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Abstract: Neurophysiological studies have shown that the hippocampus, striatum, and prefrontal
cortex play different roles in animal navigation, but it is still less clear how these structures work
together. In this paper, we establish a navigation learning model based on the hippocampal–striatal
circuit (NLM-HS), which provides a possible explanation for the navigation mechanism in the animal
brain. The hippocampal model generates a cognitive map of the environment and performs goal-
directed navigation by using a place cell sequence planning algorithm. The striatal model performs
reward-related habitual navigation by using the classic temporal difference learning algorithm. Since
the two models may produce inconsistent behavioral decisions, the prefrontal cortex model chooses
the most appropriate strategies by using a strategy arbitration mechanism. The cognitive and learning
mechanism of the NLM-HS works in two stages of exploration and navigation. First, the agent uses a
hippocampal model to construct the cognitive map of the unknown environment. Then, the agent
uses the strategy arbitration mechanism in the prefrontal cortex model to directly decide which
strategy to choose. To test the validity of the NLM-HS, the classical Tolman detour experiment
was reproduced. The results show that the NLM-HS not only makes agents show environmental
cognition and navigation behavior similar to animals, but also makes behavioral decisions faster and
achieves better adaptivity than hippocampal or striatal models alone.

Keywords: navigation; goal-directed learning; habitual learning; hippocampus; striatum

1. Introduction

Spatial cognition and navigation are basic abilities that autonomous mobile robots
need to possess [1–3]. However, most of the existing robots do not have the ability to
learn, and their cognition and adaptability to unknown environments are weak. Most
animals, such as rats, bats, and birds, have better environmental cognitive and adaptive
abilities and can navigate to a destination effectively [4,5]. Inspired by animal navigation,
bionic environmental cognition and navigation algorithms have been gradually applied
to autonomous mobile robots, which not only aims to make agents more bionic and more
effective in environmental cognition and navigation, but also aims to explore navigation
mechanisms in the animal brain.

The nature of spatial navigation has always been a hot topic of research. Physiological
studies have shown that navigation-related structures in the brain mainly include the
hippocampus, striatum, and prefrontal cortex [6]. These brain regions interact to achieve
navigation. A growing number of studies indicate that the hippocampal–striatal circuit is
of great significance to goal-directed navigation [7,8]. The hippocampus plays a central
role in spatial representation and episodic memory [9]. Tolman found that rats can freely
explore and learn the layout of a maze without reinforcement factors, and proposed the
concept of a cognitive map for the first time, pointing out that rats can use an internal
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expression of the spatial environment to recognize and remember the environment [10].
Then, O’Keefe and Dostrovsky discovered place cells in the hippocampus that can respond
to specific locations [11]. The place cells can encode the position of the rats in real time,
thereby generating a topological expression of the spatial environment in the brain [12].
In addition, physiological studies have shown that the rat hippocampus generates brief
sequences encoding spatial trajectories from the current location to a goal location before
goal-directed navigation [13,14]. These sequences are capable of predicting immediate
future behavior, supporting goal-directed actions, and controlling subsequent navigational
behavior [15]. Recent physiological studies suggest that anticipatory firing is also found
in the striatum [16], which is part of the basal ganglia and is known to play an important
role in reward learning and action selection [17]. Furthermore, the striatum is related to
habit generation when navigating in the environment [18,19]. However, the convergence
speed to generate habits is generally long because the state space is continuous. Habits
need to be relearned when the environment changes, which shows inflexibility in striatal
learning. The prefrontal cortex enables flexible behavior through cognitive control and has
the ability to execute a plan in the face of distractions or other forms of interference [20,21].
Prefrontal mediation may be required when both hippocampal and striatal systems are
active, and might have a key role in optimizing decision-making strategies [22,23]. Hence,
the prefrontal cortex is supposed to receive decisions from the hippocampus and striatum
and output the final decision after comprehensive judgment in spatial navigation.

Research in neurophysiology has developed many computing models to explain the
navigation mechanism of animals. Stachenfeld et al. proposed the successor representation
of the hippocampus, which elaborated that place cells do not encode place per se but rather
a predictive representation of future states given the current state [24]. Yu et al. proposed
a navigation algorithm for constructing an accurate environmental cognitive map based
on the cognitive mechanism of hippocampal space cells [25]. Zhao et al. proposed the
prefrontal cortex-basal ganglia algorithm inspired by the mechanism of decision making
in the human brain, which uses the actor-critic algorithm to model the dorsal and ventral
striatum in the basal ganglia [26]. Most hippocampal and striatal models treat them as
independent systems without combining their functions together. However, the interaction
between the hippocampus and striatum, also called the hippocampal–striatal circuit, plays
an important role in spatial cognition and navigation. McDonald et al. demonstrated
incidental hippocampus-based learning when performing a task dependent on the integrity
of the dorsolateral striatum, and indicated that the hippocampus obtains information
during acquisition of stimulus-response habits [27]. Pezzulo et al. proposed a single mixed
instrumental controller, which can produce both goal-directed and habitual behavior based
on the hippocampal–striatal circuit [28]. In their model, the goal-directed mechanism
is related to model-based reinforcement learning, the habitual mechanism is related to
model-free reinforcement learning, and both model-based and model-free mechanisms
coexist and compete with each other, the result of which determines operational behavior.
However, the mixed instrumental controller does not point out the concrete structural
interaction between the hippocampus and striatum in navigation, nor does it involve
the formation mechanism of the cognitive map in the hippocampus. In summary, many
navigation models focus on one or two parts of the brain area, i.e., the hippocampus,
striatum, prefrontal cortex or two of them. Few studies have been conducted to discuss
how all of these structures work together in animal navigation and how each of them
contributes to the whole navigation learning procedure.

Aiming at the resolution of the problem, we propose a navigation learning model
based on the hippocampal–striatal circuit (NLM-HS) that emphasizes the importance of
the functional interactions of the hippocampus, striatum and prefrontal cortex, in order to
enable agents to navigate similar to animals and to explain in detail how the navigation
learning process occurs. The main contributions of the paper can be summarized as
follows. Firstly, we combine the three brain structures related to navigation together, i.e.,
the hippocampus, striatum and prefrontal cortex, to construct a navigation learning model
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and elaborate their respective roles in navigation. Secondly, the NLM-HS explores how
these structures work together to contribute to the whole navigation learning procedure,
especially illustrating how goal-directed and habitual navigation strategies switch flexibly
during the whole navigation process, which gives a possible explanation for the navigation
mechanism in the animal brain. Thirdly, the NLM-HS is used to reproduce the classical
Tolman detour experiment to test its effectiveness. Experimental results show that the
proposed NLM-HS enables agents to make behavioral decisions faster and to achieve better
adaptivity than hippocampal or striatal models alone.

