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Abstract: Working memory (WM)-based decision making depends on a number of cognitive control
processes that control the flow of information into and out of WM and ensure that only relevant
information is held active in WM'’s limited-capacity store. Although necessary for successful decision
making, recent work has shown that these control processes impose performance costs on both
the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark
measure of WM control, we conducted evidence accumulation modeling to test several competing
explanations for six benchmark empirical performance costs. Costs were driven by a combination
of processes running outside of the decision stage (longer non-decision time) and inhibition of the
prepotent response (lower drift rates) in trials requiring WM control. Individuals also set more
cautious response thresholds when expecting to update WM with new information versus maintain
existing information. We discuss the promise of this approach for understanding cognitive control in
WM-based decision making.

Keywords: working memory; cognitive control; reference-back task; sequential sampling; diffusion
decision model

1. Introduction

A central problem faced by working memory (WM) is that of managing the trade-
off between stability—maintaining stable WM representations against interference—and
flexibility—keeping WM up to date when goals and task demands change [1-5]. To solve
this problem, WM relies on a number of cognitive control processes that control the flow
of information into and out of WM and ensure that only relevant information occupies
WM'’s limited-capacity store [6-15]. According to prominent neurocomputational theory,
the primary mechanism for accomplishing this is an information gate that controls access
to WM [16-18]. When closed, the gate prevents new information from entering WM, which
allows its contents to be maintained in a stable state in the face of distracting or irrelevant
information. When open, the gate allows new information into WM (and old information
out), which enables WM to remain up to date with information relevant to current goals
and task demands [19,20].

Although necessary for successful WM, recent work with the novel reference-back
paradigm has shown that these processes impose substantial performance costs on both the
speed and accuracy of WM-based decisions [11,12,14,21-25]. However, less is known about
how such costs arise out of latent decision processes (e.g., processing rate, time outside of
the decision stage, response threshold settings) as instantiated in leading computational
theories of WM-based decision making [26,27]. Here, we apply the diffusion decision model

Brain Sci. 2021, 11, 721. https://doi.org/10.3390 /brainscil1060721

https:/ /www.mdpi.com/journal /brainsci


https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-7689-0682
https://orcid.org/0000-0003-3206-7544
https://orcid.org/0000-0003-1418-4253
https://orcid.org/0000-0001-9467-3772
https://doi.org/10.3390/brainsci11060721
https://doi.org/10.3390/brainsci11060721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/brainsci11060721
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci11060721?type=check_update&version=4

Brain Sci. 2021, 11, 721

2 0f27

(DDM) [26,28] to data from 150 participants to test between several competing explanations
for performance costs observed in the reference-back task. In doing so, we provide the
first comprehensive computational account of reference-back task performance in terms
of underlying cognitive processes. Before explaining our modeling approach and the
theoretical framework for understanding these costs, we first introduce the reference-back
paradigm in detail and describe the benchmark empirical phenomena we seek to explain.

1.1. Measuring WM Control Processes with the Reference-Back Paradigm

The reference-back task is a modified n-back task that measures the behavioral costs
associated with performing several cognitive control operations involved in WM-based de-
cision making. Unlike the traditional n-back, in which multiple operations are confounded
on each trial [11], the reference-back allows costs specific to each control process (e.g.,
updating and gating) to be decomposed by contrasting different trial types (described in
Table 1). This feature of the reference-back paradigm has led to important insights into
WM control processes, such as the effects of dopaminergic drugs on WM control, and
identifying the neural basis of specific WM control processes [21-25].

Table 1. Cost measures derived from the reference-back task.

Measure Derivation Interpretation
Updating D1ffere;nce between. no—sztCh /reference and Cost of updating WM
no-switch/comparison trials
Comparison Difference between no-switch/same (probe-referent match) and Cost of a mismatch between the probe
P no-switch/different (probe-referent mismatch) trials stimulus and the WM referent
Switching Difference between switch and no-switch trials Cost of switching between WM modes

Gate opening

Difference between reference/switch and reference/no-switch trials

Cost specific to opening the gate to WM

Gate closing

Difference between comparison/switch and comparison/
no-switch trials

Cost specific to closing the gate to WM

Substitution

Interaction of updating and comparison factors; difference between
the cost of updating a new/mismatching item into WM and the
cost of responding to a mismatching item without updating;
(reference/different — reference/same) — (comparison/ different —
comparison/same)

Cost of updating a new item into WM

Performing the reference-back task involves holding one of two stimuli (an ‘X" or an
‘O’) in WM while deciding whether a series of probe stimuli are the same as or different
to the item currently held in WM (called the reference item or referent). Probe stimuli
may either match the referent, requiring a response of ‘same’, or mismatch the referent,
requiring a response of ‘different’. Crucially, a colored frame around each probe stimulus
cues the subject to either update or maintain the WM referent to which they are comparing
each probe. In reference trials, the subject replaces (i.e., updates) their referent with the
probe item, which becomes the new referent. In comparison trials, the subject maintains
their referent and does not replace it with the probe item. Trials also differ in terms of
whether they require switching between updating and maintenance: in switch trials, the
update cue (i.e., the frame color) differs from that of the previous trial. In no-switch trials,
the update cue is the same as in the previous trial. An illustration of a typical sequence
of trials and the resulting updating, switching, and matching requirements is shown in
Figure 1.
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Figure 1. Illustration of the reference-back task. In each trial, subjects indicate whether the probe stimulus (X" or ‘O’) is
the same as or different to the stimulus in the most recent red frame (the WM referent). In reference (red frame) trials,
subjects must update WM with the currently displayed probe item. In comparison (blue frame) trials, subjects make the
‘same/ different” decision but do not update WM. Comparing behavior (e.g., accuracy, RT) between different trial types
measures the costs of several WM control processes (see the main text and Table 1 for details).

Importantly, by the logic of subtraction [29], contrasting different trial types (e.g.,
reference vs. comparison, switch vs. no-switch) provides measures of six cognitive control
processes that support WM, and which constitute the effects of interest in typical studies of
reference-back performance. These ‘canonical’ measures and their derivations are presented
in Table 1. To summarize, three contrasts measure the updating cost (of updating vs. not
updating WM), the comparison cost (of processing probe-referent mismatches vs. probe—
referent matches), and the switching cost (of switching vs. not switching between updating
and maintenance modes). Two gating effects can be derived that decompose switching
into costs specific to gate opening (reference/switch vs. reference/no-switch) and gate
closing (comparison/switch vs. comparison/no-switch). Finally, the interaction effect of
updating (reference/comparison) with the comparison type (same/different) measures
substitution—the cost specific to updating WM with a new item (as opposed to refreshing
the existing referent).

