k
varying from 1 to the maximum degree in each network, a rich-club coefficient ϕ(k) was
computed as follows:

φ(k) =
2E>k

N>k(N>k − 1)
(1)

where E>k and N≥k (after removing all nodes with a degree less than k) represent the actual
number of connections and the total number of possible connections between the remaining
nodes if they are fully connected, respectively. The existence of rich clubs in the network
was investigated by computing the ratio of the rich club coefficient as

φnorm(k) =
φ(k)

φrand(k)
(2)

where φnorm(k) is the normalized rich-club coefficient and φrand(k) represents the average
rich-club coefficient over a series of random networks of equal size with similar connectivity
distributions, generated by randomizing the connections of the network while keeping the
degree distribution of the matrix intact. For a given k, if φnorm(k) was more than one, nodes
with a degree higher than k were considered rich-club nodes [29,51]. In our study, 1000
random networks were generated for each group average matrix.

In general, the choice of the k level is arbitrary and study-specific [26,52]. To compare
the rich-club spatial distribution of the brain networks computed for the control and patient
groups, we selected the k level in a way that had 40% of each network’s nodes ranked as
rich clubs. In each network, connections were also classified into rich-club connections
linking rich-club nodes, feeder connections linking rich-club to non-rich-club nodes and
local connections linking non-rich-club nodes [26,53].

2.6. Statistical Analysis

We assessed the statistical significance of rich-club organization using permutation
testing [54]. To this end, a null distribution of rich-club coefficients was computed using the
distribution of φrand(k), computed over 1000 random networks. The rich-club zones were
defined as a range of k, in which φ significantly exceeded φrand, with the p-value computed
as the proportion of φrand exceeding φ. Values of p < 0.05 were considered to indicate
statistical significance. To assess differences in lagged phase synchronization between
groups (ADHDI vs. TD and ADHDC vs. TD), the AAL regions were further grouped into
ten brain regions—left and right frontal, central, temporal, parietal and occipital regions—
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listed in Table S1 based on the MNI coordinates at the source level. To assess the group
differences in the network topology and LPS, non-parametric permutation t-tests with 1000
repetitions were used with p < 0.05 [48,55]. We also assessed the group differences at the
nodal level. The results were then projected onto a 3D surface using BrainNet [56].

3. Results
3.1. Alterations in Functional Connectivity

Figure 2 shows boxplots for the average (global) LPS values for each brain region and
group in different frequency bands. Overall, all groups showed slightly lower LPS values
in the posterior areas in all frequency bands. Across all groups, the global LPS strengths
were significantly stronger in α compared with the other frequency bands.
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Figure 3 shows the t-maps of the significant differences (p < 0.05) in the global LPS
strengths between the ADHD and TD groups in different frequency bands. Relative to
the TD individuals, the ADHDI group was characterized by a widespread significant
decrease (p < 0.05) of the global LPS strength in the delta and beta bands. In the theta and
alpha bands, this group showed significantly increased global LPS values in the left frontal
and right occipital cortices, respectively. The statistical analysis also revealed significant
increases in the global LPS strengths in the left temporal and posterior areas and the right
frontal regions in the delta and theta bands, as well as the right temporal, central and
frontal regions at higher frequencies (alpha and beta) in the ADHDC group compared with
the TD individuals.
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Figure 3. Statistical t-maps of significant differences (p < 0.05) in the average LPS strengths between
the ADHD and TD groups in different frequency bands. Blue and red colors show significant
increases and decreases in the average LPS in the ADHDI and ADHDC groups compared with TD
individuals, respectively.

3.2. Rich-Club Organization

The group functional networks exhibited a rich-club organization within the rich-club
zones selected at a range of k levels within 4 ≤ k ≤ 28, 2 ≤ k ≤ 29, and 3 ≤ k ≤ 29 for
the ADHDI, ADHDC and TD groups, respectively. To explore alterations in the rich-club
organization in ADHD patients, we chose a k level of 16 to have 40% of each functional
network’s nodes ranked as rich clubs across different frequency bands.