The remainder of this paper is organized as follows. In Section 2, we present the
proposed NLM-HS, and introduce the three main components, including the hippocampal
model, striatal model and prefrontal cortex model. In Section 3, we show the basic and
adaptive navigation results obtained from the NLM-HS, which are compared with those
using the hippocampal and striatal models alone in the navigation path, navigation steps
and navigation time to test the effectiveness. Then, we develop a discussion in Section 4.
Finally, Section 5 concludes the paper.

2. Materials and Methods

A minimal cognitive architecture for spatial navigation, proposed by Chersi et al. [29]
and shown in Figure 1, presents a schematic representation of the hippocampal–striatal
circuit that guides spatial navigation. The hippocampus and striatum use the same sensory
input and output the estimated optimal actions, which are arbitrated and chosen by the
prefrontal cortex. In the architecture, the hippocampus is supposed to provide a cognitive
map with information about locations for goal-directed decision making, and the striatum
is supposed to learn stimulus-response associations.
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Figure 1. A minimal cognitive architecture for spatial navigation proposed by Chersi et al. [29]. The
figure presents a schematic representation of the hippocampal–striatal circuit that guides spatial
navigation. The hippocampus and striatum use the same sensory input and output the estimated
optimal actions, which are arbitrated and chosen by the prefrontal cortex.

2.1. Model Construction

Inspired by Chersi’s conceptual cognitive architecture, we established the NLM-HS.
To make the model more rigorous, we propose some basic assumptions. Firstly, the agent
can recognize surroundings and activate corresponding place cells, which means that each
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reachable position corresponds to a specific activated place cell, and an activated place cell
can express several reachable places within the place field. Secondly, the striatal model
uses a cognitive map generated in the hippocampal model as input to learn navigation
habits. Thirdly, time proportional to the length of the path is required for the agent to
forward sweep in the hippocampus, whereas no time is considered to be consumed when
choosing an action using a habit. Fourthly, if the environment changes, the learned habit is
considered to be ineffective.

The proposed NLM-HS is composed of the hippocampus, striatum, prefrontal cortex,
sensory cortex and motor cortex, as shown in Figure 2. In the NLM-HS, the functionality of
the hippocampal–striatal circuit is designed as follows: The hippocampal model generates
a cognitive map of the environment and performs goal-directed navigation by using a place
cell sequence planning algorithm. The striatal model performs reward-related habitual
navigation by using the classic temporal difference learning algorithm. Since the two
models may produce inconsistent behavioral decisions, the prefrontal cortex model chooses
the most appropriate strategies by using a strategy arbitration mechanism. Meanwhile,
the cognitive and learning mechanism of the NLM-HS works in two stages. During the
environment exploration stage, the agent uses the hippocampal model to construct the
cognitive map of the unknown environment. During the navigation stage, the agent uses
the strategy arbitration mechanism in the prefrontal cortex model directly to decide which
strategy to choose. When encountering unexpected changes such as obstacles, the agent
updates the cognitive map first based on the hippocampal model and then navigates
according to the updated cognitive map.
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Figure 2. NLM-HS architecture. HP: hippocampus, Str: striatum, PFC: prefrontal cortex, SNc:
substantia nigra pars compacta. In the NLM-HS, the functionality of the hippocampal–striatal circuit
is designed as follows: The hippocampal model generates a cognitive map of the environment and
performs goal-directed navigation. The striatal model performs reward-related habitual navigation.
Since the two models may produce inconsistent behavioral decisions, the prefrontal cortex model
chooses the most appropriate strategies according to “confidence”. The agent performs the chosen
action and gets a new perception, completing an interaction with the environment.
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2.2. Model of the Hippocampus

The hippocampus is considered to play a central role in spatial representation and
episodic memory. In our paper, the hippocampus mainly has two different functions: an
environmental cognition function, which can generate and update the cognitive map of the
environment, and a decision-making function using a forward sweep process.

We used the dynamic growing and pruning place cell-based cognitive map model
(DGP-PCCMM) [30] to generate a cognitive map of the environment in the hippocampus.
The DGP-PCCMM model has two layers: a sensory input layer VI and a cognitive map
layer VO, as shown in Figure 3. As the input of the network, the VI layer interacts with
the external environment, sensing and obtaining external information. The VO layer can
be seen as the brain, which can form a feature map of the environment. The generated
topological map can exist in either of the two forms: the connection weight W between the
input and output layer, or the winning neurons in the output layer. We choose the former
to represent the generated cognitive map.
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obtaining external information. The VO layer can be seen as the brain, which can form a feature map of the environment.
The generated topological map can exist in either of the two forms: the connection weight W between the input and output
layer or the winning neurons in the output layer. We choose the former to represent the generated cognitive map.

The DGP-PCCMM model consists of competition, cooperation and synaptic adaptation
stages. In the competition stage, the model obtains the winning neuron through competition:

oi(x)(x) = max
1≤j≤N

{
oj(x)

}
(1)

where x is the sampling input and oi(x)(x) is the output of the winning neuron vi(x). oj is
the output of neuron vj. oj = wT

j x, j = 1, 2, · · · , N. To obtain the maximum of oj, we can
obtain the winning neuron according to

i(x) = arg min
1≤j≤N

‖x−wT
j ‖ (2)

In the cooperation stage, as in the biological neural system, the winning neuron
activates adjacent neurons with a distribution similar to the Mexican hat function, which
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can also be a square wave function or a Gaussian function. The most commonly used
function is the Gaussian function:

ωi(x)j(t) = exp

{
−

d2
i(x)j

2σ2

}
, j ∈ {1, · · · , N} (3)

where σ is the effective radius of the Gaussian neighborhood and di(x)j is the Euclidean
distance between place cells wj and wi(x).