The benchmark behavioral finding from the reference-back literature is that each
cost measure is associated with poorer accuracy (i.e., more frequent errors) and slower
RT [11,12,14,21-25]. However, we currently do not have any idea about the underlying
cognitive mechanisms that give rise to these costs. In typical reference-back studies,
costs are assumed to reflect the time taken for cognitive control and WM operations (e.g.,
updating, gating, mode switching) to run outside of the probe-referent comparison process.
Under this interpretation, trials requiring additional WM control processes should produce
an additive shift in RT distributions relative to trials that do not require such processes.
However, we note that this ‘additive shift’ hypothesis would not predict the changes
in accuracy observed in empirical data. Another possibility is that additional processes
modulate or interfere with the probe-referent decision. For example, the signal to update
may trigger reactive control processes [30] that inhibit the preparation and execution of
prepotent responses (e.g., reactive inhibition in memory-based decision making [31-33];
response inhibition in go/no-go and stop-signal tasks [34]). Reactive control refers to
event-triggered cognitive control deployed retroactively (i.e., after detecting the critical
event) to influence processing “only as needed, in a just-in-time manner” ([30], p. 2).
Under this interpretation, both RT and accuracy costs would stem from inhibitory input
reducing the speed or efficiency with which the prepotent decision (i.e., the probe-referent
comparison) is processed. Finally, it is also possible that certain costs may stem from more
strategic top-down adjustments to decision making, such as participants setting stricter
response criteria or adopting certain response biases. In order to explore these possibilities,
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we turned to one of the most successful computational models of memory-based decision
making, the DDM [26] (for reviews, see [27,35-37]).

1.2. The Diffusion Decision Model

The DDM treats decision making as an accumulation-to-threshold process in which
noise-perturbed samples of evidence (from the stimulus or its memory trace) are accumu-
lated until a threshold amount is reached, which triggers a response (Figure 2). The DDM
provides a full quantitative account of both RT distributions and the accuracy of decisions
and accounts for a range of benchmark empirical phenomena that occur in simple decision
tasks, including interactions between the speed of correct and error responses, trade-offs
between speed and accuracy, response biases, and differences in the duration of processes
occurring outside of the decision stage [37]. The DDM has led to important insights into
cognition in a wide range of choice tasks, including perceptual-, memory-, and value-based
decisions (for a review, see [27]).

Response threshold
a— — — — — - Respond 'same’

Evidence accumulation

(drift) rate
Start ~N(v, sv)
point ~
O’:_ —_— o — — e — — = = = —éRespond 'different’
Time T T g
Stimulus Response
onset onset

Figure 2. Illustration of the DDM as applied to the reference-back task. Within a trial, the evidence
about whether the probe stimulus matches the WM referent is accumulated with mean drift rate
v until a response threshold is reached, triggering the corresponding response (at the time labeled
‘response onset’). Response time is the time it takes to reach a threshold (decision time) plus an
intercept term representing non-decision time processes that occur outside of the decision stage.

The DDM explains effects in terms of model parameters representing the underlying
cognitive processes that give rise to behavior. The most important among these are the
drift rate, non-decision time, and threshold parameters.

Drift rate (v) measures the rate of evidence accumulation, which reflects the quality
or signal strength of the evidence driving the decision (analogous to d-prime in signal
detection theory [38]). In memory-based decision making, drift rate represents the strength
of the match between the probe and the item(s) in memory. The original DDM [26] was de-
signed to model the Sternberg task [39], in which subjects decide whether a probe stimulus
was present in a previously memorized list. Decisions in this task involve comparing the
perceptual stimulus with the (noisy) memory trace of each list item until a match is found.
When the memorized list contains only one item, this comparison process is the same as
that of the reference-back task (i.e., does the probe match the current item in memory?).
Drift rate is thus sensitive to the strength/quality of memory representations [26], as well as
global processing demands placed on the cognitive system, such as task difficulty, memory
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load, and other concurrent processing demands (to the extent that concurrent processes
compete for the same cognitive resources [31,32,40]). Drift rates are also a locus of reac-
tive inhibitory control [30], in which critical events (e.g., the need to update WM or task
switch) trigger inhibition of prepotent response drift rates [31-33]. The effect of reducing
drift rate is to produce slower and less accurate responses (and flatter, more skewed RT
distributions).

Non-decision time (ty) accounts for processes that occur outside of the decision (i.e.,
evidence accumulation) stage. In simple decision tasks, non-decision time typically encom-
passes processes such as early perceptual encoding and motor response execution [37]. In
more complex tasks, non-decision time may be sensitive to additional processes occurring
prior to evidence accumulation, such as pre-decisional visual search, attention/task switch-
ing, and information gating [41-44]. In the context of the reference-back task, we assume
that WM control processes occur outside of the decision stage and thus should be reflected
in non-decision time. The effect of increasing non-decision time is to produce an additive
shift in RT distributions along the time axis without affecting accuracy.

The threshold parameter () represents the amount of evidence required to trigger a
response and thus provides a measure of response caution. Thresholds are the locus of
cognitive control processes that control speed-accuracy trade-off and response caution
settings [28] (e.g., low threshold = fast, error-prone responses; high threshold = slow,
accurate responses [45,46]). Individuals often adjust thresholds in order to meet particular
goals and contextual requirements (e.g., treating one type of trial more cautiously than
another to avoid responding prematurely [47,48]). Setting higher thresholds produces
slower and more accurate responses.

The DDM also includes several parameters that are not of immediate theoretical
interest, but which improve the model’s ability to fit data. Starting point (z) accounts
for biases in where the evidence accumulation process begins relative to the thresholds
(i.e., response biases), and a number of variability parameters control the amount of trial-
to-trial variability in starting point (sz) and drift rate (sv). In this study, our primary
theoretical interest is in the drift rate, non-decision time, and threshold parameters and
their contributions to performance on the reference-back task.