Figure 4 illustrates the organization of the rich-club nodes and connections for each
group in different frequency bands. For the TD individuals, the majority of the rich-club
regions and connections were located in the frontal regions and posterior areas in the δ and
β bands and the frontal and temporal or central regions in the θ and α bands. Relative to
the TD group, the ADHDI group was characterized by a reduction and an increase in the
number of frontal and central rich clubs, respectively, in all frequency bands. The ADHDI
group also displayed lower numbers of δ and β rich clubs and a higher number of θ rich
clubs in the posterior areas.

In both δ and β, the ADHDC group showed a decrease and an increase in the number
of rich-club regions and connections in the posterior areas and the right frontocentral
regions, respectively, in comparison with the TD group. In θ, however, the posterior areas
were highly involved in the rich-club organization of the brain in the ADHDC group,
relative to the TD group. In α, all groups presented similar rich-cub distributions, with a
slight reduction in the number of frontal rich clubs in the ADHDI group.
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The rich-club proportions (RCP, expressed as a percentage) and rich-club numbers
are shown in Figures 5 and 6, respectively, for each brain region and group in different
frequency bands. In all frequency bands and groups, most of the rich-club nodes were
distributed in the bilateral frontal regions (Figure 5). Both ADHD groups displayed lower
rich-club proportions in the frontal and temporal regions in comparison with the TD
individuals (Figure 6). The bilateral temporal lobes with significant left laterality also
showed high RCPs for all groups across all frequency bands, with the exception of the beta
band. Regardless of the frequency band and group, the central and posterior areas showed
lower RCPs. In the lower frequency bands (δ and θ), the bilateral temporal regions were
more involved in the rich-club organization in the ADHDC group, compared with the TD
group (Figure 6). The right temporal lobe also showed higher RCPs in the δ and β bands in
the ADHDC group.
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Figure 6. Boxplots displaying the median and interquartile ranges of the number of rich clubs for each brain region and
group (TD: green; ADHDI: blue; ADHDC: red) in different frequency bands. The points indicate statistically significant
differences (p < 0.05, 1000 permutations) between the ADHDC and TD (red) groups and between the ADHDI and TD (blue)
groups. R/L: right/left; FR: frontal regions; TP: temporal regions; CN: central regions; PR: parietal regions; OC: occipital
regions.

As is shown in Figure 7, no significant differences were observed in the number of
rich-club, feeder or local connections between the ADHD and TD groups in different
frequency bands. All groups displayed a higher and lower number of rich-club and feeder
connections, respectively, in the β band when compared with the other frequency bands.
The number of local connections was significantly lower in comparison with those of the
rich-club and feeder connections in all groups and frequency bands. A significant reduction
in local connections was also observed in the α and β bands compared with the lower
frequencies in all groups.
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3.3. Alteration in Global and Local Topological Properties

Figure 8 shows the average graph measures for each group in different frequency
bands at the network level. Regardless of the frequency band, all three groups showed
small-worldness greater than one. In δ, the ADHDI group displayed higher small-worldness
in comparison with the TD group.
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Figure 8. Average global graph measures for each group (TD: green; ADHDI: blue; ADHDC: red) in different frequency
bands. The blue and red points indicate statistically significant differences (p < 0.05, non-parametric permutation) between
the ADHDI and TD groups and between the ADHDC and TD groups, respectively.

The network degree showed significant increases in the β band for all the groups.
Compared with the TD group, both the ADHDC and ADHDI groups showed significantly
increased and decreased network degrees in the θ and β bands, respectively. The ADHDC
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group was further characterized by lower θ clustering coefficients and higher δ global
efficiency relative to the TD group.

Figure 9 illustrates the spatial distribution of differences in the nodal degree, nodal
clustering coefficient and local efficiency between the ADHD and TD groups. Compared
with the TD individuals, the ADHDI group showed (1) significantly higher k, CC and LE
values in the right posterior areas in the δ band, (2) a higher k value in the left occipital
region and lower CC and LE values in the left central areas in the θ band, (3) lower k, CC
and LE values in the left posterior areas in the α band and (4) a lower CC value in the
bilateral central and left temporal areas and a lower LE value in the right frontocentral
areas in the β band.
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Figure 9. Statistical t-maps of significant differences (p < 0.05) in the nodal degree, nodal clustering coefficient and local
efficiency between the ADHD and TD groups. Blue and red colors show significant increases and decreases in local graph
metrics (degree, clustering coefficient and local efficiency) in ADHDI or ADHDC compared to TD, respectively.