In the synaptic adaptation stage, the synaptic adaptation law is as follows:{
∆wj(t) = α(t)ωi(x)j(t)

(
x(t)−wj(t)

)
wj(t + 1) = wj(t) + ∆wj(t), j ∈ {1, · · · , N}

(4)

where wj(t) is the feedforward connection strength of neuron j.
The number of neurons in the self-organizing feature map needs to be set in advance,

whereas the number of neurons in the DGP-PCCMM model grows dynamically when
exploring the environment. The model makes a growth judgment after the competition
stage, which is mediated by the growing threshold VGT. If the distance between two place
cells wj and wi(x), namely, di(x)j, is larger than the growing threshold VGT, the current
mapping network is not considered to be sufficient to map the sampling point, and a place
cell and corresponding link between them are added at this time; otherwise, the agent
continues to explore the environment.

When exploring an unfamiliar environment, the agent learns to construct a hippocam-
pal cognitive map of the environment, consisting of activated place cells wi(x) and their
links. Given enough time, the agent can generate a cognitive map that maps the entire
environment. In addition, to strengthen the adaptability of the cognitive map model, we
design a dynamic pruning mechanism for the cognitive map. When the agent detects
a dynamic obstacle during navigation, the connection relationship between the current
place cell and the upcoming place cell is changed to 0, and the distance between the two
is considered infinite. Through this mechanism, the connection relationship matrix of the
cognitive map can be reduced and updated in real time.

After the exploration stage, the agent uses a place cell sequence planning algorithm to
choose actions in the hippocampus, which can be regarded as a forward sweep process
in the hippocampus. Inspired by the goal orientation of animal navigation, the negative
orientation function is defined as the energy consumption from the current place cell to the
goal place cell. The longer the path is, the more energy consumption, and the greater the
value of the negative orientation function. The agent chooses the adjacent place cell whose
negative orientation function is the smallest among all possible place cells and adds it to
the navigation path; a process that is iterated until the agent reaches the goal place cell and
completes one navigation episode. The decision-making time using a forward sweep is
relatively long.

2.3. Model of the Striatum

The striatum receives sensory information from the sensory cortex and activated
place cells from the hippocampus. We use the classical temporal difference (TD) learning
algorithm to learn the generation of habitual navigation in the striatum. The striatum
consists of the striosome and the matrix. The striosome outputs behavioral evaluation in-
formation, and the matrix performs action selection according to the behavioral evaluation
information and improved ε−greedy algorithm. The framework of the striatal model is
shown in the red section in Figure 2.

The agent receives an immediate reward at time t, which is represented by rt. When
the agent activates a place cell, the striosome outputs the behavioral evaluation information,
i.e., expected discounted return at time t:

QStr(st, at) = rt+1 + γrt+2 + γ2rt+3 + · · · (5)
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where γ is the discount rate, and 0 ≤ γ ≤ 1. The expected discounted return at time
t + 1 is:

QStr(st+1, at+1) = rt+2 + γrt+3 + γ2rt+4 + · · · (6)

From Formulas (5) and (6), we know:

QStr(st, at) = rt+1 + γQStr(st+1, at+1) (7)

which shows that the expected discounted return at time t, QStr(st, at), can be represented
by the expected discounted return at time t + 1, QStr(st+1, at+1). However, as there will
be an error in the early prediction, QStr(st, at) expressed by QStr(st+1, at+1) is not equal to
the actual QStr(st, at). Thus, the reward information from the striosome and thalamus is
processed in the substantia nigra pars compacta (SNc), producing a dopamine response:

δDA = rt+1 + γQStr(st+1, at+1)−QStr(st, at) (8)

The agent updates the reward information QStr(st, at) every time it passes through a
place cell:

QStr(st, at) = QStr(st, at) + α · δDA (9)

where α is the learning rate and 0 ≤ α ≤ 1. According to the action evaluation QStr(st, at)
from the striosome, the matrix in the striatum chooses an action using an improved
ε−greedy algorithm:

π(st) =

{
random action a ∈ Ω, i f ξ < ε
argmaxQStr(st, at),

a∈Ω
otherwise (10)

In contrast to the traditional ε−greedy algorithm with a fixed ε value, the improved
ε−greedy algorithm sets the exploration rate to decrease over time:

ε = κ1 · e−(
κ2t
N ) (11)

where κ1 and κ2 are the exploration rate coefficients, t is the navigation episode, and N is
the total number of navigation episodes.

The striatal model learns the egocentric stimulus-response connection. The agent
receives an immediate reward at the goal, causing the SNc to release a dopamine signal
that acts as an incentive to navigate to the goal. After many navigation episodes, the agent
can obtain the expected discounted return, not the instant reward distribution, of different
place cells in the maze.

Behavioral shaping involves reinforcing the behavior by pairing a behavior with
reward in a stepwise manner that is successively closer to a desired behavior [31]. The
functional impact of habituation is thought to minimize redundant information, filter input
and enhance the novelty of stimuli. Because of the egocentric nature of sensory input, distal
directional cues are not particularly prominent. Thus, the striatum will learn to associate
egocentric sensory representations with egocentric behaviors that lead to a reward.

In episodic tasks, we need to distinguish the set of all nonterminal states, which is
a critical problem in robot navigation tasks for naturally unidentifiable states. The most
useful method is to divide the environment as a grid map, and each grid represents a state.
The size of the grid map affects the accuracy of navigation. The artificial division of the
grids makes the robot lack intelligence. However, the hippocampal cognitive map is an
effective representation of the environment, which can be used as the input of the striatum
to provide navigation states for navigation.

2.4. Model of the Prefrontal Cortex

Given the potentially different action outputs from the hippocampal and striatal
models, it is necessary to build an arbitration mechanism and decide the appropriate action.
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A potential component arbitrating these two systems is the prefrontal cortex. Goal-directed
decision making takes place mainly in the hippocampus, which is flexible but slow, whereas
habitual decision making is performed primarily by the striatum, which is inflexible but
fast. The significance of the arbitration mechanism in the prefrontal cortex is that it takes
advantage of the two models to enable the agent to complete navigation efficiently.

The prefrontal model chooses action primarily according to the value of “confidence”,
which is defined by its influencing factors. In different navigation stages, the “confidence”
values of different strategies are different. We define the “confidence” of strategies as:

CONF =
1

U · R (12)

where U is the “uncertainty” of the model and R reflects the “rapidity”, which is calcu-
lated by the time consumed to make decisions during the navigation process. The more
time consumed, the larger R is. The agent chooses a strategy with high “confidence” to
navigate effectively.