1.3. Current Study

In the current study, we use the DDM as a measurement model to test several com-
peting explanations for performance costs observed on the reference-back task. Stated in
terms of DDM parameters, the cost of WM control processes may be reflected in longer
non-decision time (consistent with running extra processes outside of the decision stage),
reduced drift rate (consistent with inhibited processing), or both. In addition, individuals
may apply different thresholds when cued to update WM versus when cued to maintain
WM. To foreshadow our results, our best model indicated that costs were driven by a
combination of lower drift rates and longer non-decision times in trials requiring WM
control. Individuals also used cognitive control to set more cautious response thresholds
when cued to update WM with new information.

2. Materials and Methods
2.1. Participants

One hundred and fifty participants, recruited from the subject pools of the Institute
of Psychology, Leiden University (sample 1: n = 89, mean age = 19.11, range 17-26, 82.0%
female) and the Department of Psychology, University of Amsterdam (sample 2: n = 61,
mean age = 19.48, range 17-34, 88.5% female), participated for course credit. All participants
had normal or corrected-to-normal vision and gave online written informed consent prior
to the experiment onset. The studies were approved by the local ethics committees. The
data obtained in sample 1 were part of a larger research project performed at Leiden
University. For the current manuscript, only the reference-back data were extracted. The
total sample of 150 was the result of pooling two participant groups whose data was
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collected approximately 6 months apart. Both groups performed the same experimental
task under similar conditions and analyses conducted on each group separately produced
the same results as those conducted on the pooled sample, both in terms of behavior (i.e.,
differences in accuracy and RT between conditions) and parameter effects arising in our
cognitive model-based analyses. We thus present only the results of the pooled analysis.

2.2. Stimuli and Procedure

The reference-back task was coded in JavaScript using the jsPsych library [49] and
hosted online via the university websites. Each trial began with a blank screen (1 s),
followed by a fixation cross (1 s). A probe stimulus (X or O) enclosed in either a red
or blue frame was then presented until the subject pressed a response key, followed by
another blank screen (0.5 s). The first trial of a block was always a red-framed item in
order to provide an initial WM referent and did not require a response. The stimulus
and frame color on the remaining trials were randomly sampled with equal probability,
meaning that upcoming memory operations could not be predicted prior to the onset of
the trial. Subjects thus had to engage cognitive control reactively (i.e., after the trial onset),
as opposed to proactively (i.e., before the trial onset) [30]. On each trial, subjects were
required to make a keyboard response to indicate whether the probe stimulus was the
same as or different to the stimulus in the most recent red frame (i.e., to compare the probe
to the WM referent). In addition, they were instructed to update their referent with the
probe stimulus in reference (red frame) trials and maintain their existing WM referent in
comparison (blue frame) trials (see Figure 1). Subjects were told to respond as quickly and
accurately as possible. Handedness of the response key arrangement was counterbalanced
between subjects. In sample 1, after 12 practice trials, each subject performed 512 trials
across four blocks. In sample 2, each subject completed approximately 386 experimental
trials across two sessions, with 34 practice trials before session one and 17 before session
two.

2.3. Analysis Methods

Our primary analysis involved fitting hierarchical Bayesian DDMs to reference-back
choice-RT data, assessing model fit, and performing posterior inference on parameter
effects. For model fitting, we used the Dynamic Models of Choice (DMC) software [50],
which allows for fully Bayesian hierarchical modeling and parameter estimation with the
DDM. Details of the fitting procedure and sampling algorithm are provided in Appendix B.
We also used DMC to conduct a parameter recovery study, in which we assessed the model’s
ability to recover known parameter values from simulated data. The simulation procedure
and a visualization of parameter recovery are presented in Appendix C. Conventional
statistical analyses and significance tests of behavioral effects were performed in R [51]
using the Ime4 [52], Isr [53], and car [54] packages.

3. Results
3.1. Conventional Analyses

We first report conventional statistical analyses to check whether the different trial
types and cost measures in the reference-back task had the expected effects on accu-
racy and mean RT. We use linear mixed models to test the statistical significance of
updating (no-switch/reference, no-switch/comparison), mode-switching (switch, no-
switch), match/comparison type (no-switch/same, no-switch/different), gate opening
(reference/switch, reference /no-switch), gate closing (comparison/switch, comparison/no-
switch), and substitution (interaction of updating with match/comparison type) on mean
RT and accuracy. We used a generalized linear mixed model with a probit link function to
model accuracy and a general linear mixed model with Gaussian link function to model
mean RT. Each model contained the updating, comparison, and switching factors and their
interactions as fixed effects and the subject as a random effect. Our criterion for significance
was set at 0.05. The results of these tests are tabulated in Appendix A (Tables Al and A2).
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We excluded the first trial from each block (which did not require a response) and excluded
RTs faster than 150 ms and slower than 3 s as outliers (~1% of the data).

Figure 3 shows the group-averaged accuracy and mean RT for each cell of the experi-
mental design. Overall accuracy on the task was 91.3% and overall mean RT was 723 ms.
Correct responses were faster on average than errors (A =94 ms, t =7.29, df = 149, p < 0.001,
d = 0.60). Our probit model of accuracy revealed significant main effects of updating and
match/comparison type, and no effect of switch type. All two-way interactions between
these predictors were significant but their three-way interaction term was not. For our
Gaussian model of mean RT, all one-, two-, and three-way terms were significant. To
further unpack these effects, we tested the significance of the six canonical reference-back
cost contrasts.

Accuracy Response time
Mo-switch Switch Mo-switch Switch
09 ;
x -
-
=~ . 4 -
-~ 0.8 s X
-~ - —
~ \ Stimulus = ’ Stimulus
7’
A ® Same ad 07 % s ® Same
\ c
N\ 4 Different S -~ -~ & Different
x = .
0.6 » -
0.5
Comparison  Reference Comparison  Reference Comparison  Reference Comparison  Reference
Trial type Trial type

Figure 3. Group-averaged accuracy (left panel) and mean RT (right panel) for each cell of the experimental design. Error

bars represent 95% confidence intervals.

Updating: Repeated reference trials produced slower (A =91 ms, t = 15.57, df = 149,
p <0.001, d = 1.27) but not less accurate (t = 0.53, df = 149, p = 0.59) responses than repeated
comparison trials. This reflects the unique cost of updating versus maintaining the contents
of WM.