Relative to the TD group, the ADHDC group displayed (1) significantly lower k, CC
and LE values in the right posterior areas and higher CC and LE values in the bilateral
central regions in the δ band, (2) a higher k value in the right occipital region and lower
CC and LE values in the right frontal areas in the θ band, (3) a higher k value in the right
central areas and lower k, CC and LE values in the frontal and occipital regions in the α

band and (4) a higher k value in the right temporal region and lower CC and LE values in
the left central and occipital regions in the β band.

Similar trends of changes were observed for the graph metrics in the brain regions
listed in Table S1 (Figure 10). However, in some cases, differences between the ADHD
groups and the TD individuals were not significant because each brain region included
several AAL regions, but significant differences were only limited to individual AAL
regions.
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Figure 10. Boxplots displaying the median and interquartile ranges of the local degree, clustering coefficient and efficiency
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statistically significant differences (p < 0.05, 1000 permutations) between the ADHDC and TD groups (red) and between the
ADHDI and TD groups (blue). R/L: right/left; FR: frontal regions; TP: temporal regions; CN: central regions; PR: parietal
regions; OC: occipital regions.

4. Discussion

In our previous study [5], we investigated differences in the spectral power and current
source densities (CSDs) between ADHD children and typically developing individuals
using high-density resting-state EEG data. To investigate whether alterations in the resting-
state EEG were due to regional changes in the CSDs or caused by changes in functional
connectivity between brain regions, in this study, we used eLORETA and LPS to assess
group differences in EEG source connectivity between the ADHD and TD children. We
further investigated alterations in the rich-club organization of the brain networks in
ADHD patients. Our results showed stronger alpha and weaker beta resting-state LPS
values between different brain regions in comparison with the lower-frequency oscillations
(delta and theta) in both the ADHD and TD groups. Compared with the TD group, the
ADHDI group was characterized by a widespread decrease in global LPS strengths in the
delta and beta bands and an increase in the left frontal and right occipital regions in the
theta and alpha bands, respectively. The ADHDC group, however, displayed significant
increases in its global LPS values, mostly observed in the central, temporal and posterior
areas in different frequency bands. The majority of the rich-club nodes were distributed in
the bilateral frontal regions, with significant leftward lateralization observed in all three
groups. The main differences in the rich-club proportions were observed in the central and
posterior areas between the ADHD and TD groups in a frequency-dependent manner. In
all groups, significant differences in the network metrics, including the degree, clustering
coefficient and efficiency, were observed between the low- (δ and θ) and high- (α and
β) frequency oscillations. Compared with the TD group, the ADHDI group showed a
tendency for higher and lower degrees in the low- and high-frequency bands, respectively,
in comparison with the TD individuals. The ADHDC group showed an inverse trend. Both
subtypes displayed lower regional clustering coefficients across different frequency bands
relative to the TD group. Overall, our results supported both hypotheses in a frequency-
specific manner. In what follows, we discuss the general implications of our results in each
frequency band.
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Delta band: As an indicator of maturational lags, alterations in the delta spectral
powers (sensor space) and current source densities have been reported in ADHD patients
compared with controls in the frontal, central or posterior areas [5,57–64]. In our study,
we found higher delta rich-club proportions in the central areas in the ADHD groups
compared with the TD group. The rich-club reorganization in the central regions might
explain abnormalities in the delta spectral and source power reported in ADHD [5]. We
also found significant alterations in the delta LPS in the right or bilateral frontal areas in
both ADHD subtypes. Our results also showed significant increases in the delta LPS in
the ADHDC group, which is in line with the elevated frontal interhemispheric coherence
reported in ADHD patients in the sensor space [65]. The disruption in the frontal FC
might be the main reason for the alterations observed in the delta spectral power in both
ADHD groups when compared with the TD group [5]. The ADHDI group also showed
a widespread decrease in global LPS strengths, in line with the reduced delta coherence
reported in ADHD patients [66]. In addition to the synchronization level, we found
significant differences in the rich-club distribution and proportion in the temporal, central
and posterior areas between the ADHD and TD groups.