Due to the existence of cognitive maps, the uncertainty of decision making in the
hippocampal model can be regarded as a fixed value, which is roughly the same as the
uncertainty of the striatal model after habituation. The uncertainty of habitual navigation
strategies in striatal models is related to the number of navigations and whether there are
changes in the environment. Thus, we define the “uncertainty” of the striatal model as:

UStr =


+∞ Nepi < Nhabit

1 Nepi > Nhabit & c = 0

+∞ Nepi > Nhabit & c = 1

(13)

where Nepi is the navigation episode, Nhabit is the navigation episodes required to generate
a habit in the environment, c = 0 indicates that the environment has not changed, and c = 1
indicates that the environment has changed. Then, since the forward sweep takes time,
the hippocampal model takes a longer time than the habitual navigation of the striatum.
Therefore, the relationship of rapidity R between the two systems is RHP > RStr.

The “confidence” in the prefrontal cortex can be represented by:

CONFPFC = CONFHP −CONFStr (14)

in which CONFHP and CONFStr are confidence values of strategies in the hippocampus
and striatum, respectively, which are computed by Formula (12). If CONFPFC > 0, which
indicates that the confidence in the hippocampus is higher than the confidence in the
striatum, the agent chooses actions from the hippocampus. Conversely, if CONFPFC < 0,
the agent chooses actions from the striatum. A qualitative analysis of “confidence” in the
prefrontal cortex is applied based on the experimental process, which can be classified into
4 periods, as shown in Table 1.

Table 1. A qualitative analysis of “confidence” in the prefrontal cortex during different periods.

Initial Period After Behavioral
Habit Is Formed

After Environment Is
Changed

After New Behavioral
Habit Is Formed

CONFHP 1/RHP 1/RHP 1/RHP 1/RHP
CONFStr 0 1/RStr 0 1/RStr
CONFPFC >0 <0 >0 <0

Choose strategy from HP Str HP Str

CONFHP, CONFStr and CONFPFC represent the “confidence” values of strategies in the hippocampal, striatal, and prefrontal cortex models,
respectively. RHP and RStr represent the “rapidity” of the hippocampal and striatal models, respectively. HP indicates the hippocampal
model. Str indicates the striatal model.
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As Table 1 shows, the agent chooses action in the prefrontal cortex according to
whether the behavioral habit is formed. When the agent is placed in an unknown environ-
ment, the agent initially explores the environment randomly and forms a cognitive map
according to the hippocampal model. Given enough time, the agent can traverse the envi-
ronment sufficiently and form a cognitive map that maps the whole environment. Then, the
agent begins the navigation process. When the agent performs actions, the hippocampal
and striatal models make behavioral decisions simultaneously, and the prefrontal cortex
model selects one of them to execute the decision based on the “confidence”. Although
only one of the decision systems is chosen at one navigation episode, the other system also
performs learning at the same time. For example, at the initial time, the agent uses a strategy
in the hippocampus to navigate, but the striatal model also learns the stimulus-response
associations, represented by behavioral evaluation information QStr(st, at). More training
episodes result in more optimized behavioral evaluation information QStr(st, at). Given
enough time, the agent forms behavioral habits leading gradually to habitual selection,
which is expected to accelerate the convergence speed of navigation. When the environ-
ment changes, the agent uses the hippocampal model to update the cognitive map. At the
same time, the agent needs to relearn the striatal model and reconstruct a new behavioral
habit. The integrated navigation algorithm is shown in Table 2.

Table 2. Integrated navigation algorithm based on the arbitration mechanism in the prefrontal cortex.

Line No. Integrated Navigation Algorithm

1 Input: agent’s start and goal position, number of iterations episodecount,
2 Output: navigation strategies at each activated place cell.

3 Initialization: episodecount; growing threshold VGT; the expected discounted return QStr(st, at); Assign start position
to current position.

4 For navigation episode t < episodecount, loop
5 (1) Obtain the activated place cell corresponding to the current position;
6 (2) Choose action.
7 Agent produces strategy in HP according to a place cell sequence planning algorithm.
8 Agent produces strategy in Str according to the improved ε−greedy algorithm in the matrix.
9 Calculate the confidence CONFHP and CONFStr.
10 Calculate the confidence CONF in the prefrontal cortex;
11 Agent chooses actions according to CONF.
12 (3) Record or update.
13 (3.1) update in HP.
14 if changes in environment are detected, then
15 update the cognitive map according to the dynamic pruning mechanism;
16 end if.
17 Return to (2).
18 (3.2) Update the expected discounted return QStr(st, at) in Str.
19 (4) End judgment. If the goal is reached, then end the navigation episode; else, repeat step (2)~(4).
20 End loop

When spatial knowledge is used to plan a route to the goal, the agent either follows a
familiar route or calculates a new route based on the cognitive map. That is, the navigation
strategy of the agent switches flexibly between habitual navigation and goal-directed
navigation, as shown in Figure 4. Since behavioral habits have not been formed in the
initial stage of navigation, agents tend to use goal-directed strategies in hippocampal
models. Later, the agent tends to choose a habitual strategy when behavioral habits are
formed. That is, the agent chooses a path according to the goal-directed mechanism until it
has acquired enough experience and formed habits, and then navigates according to habits,
which is consistent with animal navigation behavior. In goal-directed tasks, rats are able
to learn reward locations in the environment and unlearn them when they are changed.
When the reward is removed or the environment changes, the agent can learn the change
and gradually form new behavioral habits.
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Figure 4. Relationship between habitual and goal-directed navigation. The agent chooses a path
according to the goal-directed mechanism until it has acquired enough experience and formed habits
and then navigates according to habits, which is consistent with animal navigation behavior.

The main advantage of the NLM-HS lies in the arbitration mechanism in the prefrontal
cortex between the hippocampal and striatal systems. By comparing the “confidence” of
the two systems, the agent can choose the most appropriate actions at each activated place
cell. The hippocampal model makes mainly goal-directed decisions based on the overall
cognitive map so that the agent tends to go to the rewarded location in the environment,
whereas the striatal model focuses on making the rewarded agent turn and eventually
leads to habitual selection. Complementing hippocampal spatial coding, the striatal model
provides an action value and reward for decision making. The NLM-HS is expected to
obtain the optimal choice between the two navigation strategies.