Mode switching: Switch trials produced slower (A =59 ms, t =13.18, df =149, p < 0.001,
d = 1.08) but not less accurate (t = 0.73, df =149, p = 0.47) responses than no-switch trials.
This reflects the cost of switching between updating and maintenance mode (or vice-versa)
compared with remaining in the mode of the previous trial.

Comparison: Stimuli that were different to the most recent reference item produced
slower (A =144 ms, t = 19.94, df = 149, p < 0.001, d = 1.63) but not less accurate (¢ = 0.15,
df =149, p = 0.88) responses than stimuli that were the same as the most recent reference
item. This reflects the cost of processing stimuli that mismatch the current contents of WM.

Gate opening: Switching from comparison to reference trials produced slower (A = 45 ms,
t=7.60,df =149, p <0.001, d = 0.62) and less accurate (A = 1.3%, t = 3.54, df = 149, p < 0.001,
d =0.29) responses compared with repeated reference trials. This reflects the cost of opening
the gate to WM.

Gate closing: Switching from reference to comparison trials produced slower (A = 72 ms,
t=13.25,df =149, p <0.001, d = 1.08) and slightly more accurate (A = 0.9%, t = 2.52, df =149,
p =0.013, d = 0.21) responses compared with repeated comparison trials. This represents
the cost of closing the gate to WM.

Substitution: The cost of updating a new versus a repeated item into WM was larger
than the cost of comparing (without updating) a new versus a repeated item (Mean RT diff.
=90 ms, t = 11.46, df =149, p <0.001, d = 0.94, Mean accuracy diff. = 2.5%, t = 3.44, df = 149,
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p <0.001, d = 0.28). This interaction of updating (reference, comparison) with stimulus type
(same, different) represents the cost of substituting a new item into WM.

To summarize, the canonical reference-back cost measures were all associated with
slower RT and, for gate opening and substitution, lower accuracy. In addition, the larger
RT cost for gate closing versus gate opening replicates the asymmetric gating costs found
in previous work [7,11,12,14,21]. These effects are illustrated in Figure 4.

KN 4 R S

Switching Comparison Gate opening Gate closing Substitution

Switching Comparison Gate opening Gate closing Substitution
Cost measure

Figure 4. Performance costs affecting accuracy (top panel) and mean RT (bottom panel) for the canonical reference-back
contrasts. Error bars represent 95% confidence intervals.

3.2. Diffusion Decision Model Analysis

To explore the latent cognitive processes that give rise to the accuracy and RT costs
outlined above, we applied the most prominent computational cognitive model of decision-
making, the DDM [26,27], to our choice-RT data. Our primary aim in applying the DDM to
the reference-back task was to determine the extent to which costs observed at the behav-
ioral level are explained by different DDM parameters. We were particularly interested
in establishing whether costs are explained by WM control processes that operate outside
of the decision-making stage (i.e., non-decision time effects) or whether control processes
affect the accumulation of evidence during decision-making (drift rate effects). In addition,
we thought it plausible that subjects might use volitional ‘top-down’ control to adjust
their response thresholds in response to the updating cue (i.e., different thresholds for
updating vs. maintenance modes). Our starting point was thus a DDM in which drift rate
and non-decision time could vary over every design cell and with different thresholds
for reference and comparison trials. Prior distributions on model parameters are given in
Appendix B. We compared this top model to several constrained variants in which either
the drift rate, non-decision time, or threshold effects were removed (i.e., held fixed across
design cells). Each model also included one starting point, one starting point variability,
and one drift rate variability parameter. Drift criterion and non-decision time variability
were fixed at zero to satisfy the scaling constraint of evidence accumulation models [55].
The results of model selection are shown in Table 2.
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Table 2. Model selection.

Model Parameters DIC Difference from Top Model n %

Top model 21 0 56 37.3
Threshold fixed 20 179 46 30.7
Drift rate fixed 14 880 35 23.3
Non-decision time fixed 14 2720 13 8.7

The n and % columns denote the number and percentage of participants for whom each model was preferred (i.e.,
had the lowest DIC).

We used the deviance information criterion (DIC) [56] to measure the relative quality
of each model, accounting for both goodness of fit and model complexity (number of
parameters). The preferred individual-level model (i.e., with the lowest DIC) for the largest
proportion of subjects (37.3%) was the fully flexible top model, suggesting that drift rate,
non-decision time, and threshold effects each play a role in explaining performance and
costs in the reference-back task. The next most preferred model (30.7%) had the threshold
effect removed but still retained both fully flexible drift rates and non-decision times in
order to explain the RT and accuracy cost effects. Smaller proportions of subjects were better
explained by models with either the drift rate (23.3%) or non-decision time (8.7%) effects
removed. We then fit a fully hierarchical version of the top model to obtain group-level and
subject-level posterior distributions of each model parameter. Accounting for hierarchical
(group) structure imposes further constraint on the model by ‘shrinking’ subject-level
estimates towards the group average and thus makes posterior inference on the resulting
parameter estimates more conservative. Except where indicated, the remaining analyses
will focus on the fits and parameter effects of this hierarchical top model.

3.3. Model Fit and Parameter Recovery

To evaluate how closely the model fits the data, we sampled 100 posterior predictions
of choice-RT for each subject and then took the average over all subjects. As Figure 5
shows, the model provides close fits to response proportions and RT distributions for
each response type and design cell. We note a slight tendency to overpredict accuracy for
responses to ‘same’ stimuli (i.e., probe-referent matches) as well as some minor misfit in
the tails of error RTs for ‘same’ stimuli. This is likely due to the high accuracy and relatively
small proportion of error responses in those particular design cells (this is reflected in the
wider confidence intervals for the 0.9 error RT quantiles).