In the delta band, we found increased global efficiency for the ADHDC group com-
pared with the TD group. This finding is in agreement with the greater global efficiency
reported in ADHD patients in the sensor space [8]. Relative to the TD group, both the
ADHDI and ADHDC groups displayed alterations in the local network measures (k, CC
and LE) as measures of the degree of functional integration and segregation of the brain
networks. Our results are partly consistent with the findings reported in [24], which found
leftward laterality in the average clustering coefficients and shortest path lengths in ADHD
children. In the ADHDI group, we found a leftward decrease in degree in the frontal
region and a rightward increase in both the degree and clustering coefficient in the occipital
regions. The ADHDC group was also characterized by characteristic changes in the local
network metrics, including decreases in the degree, CC and LE in the right parietal and
occipital regions and a significant increase in the CC and LE in the bilateral central regions
in comparison with the TD group.

Theta band: The enhanced theta activity in typically developing children is suggested
to reflect information coding [67,68] and memory and attention processing [69–71]. In
children with ADHD, increases in the theta power are suggested to be an indicator of
drowsiness or “cortical slowing”, causing inattentiveness or hyperactivity in many resting-
state EEG studies [5,22,58–60,62,72–74]. In our study, the ADHDC group showed significant
increases in the global LPS strengths in the right frontal and left temporal regions and
also in the bilateral posterior areas. The ADHDI group also showed increased LPS in the
left frontal regions. These results are in line with the enhanced intrahemispheric frontal,
temporal, central and posterior coherence observed in the theta band in ADHD children,
particularly in ADHDC children in different studies [22,75,76].

We also found lower and higher rich-club proportions in the frontal and temporo-
posterior regions, respectively, in both ADHD subtypes relative to the TD individuals.
The disruption in the FC might be related to alterations in the theta spectral and source
power observed in ADHD children in these regions [5,58]. In addition, the ADHDC group
showed significantly increased network degrees (functional integration), supporting the
increases in the theta source power observed in ADHD children [5]. The ADHDC group
was further characterized by declined clustering coefficients relative to the TD group at
the network level. The ADHDI group also showed local alterations (mostly reduction) in
the nodal clustering coefficients and local efficiencies in the frontal, central and occipital
regions in the theta band. These observations reflect a reduction in the segregation of the
brain networks in ADHD children in the source space. Our results are inconsistent with
the results reported in other studies, suggesting greater average clustering coefficients in
ADHD patients in the sensor space [8,9].

Alpha band: In healthy subjects, changes in the alpha power are suggested to be asso-
ciated with cortical inhibition or excitation and cognitive or sensorimotor actions [77–82].
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Compared with healthy children, the majority of the EEG studies performed on ADHD chil-
dren have reported reduced alpha activity, especially in the posterior regions [58,61,83–87].
In ADHD patients, the attenuated alpha activity is suggested to be associated with a state
of cortical hyperactivation, with increased excitability of the sensory cortices causing at-
tentional self-control problems [77,78,86,87]. The reduced alpha power may also reflect
deficits in processing visuospatial information and failure in sustained attention in ADHD
children [74].

In our previous study, we found a significant widespread decrease in the alpha source
power for ADHDC children compared with TD individuals [5]. The global decrease in
alpha activity has also been reported in adults with ADHDC [88]. The elevated alpha
activity observed in ADHD children in the sensor space [61,62,76,89,90] was also found in
the source space in the prefrontal and posterior areas in ADHDI children relative to TD
individuals [5].

Few studies have investigated alterations in the alpha FC in ADHD patients in the
sensor space [91–93]. In our study, both the ADHD and TD groups showed stronger
average LPS values in the alpha band with similar spatial rich-club distributions. Both
ADHD subtypes were characterized by significant increases in LPS in the right temporal,
central or frontal lobes in comparison with the TD individuals. This result is consistent with
the findings in other studies [91] reporting a rightward alpha asymmetry in the frontal and
central regions in ADHD children compared with the healthy controls. We also observed
lower local degrees, CC or LE in the frontal and occipital regions in both ADHD groups
compared with the controls. Moreover, the ADHDC group exhibited higher k values in the
right central areas. These results are in contrast with those reported in [9], which found an
increase in the average CC and LE in both ADHD subtypes in the sensor space.