3. Results

To verify the correctness and effectiveness of the NLM-HS, the basic and adaptive
navigation experiments were carried out with the hippocampal model alone, the striatal
model alone and the NLM-HS model, respectively. We analyze the performance of each
model through navigation trajectory, navigation steps, and navigation time. Here, “nav-
igation steps” refers to the number of running steps. The result section is developed as
follows. First, experiment design is introduced in Section 3.1. Then, the basic and adaptive
navigation experiments are illustrated in Sections 3.2 and 3.3, respectively. Finally, we
set out the results comparison and analysis in Section 3.4. It should be pointed out here
that we have carried out several navigation experiments on the three models. When we
show the results, we first show the results of one round navigation experiment of the three
models, and then give the comparison results of the statistical values of many experiments
in Section 3.4.

3.1. Experiment Design

One way to verify whether an agent owns navigation intelligence is to have the agent
perform tasks similar to animal navigation and compare the results. In this paper, we con-
ducted a series of simulation experiments based on the Tolman detour maze environment,
which consists of three passages, and doors A and B are set in the passage to provide the dy-
namic environment [32], as shown in Figure 5. The size of the maze is set to 130 cm× 130 cm,
and the coordinates of the start and goal are (35, 5) and (35, 125), respectively.

Inputs of the hippocampal and striatal models are positions of the agent. The agent
can obtain current location information by sensing the surroundings, which belongs to
the research category of robot localization and will not be elaborated on specifically here.
During the environmental cognition stage, the agent explores the environment randomly
and current positions of the agent are used as input of our models.
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and B are set in the passage to provide the dynamic environment. The size of the maze is set to
130 cm × 130 cm, and the coordinates of the start and goal are (35, 5) and (35, 125), respectively.

In the hippocampal model, the output shows different functions according to different
stages. During the environmental cognition stage, the hippocampal model commits to
forming a cognitive map of the environment, which is represented by the activated place
cells and the links among them. During the navigation stage, the hippocampal model
commits to choosing actions according to the place cell sequence planning algorithm. There
are eight kinds of actions at one activated place cell, including moving along each of the
cardinal and intercardinal directions.

In the striatal model, the output is an action chosen by behavioral habits. In the early
navigation stages, the striatal model did not generate behavioral habits, so the actions
are chosen randomly. After a period of navigation learning, the agent gradually forms
behavioral habits, which enable agents to reach the goal faster.

In the proposed NLM-HS model, the agent performs an action only during one step,
so it is very likely that a randomly selected action in the striatal model will not be selected
in the early navigation stages. Instead, the action chosen by the hippocampal model will
be selected.

3.2. Basic Navigation Experiments

In the basic navigation experiments, where door A and door B were both open, the
agent performed navigation with the hippocampal model alone, the striatal model alone
and the NLM-HS model.

3.2.1. Navigation with the Hippocampal Model Alone

As mentioned above, the hippocampal model has the function of environmental
cognition and decision making for goal-directed navigation. First, the agent generates the
cognitive map of the environment using the hippocampal model when it is in an unfamiliar
environment. The agent can obtain the activated place cells and the links among them
by interacting with the environment. In the DGP-PCCMM, the output numbers need not
be set in advance; in contrast, the output numbers grow dynamically with the navigation
process. We set the growing threshold VGT to 4.5, set the exploring steps to 1000 and
record the cognitive map every time 25 place cells are activated. Then, we can obtain the
generation process of the cognitive map, as shown in Figure 6, from which we can see that
environmental cognition is a gradual process and the entire maze can be represented by
only 90 activated place cells. We can conclude that the agent can express the whole infinite
environment with finite activated place cells, which can be regarded as a possible way to
understand the environment in the animal brain.
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After obtaining the cognitive map of the environment, the agent begins the navigation
stage, which is achieved by the place cell sequence planning algorithm in the hippocampal
model. The navigation path of the hippocampal model is shown in Figure 7, and the
number of running steps and navigation time of the 50 navigation episodes are shown
in Figures 8 and 9, respectively, from which we can see that the navigation steps and
navigation time do not change with navigation episodes, resulting from the fact that the
knowledge base, namely, the cognitive map, formed in the hippocampal model is basically
fixed as long as the agent is in a static environment. The agent chooses actions at each place
cell according to the place cell sequence planning algorithm, which can be regarded as a
forward sweep process. Navigation with the hippocampal model alone needs to consume
a certain decision time, which can be calculated from the ratio of the navigation path to the
step length, as shown in Figure 9.
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3.2.2. Navigation with the Striatal Model Alone

When navigating with the striatal model alone, we mark the boundary of place cells
every 5 cm from zero in the positive directions of the x- and y-axes to. In striatal TD
reinforcement learning, we set the discount rate γ to 0.9 and the learning rate α to 0.9. The
agent receives a penalty of −0.1 for every further step forward and a reward of 300 for
reaching the goal position. We set the exploration rate to decrease over time:

ε = 0.6× e−(
t
N ) (15)
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The navigation path with the striatal model alone is shown in Figure 10. We select
the 1st, 10th, 20th, 30th, 40th, and 50th navigation episodes to display. From the six paths,
we can see that agents will take long detours during earlier navigation processes, which
constitute a kind of trial-and-error navigation. After a certain amount of navigation, the
path gradually tends to be optimal.
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The number of steps and navigation time in the 50 navigation episodes with the
striatal model alone are shown in Figures 11 and 12, respectively, which show that the
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number of steps and navigation time used to reach the goal are very large during the
earlier few navigation episodes and decrease gradually until they become stable. This is
because the agent is initially unfamiliar with the environment and it requires a period of
time to interact with and learn from the environment. The ability to converge gradually
to an optimal navigation path is closely related to the characteristics of reinforcement
learning of the striatal model. The knowledge base of the agent is a cumulative process
from having nothing to having knowledge, and from less to more, and the agent eventually
learns to select the optimal strategy. Although the agent can obtain a relatively optimal
path and form a behavioral habit of navigation, Figures 11 and 12 also tell us that the
convergence speed of navigation based on the striatal model alone is very slow and that
the habit-generation process consumes considerable time, which shows that implementing
the striatal model alone cannot realize effective navigation.
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3.2.3. Navigation with the NLM-HS

When navigating with the NLM-HS, the agent first explores the environment to obtain
a hippocampal cognitive map and then uses the arbitration mechanism of the prefrontal
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cortex model to choose a behavioral strategy. The generation process for the cognitive
map is shown in Figure 6. At the same time, we numbered the place cells according to
the generation sequence, and we can obtain the cognitive map with numbered place cells,
as shown in Figure 13, which can be used as a discretized state when learning using the
striatal model.
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In this paper, we set out the navigation episodes required to generate habit Nhabit as a
constant. We believe that in the specific environment, the minimum number of navigation
episodes required to generate habits is 30. When the environment changes or a detour
is required, the minimum number of navigation episodes required to generate habit is
1.2 times the number of navigation steps at the 30th navigation episode.