To further explore how well the model predicts specific reference-back cost effects, we
calculated each cost effect on the models” posterior predictions and compared them to the
corresponding empirical effects. As shown in Figure 6, for the updating and substitution
effects, the model predicts both accuracy and RT costs very closely. For the switching,
comparison, and gate-closing effects, the model tends to predict a larger accuracy and
smaller RT cost than was observed. For gate opening, the model predicts a slightly larger
accuracy cost than was observed and fits the RT cost very closely. Overall, the model
reproduces the pattern of RT costs closely, with some misfit of accuracy costs for switching,
comparison, and gate closing.
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3.4. Parameter Effects

In order to give us confidence in drawing inferences from the model’s parameters,
we performed a parameter recovery study in which we assessed whether the model could
recover the values of known data-generating parameters from simulated data in a precise
and unbiased manner. Details of the simulation procedure and a visualization of the results
are presented in Appendix C (Figure A1l). Crucially, the parameters most relevant to our
current theoretical questions—drift rate, non-decision time, and threshold—were each
recovered closely and without bias. Figure 7 shows the group-averaged drift rate and
non-decision time for each cell of the experimental design.

Drift rate Nondecision time
Mo-switch Switch Mo-switch Switch

0.325

2.25 I

b rF -
N N
N 0.300 4 b
i = ’ ~
200 N R Stimulus / b Stimulus
s
A r S / =
= i \ @ Same =z 7 - @ Same

0.275

1.75 \\ A Different ! - - - A Different
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N :E - - =
o 0,250
1.50 0.250
1.25 0.225
Comparison Reference Comparison  Reference Comparison Reference Comparison Reference
Trial type Trial type

Figure 7. Group-averaged drift rate (left panel) and non-decision time (right panel) for each cell of the experimental design.

Error bars represent +1 posterior standard deviation.

To draw inferences about the direction and magnitude of parameter effects in relation
to the WM control processes measured by the reference-back task, we computed posterior
distributions for each of the canonical cost measures in terms of the group-level posterior
parameter samples. For example, taking the difference between repeated reference and
comparison trials for a given parameter for each posterior sample gives the posterior
probability distribution of the updating effect. For each effect distribution, we report a
Bayesian p-value [57] that indicates the one-tailed probability that the effect does not run
in the most sampled direction. To quantify the magnitude of each effect, we report the
standardized difference between parameters (i.e., Z = M/SD of the effect distribution).

Figure 8 shows histograms of the group-level posterior distributions for hyper-mean
drift rate and hyper-mean non-decision time, with posterior means, Z-scores, and p-values,
for each cost effect. All drift rate effects except for comparison type were significant,
meaning that each reference-back cost measure was associated with poorer-quality ev-
idence accumulation. All cost measures except for gate opening were also associated
with longer non-decision times. Taken together, this suggests that the various behavioral
costs measured by the reference-back task are driven both by additional WM control
processes that run outside of the decision stage and by a reduction in the quality of
information processing.
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Figure 8. Posterior inference on canonical cost effects for hyper-mean drift rate (top panels) and non-decision time

parameters (bottom panels). Each panel shows a histogram of the posterior distribution as well as the posterior mean,
Z-score, and p-value of the effect. Dotted lines represent 95% credible intervals. Red lines indicate the zero point. Visually, if
the red line appears outside of the credible interval, then the effect is significant. The x-axis labels state how the contrast

is calculated.

Posterior inference on hyper-mean thresholds indicated that thresholds were higher in
reference trials than in comparison trials (Figure 9). This is consistent with subjects exerting
cognitive control over thresholds in response to the updating cue in order to respond more
cautiously when in updating mode.
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Figure 9. Posterior inference on hyper-mean thresholds in reference versus comparison trials. Raised
thresholds in reference trials suggest cognitive control in response to the updating cue.

3.5. Individual Differences

Capitalizing on our large sample, we conducted an exploratory individual differences
analysis to assess the relationship between subject-level parameter effects and empirical
performance costs. To this end, we examined the Pearson correlations between individuals’
RT and accuracy costs and the subject-level maximum a posteriori estimates of drift
rate, non-decision time, and threshold effects from the non-hierarchical version of the
top model (i.e., without shrinkage of subject-level parameters toward the group mean,
which violates the assumption of independent observations required for correlations).
These correlations are illustrated in Appendix D (Figures A2—-A7). Two outlying values
of switching and comparison costs were excluded to avoid obtaining spuriously inflated
correlations involving these variables.

All drift rate effects were correlated with their corresponding accuracy (r = [0.41-0.80])
and RT costs (r = [0.24-0.49]), whereas non-decision time effects were correlated with
their corresponding RT effects only (r = [0.29-0.46]), except for a significant comparison
effect for accuracy and a nonsignificant comparison effect for RT). This general pattern is
to be expected, since changes in non-decision time cannot affect accuracy, whereas drift
rates affect both RT and accuracy. The magnitude of threshold shifts between reference
and comparison trials was positively correlated with RT costs of updating (r = 0.41) and
negatively correlated with accuracy costs of updating (r = —0.30), which is also consistent
with the function of thresholds in controlling trade-offs between speed and accuracy.
Finally, we note that related parameter effects tended to correlate with each other. For
example, gate opening and closing costs were correlated with updating and the more
general switching cost for both drift rate and non-decision time (r = [—0.48-0.73]). Similarly,
substitution costs were correlated with the more general updating cost for non-decision
time (r = 0.45). However, drift rate and non-decision time effects were mostly uncorrelated
with each other, indicating that these parameters accounted for distinct components of the
observed effects. Overall, this gives us further confidence that our model is capturing this
complex set of empirical effects—at both the group and individual levels—in a coherent
and psychologically plausible manner.

4. Discussion

In this study, we performed the first detailed model-based analysis of behavioral costs
in the reference-back task, which are assumed to reflect a set of cognitive control processes
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that support WM. Our data replicated the set of behavioral effects found in previous
reference-back studies [11,12,14,21-25], including the asymmetrical costs of opening and
closing the gate to WM [7,11,12,14,21]. The DDM provided close fits to empirical choice-RT
distributions for each design cell of the reference-back, and model selection indicated
that, for most subjects, drift rate and non-decision time each played an important role
in explaining the observed differences in accuracy and RT. The model also provided a
coherent account of individual differences in reference-back performance.