Beta band: In healthy individuals, the increased beta activity is suggested to be associ-
ated with increased attention during physical and mental activities [94,95]. In children and
adults with ADHD, significant increases in the resting-state theta activity have often been
found to be accompanied by a significant decrease in beta power [18,60,62,73,92,96,97]. The
alteration in the beta power in the frontal regions is suggested to be associated with poor
inhibitory control and hyperactivity in ADHD children [98,99].

In our previous study, we found a significant diffuse decrease (p < 0.05) in the beta
source power in ADHDC children compared with TD individuals, in line with the findings
in the sensor space [5,76,89]. In the ADHDI children, however, we found significant
increases in the beta source power in the frontal regions [5]. In the present study, we found
significant increases in the number of beta rich-club connections in comparison with other
frequency bands in ADHD and TD children. Relative to the TD children, the ADHDI group
was characterized by a widespread significant decrease (p < 0.05) in global LPS strengths
and lower beta network degrees in the beta band in comparison with the TD group. The
ADHDC group also presented a trend for higher LPS strengths in the temporal, central
and parietal regions. Both ADHD subtypes also showed lower rich-club proportions
in the posterior areas accompanied by lower nodal CC and LE values observed in the
frontal, central, left temporal and occipital regions. This finding is in agreement with the
observations of Sidlauskaite et al. [100], who reported significantly lower CC values in the
left temporal, occipital and frontal regions in the ADHD group. Our results suggest lower
degrees of segregation for the functional networks in the beta band in ADHD children in
comparison with TD individuals.

Technical Considerations and Limitations

We found some discrepancies between our connectivity results found in the source
space and those reported in the literature in the sensor space using low-density EEG data
and measures based on zero-lag interactions [8,9,76,89,101]. In general, scalp EEG signals
are the result of a linear mixture of source activities from all brain regions due to the volume
conduction effect, which can lead to spurious correlations between the signals of short-
distance electrodes [85,102]. To solve these problems, we performed source connectivity
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analysis using eLORETA to better characterize the alterations in functional connectivity
patterns at the cortical level in ADHD children [103]. Since source connectivity analysis
might also be affected by the source leakage [104], we further used lagged phase synchro-
nization, which is shown to be resistant to non-physiological artifacts, volume conduction
and low spatial resolution, which can significantly affect connectivity measures [102,105].

Finally, the main limitation of our study is the low sample size of the ADHD inattentive
subgroup in comparison with the other two groups. The low sample size might bias the
results due to low statistical power. We also did not investigate the effect of age on
functional connectivity in ADHD children due to the sample size. In typically developing
children, a decreasing and increasing trend with age has been found in the EEG power
and current source density in low-frequency (delta and theta) and high-frequency (alpha
and beta) bands, respectively [5]. Children with ADHD, however, exhibit increases and
decreases in low and high-frequency power, respectively, with atypical trends of changes
with age, especially in the frontal, temporal and central regions [5]. In ADHD children,
the frequency-specific abnormality of the resting-state EEG power is often associated
with hyperactivity and deficits in memory and attention processing, cortical inhibition or
excitation and inhibitory control [5]. The regional alterations in the source power can be
due to disrupted functional connectivity caused by ADHD-specific unbalanced interactions
between local cortical networks and long-range corticocortical or subcortical activities [86].
Further investigation should be carried out to investigate the effect of age on the topological
properties and rich-club organization of the brain networks in ADHD children. These
issues require further data collection and analysis.

5. Conclusions

In this study, we used eLORETA and LPS to assess alterations in functional connec-
tivity in ADHD children compared to healthy controls in different frequency bands using
high-density EEG data under resting-state, eyes-closed conditions. We further investigated
alterations in the rich-club organization of the brain networks in ADHD children. Our
results showed significant alterations in the functional connectivity and rich-club distribu-
tion in the frontal, central and posterior areas in ADHD patients in a frequency-specific
manner. Regardless of the frequency band, both ADHD groups showed higher and lower
levels of functional integration in the θ and β bands, respectively. Both subtypes also
displayed a reduced level of functional segregation relative to the TD individuals across
different frequency bands. Our findings suggest that resting-state EEG source connectivity
analysis is an efficient tool to better characterize the frequency-specific functional rich-club
reorganization of the brain networks in association with the cognitive and attention deficits
and symptomatology in ADHD children.
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