Figure 14 provides the navigation path of the NLM-HS. Initially, the agent uses the
place cell sequence planning mechanism in the hippocampal model for navigation. At
the same time, the striatal model also learns the stimulus-response association in the
environment. After a period of learning, the striatal model learned the behavioral habit,
according to which the agent can achieve rapid navigation. Figure 14 shows that the
navigation path is the same using both hippocampal and striatal models, due mainly to the
use of the cognitive map generated during the exploration stage for the two models.

Figure 15 presents the number of steps of the NLM-HS during 50 navigation episodes,
showing that the number of navigation steps needed to reach the goal remains basically the
same in the earlier 30 navigation steps, and then stabilized again after a slight fluctuation
after the 30th navigation episode. This is because the agent starts to adopt the strategy
generated from the striatal model after the 30th navigation episodes, and the striatal model
has a certain exploration rate. Although there are small fluctuations in the path, the
navigation time is greatly reduced, as shown in Figure 16. Figure 16 shows the variation in
navigation time with the NLM-HS, which presents a sudden drop at the 30th navigation
episode. Compared with the hippocampal model alone, the time used with the NLM-HS is
less. Compared with the striatal model alone, the NLM-HS is more efficient because it does
not need redundant learning to reach the goal. The NLM-HS is rooted in the fact that it
can combine the two models’ respective advantages, namely that the hippocampal model
can generate, update and perfect the knowledge base through learning, while the striatal
model can accelerate the navigation process by using behavioral habits.
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3.3. Adaptive Navigation Experiments

To explore the adaptive abilities of the NLM-HS, we studied the navigation changes
of the three models when encountering a sudden change in the environment. In this paper,
door B closed.
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When the hippocampal model alone is used for navigation, the agent will update the
cognitive map when encountering door B by using a dynamic pruning algorithm, and
then use the place cell sequence planning algorithm for real-time path planning. The first
path and the eventually converged navigation path are shown in Figure 17. When the
agent encounters door B, it cuts off the link first, namely, it sets the connection between
the current place cell and the upcoming place cell to 0. Then, the agent starts from the
currently activated place cell and reuses the place cell sequence planning algorithm to plan
the path. The first navigation when door B is closed consists of the two periods shown in
Figure 17a,b, and we can obtain the number of navigation paths as 76 and the navigation
time as 74.99 s. Starting from the second navigation, the agent directly navigates according
to the path obtained by the forward sweep and can obtain the number of navigation paths
as 61 and navigation time as 60.30 s.
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Figure 17. Navigation path with the hippocampal model alone when door B is closed; (a) shows the agent’s encounter with
the closed door B, and (b) shows the newly planned navigation path from current position, both of which constitute the first
navigation path. In addition, (c) shows navigation path after first navigation.

When the striatal model alone is used for navigation, the agent navigates according to a
habitual strategy. When the agent encounters closed door B, the previously generated habit
becomes invalid. It is necessary to re-explore the environment and generate a new habit.
The navigation process is shown in Figure 18, and the number of steps and navigation time
changes are shown in Figures 19 and 20, respectively. The agent initially uses the learned
habit to navigate until it encounters closed door B, and then the agent starts from the
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current position and re-explores the environment to learn new habits. The first navigation
path when door B is closed consists of the two periods, shown in Figure 18a,b. By constant
navigation learning, the agent learns a new navigation habit. From Figure 19, we can see a
relatively large fluctuation, while the number of navigation steps declines, which shows
that using the striatal model alone has poor adaptability, thus failing to achieve a better
navigation effect.
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Figure 18. Navigation path with the striatal model alone when door B is closed; (a) shows the agent’s
encounter with the closed door B, and (b) shows the new navigation path from current position,
both of which constitute the first navigation path. In addition, (c–h) show navigation paths in the
2nd, 10th, 20th, 30th, 40th, and 50th episodes, respectively. The episode number and the path length
measured in steps for each experiment are shown at the top of the panels.
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When the NLM-HS is used for navigation, the agent first navigates according to a
habitual strategy and then needs to re-explore the environment and generate new habits
when encountering closed door B. Since the uncertainty of the striatal model increases, the
prefrontal cortex starts choosing the behavioral strategy in the hippocampal model. The
agent updates the cognitive map using a dynamic pruning algorithm and performs actions
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according to the place cell sequence planning algorithm in the hippocampal model. At the
same time, the striatal model also learns the stimulus-response associations by interacting
with a new environment and gradually obtains new habits because the previously gener-
ated habit becomes invalid. In this paper, we define the minimum number of navigation
episodes required to generate a habit as 1.2 times the number of navigation steps at the 30th
time when the environment changes or a detour is required. In the experiment, the number
of navigation steps in the 30th time is determined by the hippocampal model, which equal
to 61, so the number of navigation episodes needed to form habits is 61 × 1.2 = 73.2.
Therefore, starting from the 74th navigation, the prefrontal cortex model began to select
the strategy generated by the striatal model for navigation, as shown in Figure 21.
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Figure 21. Navigation path with the NLM-HS when door B is closed; (a) shows the agent’s encounter
with the closed door B, and (b) shows the new navigation path from current position, both of which
constitute the first navigation path. In addition, (c–f) show navigation paths in the 2nd, 74th, 80th
and 100th episodes, respectively. The episode number and the path length measured by the steps in
each experiment are shown at the top of the panels.
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The number of navigation steps and navigation time with the NLM-HS when door
B is closed are shown in Figures 22 and 23, respectively, from which we can see that
the agent needs less time when using behavioral habits from the striatal model after
73 navigation episodes, while the agent has relatively permanent navigation steps when
using the place cell sequence learning algorithm in the hippocampus. The agent navigates
using habits before encountering an obstacle, after which the prefrontal cortex model
chose to use a strategy in the hippocampal model for navigation. The habit previously
generated was completely abandoned, and new habits were generated by interacting with
the environment. Furthermore, we do not choose to use the previous habit because the
path generated by hippocampal place cell sequence planning directly leans toward the
optimal path. If the previously generated habit is used, the agent cannot learn the optimal
path generated by the hippocampal model well, and may easily fall into a local minimum.
The number of navigation steps fluctuated after 73 navigation episodes because the agent
starts to adopt the strategy generated from the striatal model, and the striatal model has a
certain exploration rate. However, this shortcoming can be compensated by the low time
consumption of the NLM-HS.
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3.4. Results Comparison and Analysis