Posterior inference on model parameters indicated that updating, gating, and substi-
tution costs were partly due to additional WM control processes running outside of the
decision stage (a non-decision time effect) and partly due to a reduction in the quality
of information processing (a drift rate effect). This latter finding is intriguing because
current theories of WM updating assume that updating and gating are non-decision time
processes that run outside of the decision-making stage and are thus not expected to inter-
fere with the speed with which WM information is processed (i.e., drift rate). A potential
explanation for this is that the same cascade of processes responsible for engaging WM
control operations (e.g., updating and gating) also involves inhibition of the prepotent
response—by slowing the rate of evidence accumulation—to allow more time for active
control processes to finish. This is in line with EEG work with the reference-back task
suggesting that oscillatory signals related to conflict monitoring are involved in trigger-
ing WM control processes when the need to use them arises [23,24]. Given that in our
design the requisite WM control operations could not be predicted prior to trial onset,
our inhibitory effects are an example of reactive control [30]. Reactive control processes
operate automatically when triggered by inputs signaling the critical event (i.e., when the
cognitive system detects a stimulus/response conflict or the need to update or open/close
the gate). Event-triggered reactive inhibition of prepotent response drift rates has been
reported in similar evidence accumulation modeling of event-based prospective memory,
in which ongoing task drift rates were inhibited on trials containing an unexpected cue to
perform a deferred action [31-33]. Our present results are consistent with this work. In
sum, our modeling suggests that performance costs on the reference-back task are due
to a combination of reactive response inhibition that is triggered alongside WM control
processes and the time taken for those processes to run outside of the decision stage.

In addition, our best model indicated that individuals set higher thresholds in refer-
ence trials (i.e., when cued to update WM) than in comparison trials (i.e., when cued to
maintain/not update). At a strategic level, this increases the amount of evidence required
to trigger a decision and thus reduces the likelihood of making premature responses based
on outdated information (e.g., before the updating process has been completed). This
highlights a further way in which individuals apply cognitive control to meet the demands
of the reference-back paradigm.

In terms of neurocomputational theory, our findings are consistent with prominent
neural network-based process models of WM, such as the prefrontal cortex-basal ganglia
working memory (PBWM) model [16-18], in which the basal ganglia controls WM updating
via a dynamic gating mechanism. In the PBWM, the prefrontal cortex holds WM repre-
sentations (via recurrent excitation) in a default ‘gate-closed’ state of active maintenance
against interference. The role of the basal ganglia is to learn [58], via dopamine-driven
reinforcement learning [59], when to open the gate or ‘release the brakes” on WM and
thereby allow prefrontal representations to be rapidly updated in line with task goals [17].
In our modeling, this gate-opening mechanism was associated only with inhibited drift
rates and not with prolonged non-decision time, which suggests that gate opening adds
minimal time outside of the decision stage and that associated performance costs are driven
primarily by response inhibition, triggered by the same cascade of processes as gating.
However, we note that since gate opening and closing both (necessarily) involve switching
between trial types, these measures may include effects related to task switching, such as
task-set reconfiguration and proactive interference from previously active sets (we note that
our updating and comparison measures were based only on no-switch trials and so were
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not contaminated by potential switching effects [4,60,61]). This would go some way toward
explaining why both gating measures (and switching) were associated with lower drift
rates, since interference from previously active sets and noise in the retrieved set would be
expected to reduce the quality of decision processing on switch trials [62]. We also note
that the larger costs associated with closing versus opening the gate (i.e., when switching
to maintenance mode) provide further support for the PBWM’s assumption that WM sits
in maintenance (gate-closed) mode by default. This is due to the common finding in the
task switching literature that switching to an easier task takes longer than switching to a
more difficult task [63,64]. Assuming that maintenance is less demanding than updating,
as our drift rate and choice-RT effects suggest, then maintenance should be the default
operating state and consequently should attract a larger switch cost. Clever experimental
design, combined with stronger links to neural data, will be needed to further disentangle
gating and switching processes and provide a clearer picture of the basal ganglia’s role in
triggering such processes.

Our finding that individuals apply different threshold (response caution) settings
when switching between updating and maintenance mode is consistent with the role of
‘top-down’ cortical control in the PBWM framework. However, because our model does not
contain a learning mechanism, it does not explain how individuals acquire the cognitive
control settings (and timing thereof) that they use to meet task demands. Future work
may thus profit from integrating a PBWM-like learning mechanism into our evidence
accumulation framework to obtain finer control over the temporal dynamics of reference-
back performance (e.g., by having threshold and/or reactive control settings vary from
trial to trial as a function of learning; see [65,66] for examples of such an approach in the
domain of instrumental learning). In addition, we speculate that some of the minor misfits
(e.g., to empirical switching and comparison costs) of our model were likely due to certain
sequential or ‘carry-over’ effects that are unaccounted for in the current framework, such
as proactive interference, priming, task-set inertia/reconfiguration, and Gratton effects
arising from previously encountered stimuli and responses [11,42,43,62,67-72]. Due to our
limited number of trials per subject, we were unable to conduct a thorough model-based
analysis of sequential effects in the reference-back task. However, it has been suggested
that tasks involving WM updating are particularly prone to interference from such sources,
because frequent updating prevents the strong binding of items to locations in WM [5].
Incorporating dynamic adjustments of the cognitive system via trial-to-trial learning in
the manner suggested may hold some promise in capturing these additional sources of
variability in reference-back performance.

In terms of methodological advancement, our model-based approach offers a finer
decomposition of reference-back performance costs in terms of latent decision processes
than has previously been available. This is important because there is a lack of strong
behavioral predictions from existing models of WM, and most models are silent on the
specific WM control processes we seek to understand. Looking forward, we believe
our approach will offer stronger links between theory and data in future work with the
reference-back paradigm. For example, an obvious next step would be to use the model as
a way to interpret behavioral and neural reference-back data through the same cognitive
theory, as is done in model-based cognitive neuroscience (e.g., the ‘model-in-the-middle’
approach [73-76] and joint neural-behavioral modeling [35,77,78]). A string of recent work
has adopted the reference-back task in the hope of understanding the neural basis of
WM control processes [21-24] and the role of dopamine systems in controlling gating and
updating [21,25] (see also [79,80]). Our approach to decomposing performance costs into
latent cognitive processes may reveal links between brain and behavior that are masked
at the level of accuracy and mean RT, and which would thus be missed in conventional
analyses. We believe this kind of modeling will play a substantial role in identifying
the neural substrates of WM control processes and furthering our understanding of WM
more broadly. An interesting question for future joint neural-behavioral modeling of the
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reference-back task is to ask whether our reactive inhibition effects relate to activity in brain
regions previously linked to reactive control (e.g., the lateral prefrontal cortex, ref. [30]).

One limitation of the current approach is that probe-referent decisions and WM
control operations are both triggered concurrently at stimulus onset and are thus somewhat
confounded in terms of our ability to measure them with the standard DDM. In our
modeling, we assumed that the duration of WM operations was captured in the non-
decision time parameter. Although it is useful in decomposing the loci of RT costs, non-
decision time is by no means an explicit mechanism or a pure measure of any WM or
cognitive control process elicited by the reference-back task. In short, we measured the
effects of WM control operations on DDM parameters but did not explicitly model those
operations. Future model development may explore options for integrating explicit WM
mechanisms (e.g., updating, gating, switching) into an evidence accumulation framework.
This would ultimately enable inferences to be drawn about target processes directly rather
than via their secondary effects on decision-making processes.

A further consideration is the extent to which our results are robust to changes in the
evidence accumulation model architecture. Our starting point was the standard DDM, in
which drift rates represent the relative difference in evidence between the two possible
choice options (i.e., same vs. different). However, reference-back decisions could also be
modeled using race architectures (e.g., the linear ballistic accumulator [81] and racing Wald
models [82]), in which evidence for competing options is accumulated independently and
the overt response is determined by the first accumulator to reach threshold. When fit to the
same data, the DDM and race architectures typically lead to qualitatively similar inferences
(i.e., accumulation rate, threshold, and non-decision time effects in the DDM typically
map onto accumulation rate, threshold, and non-decision time effects in independent
race models, e.g., [83], but not always [84]). We leave it to future work to assess whether
substantive differences arise between the DDM and race model architectures when applied
to the reference-back paradigm.

5. Concluding Remarks

Overall, we believe our approach to modeling the reference-back paradigm holds
promise in furthering our understanding of WM and the control processes that make such
flexible decision-making possible. Our model provides the first comprehensive compu-
tational account of reference-back task performance and offers a coherent explanation
of group- and individual-level empirical effects in terms of non-decision time, reactive
inhibitory control, and threshold control when updating. We look forward to combining
our analysis approach with neurophysiological measures to gain further insight into the
neural basis of WM control processes.

Author Contributions: Conceptualization, R.J.B. and B.U.E; methodology and investigation, R.].B.,
N.S,,Rwv.D., A.CT, ZS., and B.U.F,; software, N.S. and R.v.D.; formal analysis, R.J.B. and N.S.; data
curation, N.S. and A.C.T.; writing—original draft preparation, R.J.B.; writing—review and editing,
R]J.B,N.S., Rv.D,ACT,ZS., and B.U.E; visualization, R.J.B.; supervision, project administration,
resources, and funding acquisition, B.U.F. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by grants from the Netherlands Organisation for Scientific
Research to Birte U. Forstmann (016.Vici.185.052) and the European Research Council to Bernhard
Hommel (ERC-2015-AdG-694722).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of Leiden University (protocol code:
CEP19-1024 /522, date of approval: 24 October 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data and analysis code available upon request.



Brain Sci. 2021, 11, 721

17 of 27

Acknowledgments: We thank Bryant Jongkees, Yoav Kessler, and Bernhard Hommel for their
valuable input and help in setting up the online study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Significance Tests of Behavioral Effects

Table Al. Significance testing of accuracy effects using a generalized linear model with a probit
link function.

Effect SS A effect Residual SS df within F p
Intercept 996.33 1 9.59 149 15,485.87 <0.001
U 0.05 1 0.32 149 23.48 <0.001
C 0.03 1 0.86 149 491 0.028
S 0.00 1 0.26 149 0.54 0.466
UxC 0.05 1 0.61 149 11.80 <0.001
UxS 0.04 1 0.33 149 16.28 <0.001
CxS 0.03 1 0.22 149 22.59 <0.001
UxCxS 0.00 1 0.27 149 1.54 0.217

U = updating (reference, comparison), C = comparison (same, different), S = switching (switch, no-switch).

Table A2. Significance testing of mean RT effects using a general linear model with a Gaussian
link function.

Effect SS A effect Residual SS df within F p
Intercept 623.25 1 33.94 149 2736.57 <0.001
U 1.81 1 1.07 149 253.14 <0.001
C 7.34 1 2.27 149 482.69 <0.001
S 1.04 1 0.89 149 173.75 <0.001
UxC 0.60 1 0.68 149 131.42 <0.001
UxS 0.06 1 0.57 149 14.44 <0.001
CxS 0.04 1 0.36 149 18.29 <0.001
UxCxS 0.14 1 0.49 149 41.28 <0.001

U = updating (reference, comparison), C = comparison (same, different), S = switching (switch, no-switch).

Appendix B
Appendix B.1. Sampling

Posterior distributions for DDM parameters were estimated using the differential
evolution Markov chain-Monte Carlo (DE-MCMC) sampling algorithm [85], which is more
adept than conventional samplers at handling the high parameter correlations that often
occur in sequential sampling models. For each model, the number of sampling chains
was set at three times the number of parameters in the model. To remove the effects of
autocorrelation between successive samples, chains were thinned by 10, meaning that
every 10th iteration was kept. Sampling continued until a multivariate potential scale
reduction factor [86,87] less than 1.1 was obtained, indicating that sampling chains were
well-mixed, stationary, and converged. For the top model, we retained 6300 samples
(63 chains x 100 iterations) of each parameter’s posterior distribution for each subject.

Appendix B.2. Priors

Since this task has never been modeled before, we placed relatively broad and non-
informative priors on model parameters. All drift rates were given a truncated normal
prior with a mean and standard deviation of 1 (truncated at —10 and 10). All non-decision
times were given a truncated normal prior with a mean and standard deviation of 0.2
(truncated at 0.05 and 1). Thresholds were given a truncated normal prior with a mean
of 1.5 and standard deviation of 1 (truncated at 0 and 10). Starting point was assigned
a truncated normal prior with a mean and standard deviation of 1 (truncated at 0 and
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10). Starting point variability and drift rate variability were each assigned a truncated
normal prior with a mean and standard deviation of 0.1 (truncated at 0 and 10). In the fully
hierarchical model, each of these parameters was given a hyper (group-level) mean and
standard deviation. Hyper means were assigned truncated normal priors with means and
standard deviations as above. Hyper standard deviations were given gamma priors with
shape and scale parameters equal to 1.