The results are compared and analyzed in this section.
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Figure 24 displays the comparison of navigation steps of the three models, which
illustrates that both the hippocampal model alone and the NLM-HS reach the goal with a
relatively optimal number of steps at the first navigation, while using the striatal model
alone needs more steps to reach the goal. After 30 navigation episodes, the number
of navigation steps of the NLM-HS of this model quickly stabilizes after slight fluctua-
tions, while the number of navigation steps of the striatal model alone still fluctuates.
Figure 24 also shows the slower learning convergence speed of the striatal model alone.
We can conclude that the NLM-HS and the hippocampal model alone are better than the
striatal model alone in terms of navigation steps.
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Figure 25 displays the comparison of navigation time of the three models, which
illustrates that both the hippocampal model alone and the NLM-HS only take less time to
reach the goal than the striatal model alone at the first navigation. However, the striatal
model alone and the NLM-HS take less time than the hippocampal model alone after
stabilization, which benefits from the generation of behavioral habits. We can conclude that
the NLM-HS and the striatal model alone are better than the hippocampal model alone in
terms of navigation time after stabilization.
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In order to increase the reliability of the results and the rationality of the conclusions,
we carried out statistical experiments, repeated the above experiments five times, and
gave the average values of navigation steps and navigation time for the first time and after
stabilization, as shown in Table 3. Table 3 provides the comparison of average navigation
results among the three models, and we show the values that performed well in the three
models in bold type. In Table 3, when calculating the stabilized navigation steps and time,
we take the average of the last five times. The first navigation after door B is closed contains
two periods: navigation from the start position to door B and navigation from door B to
the goal. The average time of the first navigation in the NLM-HS is lower than that in the
hippocampal model because the NLM-HS uses the strategy of habitual navigation in the
striatal model from the start position to door B, which saves time. The forward sweep
time of the hippocampal model is proportional to the path lengths to the goal. Firstly, the
hippocampal model and the NLM-HS can reach the goal with a relatively optimal number
of steps not only during the first navigation episode but also when they meet with sudden
obstacles, while the striatal model needs considerable time to reach the goal in the same
situation, which shows the efficiency and adaptability of the hippocampal model and the
NLM-HS in navigation steps. Secondly, we can see that the striatal model and the NLM-HS
can eventually converge to a relatively optimal path and only need a slight amount of
time to navigate for their usage of habits, which shows the advantage of the striatal model
and the NLM-HS in navigation time. Taken together, the NLM-HS demonstrates a better
navigation effect than the other two models.

Table 3. Comparison of average navigation results among the three models.

Models HP Model Str Model NLM-HS

Average steps of first navigation steps 26 517.40 26
Average steps of stabilized navigation steps 26 27.76 26.32
Average time of first navigation time 24.54 s 208.01 s 25.91 s
Average time of stabilized navigation time 24.54 s 2.80 s 1.83 s
Average steps of first navigation after door B is closed 76 1378.6 76
Average steps of stabilized navigation after door B is closed 61 85.68 61.48
Average time of first navigation after door B is closed 74.99 s 777.82 s 64.25 s
Average time of stabilized navigation after door B is closed 60.30 s 12.76 s 3.63 s

Bold represents the values that performed well in the three models. Since the results of this table are all statistical values, some navigation
steps may not be integers.

In summary, on the one hand, compared with the continuous and infinite state space
in the striatal model alone, the NLM-HS uses the discrete and finite hippocampal cognitive
map as input to accelerate the learning convergence speed in the striatal model. On the
other hand, compared with the hippocampal model alone, the NLM-HS enables the agent
to choose the optimal behavioral decisions faster, by using behavioral habits formed by
the striatal model. In addition, the adaptability to changes in surroundings is improved
compared with the striatal model alone. When encountering unexpected changes such as
obstacles, the agent updates the cognitive map first based on the hippocampal model and
then navigates according to the updated cognitive map, thus achieving better adaptivity.
Moreover, the NLM-HS elaborates the flexible switching between goal-directed and habit-
ual learning in animal navigation, enabling agents to show environmental cognition and
navigation behavior similar to animals.

4. Discussion

This paper proposes a NLM-HS, in which the prefrontal cortex arbitration mecha-
nism is designed to arbitrate goal-directed navigation of the hippocampus and habitual
navigation of the striatum. In this NLM-HS, the hippocampal and striatal models play a
complementary role in different stages of behavioral learning, which is consistent with
physiological conclusions [33]. The NLM-HS supports the hypothesis that the prefrontal
cortex may serve as a common link between the hippocampus and striatum, which fa-



Brain Sci. 2021, 11, 803 25 of 28

cilitates goal-directed behavior. The navigation cognitive process can be summarized as
follows: In initial goal-directed navigation, the hippocampal model provides an initial fast
associative memory among the current location, the goal and the environment, and the
striatal model has not yet formed a state–action association, so the prefrontal cortex model
uses the actions in the hippocampal model. The striatal model forms a state–action asso-
ciation during navigation episodes, and the agent generates behavioral habits gradually,
which enables rapid decision making, so the prefrontal cortex model adopts actions in the
striatal model later. The behavioral decision-making mechanism of the prefrontal cortex
is of great significance to goal-directed navigation. By judging confidence, the prefrontal
cortex model can take advantage of both hippocampal and striatal models, arbitrating
goal-directed and habitual navigation strategies. Through the combination of hippocampal
and striatal models, the agent can achieve a better cognition of the environment, faster
decision making and better adaptability in autonomous navigation.

One of the characteristics of the NLM-HS is to apply the cognitive map generated
by the hippocampal model to the striatal navigation learning model, which promotes the
convergence rate of habit generation. Banquet et al. pointed out that both goal-directed
cognitive learning systems and habitual learning systems receive similar hippocampal
transition field inputs [34], which shows the same usage of hippocampal cognitive maps.
The advantage of using the hippocampal cognitive map as the input for habit generation
in the striatum is that the state space that needs to be learned is greatly reduced, thereby
accelerating the convergence speed of habit generation in the striatum. The other character-
istic of the NLM-HS is staged strategic arbitration in the prefrontal cortex. In contrast to
arbitrating every step, the strategic arbitration is more in line with the navigation mecha-
nism of animals. Killcross et al. pointed out that the prefrontal cortex is related to the shift
from goal-directed behavior to habitual behavior according to the training being limited
or extended [35]. Domenech et al. indicated that the prefrontal executive system alters
the functional significance of behavioral events proactively according to the beliefs of the
agents about their own behavior, and that the prefrontal cortex resolves the exploitation-
exploration dilemma through a two-stage process: a proactive ventromedial stage that
constructs the functional significance of upcoming action outcomes, and a reactive dor-
somedial stage that guides behavior in response to action outcomes [36]. Consequently,
we suppose that the two stages can be related to the hippocampal and striatal systems,
with the former performing mainly goal-directed navigation and the latter performing
mainly habitual navigation, and the prefrontal cortex model chooses the most appropriate
strategies to guide navigation according to confidence in different stages.

As we all know, statistical analysis of a large number of experimental results is an
effective guarantee for the correctness of the experimental results and conclusions. During
the environmental cognition stage, the agent explores the environment randomly and
generates the cognitive map gradually. In this paper, we chose 1000 reachable positions
for the generation of cognitive map, and the generation process is shown in Figure 6. In
the fixed environment, the number of activated place cells in the whole environment is
roughly the same, and it has nothing to do with the increase of reachable positions, which
is elaborated in our previous work [30]. During the navigation stage, we compared the
basic and adaptive navigation results among the hippocampal model alone, the striatal
model alone and the NLM-HS model. The navigation results in the hippocampal model
alone are basically the same due to the fixed cognitive map. When using the striatal model
alone, due to the randomness of the agent’s choice of actions, the navigation path and time
show great differences across the different navigation episodes, which is also the case when
the NLM-HS uses striatal strategies. Through statistical experiments, we can conclude that
the NLM-HS elaborates the flexible switching between goal-directed and habitual learning,
and it has a better navigation effect than the other two models, enabling agents to show
environmental cognition and navigation behavior similar to animals.

However, why is the prefrontal cortex model needed to arbitrate between the hip-
pocampal and striatal systems? Although no known direct anatomical connection between
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the hippocampus and the striatum has been identified in humans, the hippocampus and
striatum are anatomically connected by other structures that may support the interaction
between episodic memory and behavioral control systems. The prefrontal cortex is thought
to be the pathway through which the hippocampus and striatum interact [37,38]. Doeller
et al. found that when the hippocampal and striatal systems use the corresponding strategy
and both are similarly active, prefrontal cortex activity increases accordingly, indicating
the role of the prefrontal cortex in mediating between the two strategies [22]. Although
physiological studies have shown that the prefrontal cortex has a mechanism to weigh the
effects of the hippocampus and striatum, it is rare to use this mechanism for navigation
modeling of agents or robots. In our paper, the prefrontal cortex model implements a
competitive choice mechanism between actions from the hippocampal model and striatal
model, which can disambiguate decisions that only one of them may find ambiguous.

In addition to the arbitration mechanism, the prefrontal cortex is often combined
with the single hippocampus or striatum to complete navigation. For example, Daw et al.
suggested that the basal ganglia select behaviors based on a past history of reinforcement,
while the prefrontal cortex implements model-based control based on theories or strate-
gies [39]. Some researchers believe that the basal ganglia undergo an inflexible learning
process, confined to past experiments, and then interact with flexible representations of the
prefrontal cortex [40]. Cazin et al. tested the hypotheses that hippocampal replay allows
the prefrontal cortex to eliminate nonoptimal trajectories, thus improving prefrontal cortex
learning [41]. The reason for the different effects of the prefrontal cortex model lies in
the different speculations and judgments about the function of the prefrontal cortex in
physiology; that is, the neural mechanism of the prefrontal cortex in navigation has not yet
reached a unified conclusion in physiology. Constructing prefrontal cortex models from
different perspectives can not only give the agent a relatively effective cognitive navigation
mechanism but also provide insights into the deep research on navigation mechanisms in
physiology, which is also the significance of our work.

5. Conclusions

In this paper, a navigation learning model based on the hippocampal–striatal circuit
(NLM-HS) was established, which provides a possible explanation for the navigation
mechanism in the animal brain. The reproduction of classical Tolman detour experiments
is provided to demonstrate the reasonability of the model in explaining animal navigation
behavior and effectiveness in reproducing animal navigation tasks. This NLM-HS is
different from the hippocampal model alone used for goal-directed learning or the striatal
model alone used for habitual learning, since the NLM-HS combines them to realize
flexible switching between them. The agent learns a cognitive map of the environment
gradually by exploring the unknown environment. Then, the agent starts navigation using
the arbitration mechanism in the prefrontal cortex model according to confidence, which
is one of the main characteristics of the NLM-HS. The major advantage of the NLM-HS
is that it can reproduce the process of animal environmental cognition and navigation
well, by combining the three brain structures related to navigation and can succeed in
explaining how these structures work together to contribute to the whole navigation
learning procedure. This study is an exploration of the spatial cognition and navigation of
animals, which not only provides a possible explanation of animal navigation mechanisms
but can also help to construct intelligent mobile robots with navigation abilities similar to
those of humans and animals.

There are also some limitations in the model. For example, the judgment of habit
generation is relatively simple. The paper simply uses a certain number of navigation
episodes to judge habit generation, which needs to be further designed in detail. In addition,
the striatal model used is a classic TD learning model, which needs a substantial amount
of time to converge in a large environment and affects the navigation performance of the
NLM-HS when using habits. In the future, we intend to further study the refined judgment
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of habit generation and to study a more efficient striatal model to be used in the NLM-HS
for navigation.
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