Appendix C
Parameter Recovery

We performed a parameter recovery study to assess the model’s ability to recover
known parameter values. In this procedure, we first used the top model with known (i.e.,
maximum a posteriori) parameter values to simulate data for 100 synthetic subjects. We
then fit the model to the simulated data and examined how closely the 100 sets of recovered
parameters matched the known data-generating values. Figure Al shows parameter
recovery for the top model. Recovered values for the drift rate and non-decision time
parameters were tightly clustered around the true value, with no clear tendency to over-
or underestimate the true value. This gives us confidence that the model recovers these
parameters accurately and without bias. Thresholds were also recovered closely and
without bias, as was the starting point parameter. For the two variability parameters—sz
and sv—recovered values tended to underestimate the data-generating value, although
the true value was still enclosed well inside the 95% credible region. Given that these
parameters were not of theoretical interest and can be held fixed without affecting our
inferences from the model (at the expense of a higher DIC value), this small bias was not a
concern in the present analyses.
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Figure A1. Parameter recovery for the top model. Each panel shows the recovered parameter values
for 100 synthetic subjects (black dots) plotted against the known data-generating value (horizontal
lines). The shaded region represents the 95% credible interval surrounding the recovered value. Note:
z = starting point, sz = starting point variability, sv = drift rate variability.
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Appendix D
Individual Difference Correlations

Accuracy, drift rate
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Figure A2. Pairwise Pearson correlations between drift rate and accuracy cost effects. Empirical effects are shown in the
first six columns. Parameter effects are shown in the last six columns (prefixed with the parameter name). Upd = updating,
Swi = switching, Cmp = comparison, GO = gate opening, GC = gate closing, Sub = substitution. Asterisks *, **, and ***
denote p-values of <0.05, <0.01, and <0.001, respectively.
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Figure A3. Pairwise Pearson correlations between drift rate and RT cost effects. Empirical effects are shown in the first six

columns. Parameter effects are shown in the last six columns (prefixed with the parameter name). Upd = updating, Swi =

switching, Cmp = comparison, GO = gate opening, GC = gate closing, Sub = substitution. Asterisks *, **, and *** denote
p-values of <0.05, <0.01, and <0.001, respectively.
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Figure A4. Pairwise Pearson correlations between non-decision time and accuracy cost effects. Empirical effects are shown
in the first six columns. Parameter effects are shown in the last six columns (prefixed with the parameter name). Upd =
updating, Swi = switching, Cmp = comparison, GO = gate opening, GC = gate closing, Sub = substitution. Asterisks *, **,
and *** denote p-values of <0.05, <0.01, and <0.001, respectively.



Brain Sci. 2021, 11, 721

22 of 27

RT, nondecision time

Swi cmp GO GC Sub

Corr corr corr corr
0.402 -0.129 0.256%*
Corr

-0.060

& >
ﬂ..-

.
.
.
-
J

i

o s % "" LAY corr corr
e e\ o o
- ; % o aS ] ‘e .' f . .‘.3' Corr

0-e B d o *a, . s ° 0.040
. ° 1 SEum

Mt 14
5
i
Y S
.- .‘s
e .-
*
apdal.
Lo
. =

o
.

o,
B

S

.
.

LR
.
.
1
.ICE. >~ o
.
.
.
Y
e ¥
.
.
Ll
*e
.
.
*fe
*
.
fo'-'.
.

. . .

.« * s EEE
¥ . . e
" . [ . =
L . - ! . ®

o . . . ® .

l. .- . . .l‘
L) . .. -~

.
H
.

s .f- : ! B
;.-'._
&

.
1 ““
g L
o
.
.
1
* -
.
s & i
e
.
.
.
.
o
)
.
.

B

®: ™

# &

.
. e
.

-,
SR

.
-

0 100 200 300-100 0 10

100 0 100 0 0 100 200 300 0 100200300400 -100 0 100200300

{4
:' i
X
3
i
&

10.Upd 10.Swi 10.Cmp 10.60 10.6C
Corr corr Cor Corr corr.
0.311%%= 0.091 0.236* -0.176* )
orr Corr Corr Corr Corr.
0.027 0.426** 0.141 - 0.362%**
Corr Corr Corr Corr Corr
0.106 0.025 0.129 -0.085 0.124
Corr Corr
0.066 0.286%*
Corr Corr Corr
0.164 0.159, 0.075 0
Corr Corr Corr
0.062 -0.010 0.126
Corr Corr Corr Corr
0.013 0.49( 0.494%+

"o & L
T . . K ., ° Corr Corr
1 Ly -0.175* 0.248%
ey .! 1

PIr : i-‘. . @ f/\/ »
. o oo Qe S -0.019
e e o %o -, (T4
W4
e o A o

10.Sub

Corr
0.044

Corn

0.246*

Corr
-0.015

Con
0.427+++

Corr
-0.110

Corn
0.189*

290 o9 dwam "MS 0 pdn o1 ans 29 09 durny ws pdn

ans'oy

Figure A5. Pairwise Pearson correlations between non-decision time and RT cost effects. Empirical effects are shown in the

first six columns. Parameter effects are shown in the last six columns (prefixed with the parameter name). Upd = updating,

Swi = switching, Cmp = comparison, GO = gate opening, GC = gate closing, Sub = substitution. Asterisks *, **, and ***

denote p-values of <0.05, <0.01, and <0.001, respectively.
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Figure A6. Pairwise Pearson correlations between threshold and accuracy cost effects. Empirical effects are shown in the
first six columns. Parameter effects are shown in the last column (prefixed with the parameter name). Upd = updating,
Swi = switching, Cmp = comparison, GO = gate opening, GC = gate closing, Sub = substitution. Asterisks * and *** denote

p-values of <0.05, <0.01, and <0.001, respectively.
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Figure A7. Pairwise Pearson correlations between threshold and RT cost effects. Empirical effects are shown in the
first six columns. Parameter effects are shown in the last column (prefixed with the parameter name). Upd = updating,
Swi = switching, Cmp = comparison, GO = gate opening, GC = gate closing, Sub = substitution. Asterisks *, **, and ***
denote p-values of <0.05, <0.01, and <0.001, respectively.
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